MyArxiv
Computation and Language
☆ BitNet b1.58 2B4T Technical Report
We introduce BitNet b1.58 2B4T, the first open-source, native 1-bit Large Language Model (LLM) at the 2-billion parameter scale. Trained on a corpus of 4 trillion tokens, the model has been rigorously evaluated across benchmarks covering language understanding, mathematical reasoning, coding proficiency, and conversational ability. Our results demonstrate that BitNet b1.58 2B4T achieves performance on par with leading open-weight, full-precision LLMs of similar size, while offering significant advantages in computational efficiency, including substantially reduced memory footprint, energy consumption, and decoding latency. To facilitate further research and adoption, the model weights are released via Hugging Face along with open-source inference implementations for both GPU and CPU architectures.
comment: Work in progress
☆ Dysarthria Normalization via Local Lie Group Transformations for Robust ASR
We present a geometry-driven method for normalizing dysarthric speech using local Lie group transformations of spectrograms. Time, frequency, and amplitude distortions are modeled as smooth, invertible deformations, parameterized by scalar fields and applied via exponential maps. A neural network is trained to infer these fields from synthetic distortions of typical speech-without using any pathological data. At test time, the model applies an approximate inverse to real dysarthric inputs. Despite zero-shot generalization, we observe substantial ASR gains, including up to 16 percentage points WER reduction on challenging TORGO samples, with no degradation on clean speech. This work introduces a principled, interpretable approach for robust speech recognition under motor speech disorders
comment: Preprint. 11 pages, 3 figures, 2 tables, 8 appendices. Code and data available upon request
☆ Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach attains state-of-the-art (SOTA) performance, exceeding all previous efforts in the field of Arabic ASR on the standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
☆ Watermarking Needs Input Repetition Masking
Recent advancements in Large Language Models (LLMs) raised concerns over potential misuse, such as for spreading misinformation. In response two counter measures emerged: machine learning-based detectors that predict if text is synthetic, and LLM watermarking, which subtly marks generated text for identification and attribution. Meanwhile, humans are known to adjust language to their conversational partners both syntactically and lexically. By implication, it is possible that humans or unwatermarked LLMs could unintentionally mimic properties of LLM generated text, making counter measures unreliable. In this work we investigate the extent to which such conversational adaptation happens. We call the concept $\textit{mimicry}$ and demonstrate that both humans and LLMs end up mimicking, including the watermarking signal even in seemingly improbable settings. This challenges current academic assumptions and suggests that for long-term watermarking to be reliable, the likelihood of false positives needs to be significantly lower, while longer word sequences should be used for seeding watermarking mechanisms.
☆ d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL). These capabilities have primarily been demonstrated within the left-to-right autoregressive (AR) generation paradigm. In contrast, non-autoregressive paradigms based on diffusion generate text in a coarse-to-fine manner. Although recent diffusion-based large language models (dLLMs) have achieved competitive language modeling performance compared to their AR counterparts, it remains unclear if dLLMs can also leverage recent advances in LLM reasoning. To this end, we propose d1, a framework to adapt pre-trained masked dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL. Specifically, we develop and extend techniques to improve reasoning in pretrained dLLMs: (a) we utilize a masked SFT technique to distill knowledge and instill self-improvement behavior directly from existing datasets, and (b) we introduce a novel critic-free, policy-gradient based RL algorithm called diffu-GRPO. Through empirical studies, we investigate the performance of different post-training recipes on multiple mathematical and logical reasoning benchmarks. We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
comment: 25 pages, project page at https://dllm-reasoning.github.io/
☆ What Do Large Language Models Know? Tacit Knowledge as a Potential Causal-Explanatory Structure
It is sometimes assumed that Large Language Models (LLMs) know language, or for example that they know that Paris is the capital of France. But what -- if anything -- do LLMs actually know? In this paper, I argue that LLMs can acquire tacit knowledge as defined by Martin Davies (1990). Whereas Davies himself denies that neural networks can acquire tacit knowledge, I demonstrate that certain architectural features of LLMs satisfy the constraints of semantic description, syntactic structure, and causal systematicity. Thus, tacit knowledge may serve as a conceptual framework for describing, explaining, and intervening on LLMs and their behavior.
comment: Accepted for publication in Philosophy of Science
☆ SALAD: Improving Robustness and Generalization through Contrastive Learning with Structure-Aware and LLM-Driven Augmented Data NAACL 2025
In various natural language processing (NLP) tasks, fine-tuning Pre-trained Language Models (PLMs) often leads to the issue of spurious correlations, which negatively impacts performance, particularly when dealing with out-of-distribution data. To address this problem, we propose SALAD}(Structure Aware and LLM-driven Augmented Data), a novel approach designed to enhance model robustness and generalization by generating structure-aware and counterfactually augmented data for contrastive learning. Our method leverages a tagging-based approach to generate structure-aware positive samples and utilizes large language models (LLMs) to generate counterfactual negative samples with diverse sentence patterns. By applying contrastive learning, SALAD enables the model to focus on learning the structural relationships between key sentence components while minimizing reliance on spurious correlations. We validate our approach through experiments on three tasks: Sentiment Classification, Sexism Detection, and Natural Language Inference. The results demonstrate that SALAD not only improves model robustness and performance across different environments but also enhances generalization to out-of-distribution datasets and cross-domain scenarios.
comment: Accepted to NAACL 2025 main. 15 pages, 4 figures
☆ Trusting CHATGPT: how minor tweaks in the prompts lead to major differences in sentiment classification
One fundamental question for the social sciences today is: how much can we trust highly complex predictive models like ChatGPT? This study tests the hypothesis that subtle changes in the structure of prompts do not produce significant variations in the classification results of sentiment polarity analysis generated by the Large Language Model GPT-4o mini. Using a dataset of 100.000 comments in Spanish on four Latin American presidents, the model classified the comments as positive, negative, or neutral on 10 occasions, varying the prompts slightly each time. The experimental methodology included exploratory and confirmatory analyses to identify significant discrepancies among classifications. The results reveal that even minor modifications to prompts such as lexical, syntactic, or modal changes, or even their lack of structure impact the classifications. In certain cases, the model produced inconsistent responses, such as mixing categories, providing unsolicited explanations, or using languages other than Spanish. Statistical analysis using Chi-square tests confirmed significant differences in most comparisons between prompts, except in one case where linguistic structures were highly similar. These findings challenge the robustness and trust of Large Language Models for classification tasks, highlighting their vulnerability to variations in instructions. Moreover, it was evident that the lack of structured grammar in prompts increases the frequency of hallucinations. The discussion underscores that trust in Large Language Models is based not only on technical performance but also on the social and institutional relationships underpinning their use.
comment: in Spanish language
☆ Mapping Controversies Using Artificial Intelligence: An Analysis of the Hamas-Israel Conflict on YouTube
This article analyzes the Hamas-Israel controversy through 253,925 Spanish-language YouTube comments posted between October 2023 and January 2024, following the October 7 attack that escalated the conflict. Adopting an interdisciplinary approach, the study combines the analysis of controversies from Science and Technology Studies (STS) with advanced computational methodologies, specifically Natural Language Processing (NLP) using the BERT (Bidirectional Encoder Representations from Transformers) model. Using this approach, the comments were automatically classified into seven categories, reflecting pro-Palestinian, pro-Israeli, anti- Palestinian, anti-Israeli positions, among others. The results show a predominance of pro- Palestinian comments, although pro-Israeli and anti-Palestinian comments received more "likes." This study also applies the agenda-setting theory to demonstrate how media coverage significantly influences public perception, observing a notable shift in public opinion, transitioning from a pro- Palestinian stance to a more critical position towards Israel. This work highlights the importance of combining social science perspectives with technological tools in the analysis of controversies, presenting a methodological innovation by integrating computational analysis with critical social theories to address complex public opinion phenomena and media narratives.
comment: in Spanish language
☆ Poem Meter Classification of Recited Arabic Poetry: Integrating High-Resource Systems for a Low-Resource Task
Arabic poetry is an essential and integral part of Arabic language and culture. It has been used by the Arabs to spot lights on their major events such as depicting brutal battles and conflicts. They also used it, as in many other languages, for various purposes such as romance, pride, lamentation, etc. Arabic poetry has received major attention from linguistics over the decades. One of the main characteristics of Arabic poetry is its special rhythmic structure as opposed to prose. This structure is referred to as a meter. Meters, along with other poetic characteristics, are intensively studied in an Arabic linguistic field called "\textit{Aroud}". Identifying these meters for a verse is a lengthy and complicated process. It also requires technical knowledge in \textit{Aruod}. For recited poetry, it adds an extra layer of processing. Developing systems for automatic identification of poem meters for recited poems need large amounts of labelled data. In this study, we propose a state-of-the-art framework to identify the poem meters of recited Arabic poetry, where we integrate two separate high-resource systems to perform the low-resource task. To ensure generalization of our proposed architecture, we publish a benchmark for this task for future research.
☆ Multilingual Contextualization of Large Language Models for Document-Level Machine Translation
Large language models (LLMs) have demonstrated strong performance in sentence-level machine translation, but scaling to document-level translation remains challenging, particularly in modeling long-range dependencies and discourse phenomena across sentences and paragraphs. In this work, we propose a method to improve LLM-based long-document translation through targeted fine-tuning on high-quality document-level data, which we curate and introduce as DocBlocks. Our approach supports multiple translation paradigms, including direct document-to-document and chunk-level translation, by integrating instructions both with and without surrounding context. This enables models to better capture cross-sentence dependencies while maintaining strong sentence-level translation performance. Experimental results show that incorporating multiple translation paradigms improves document-level translation quality and inference speed compared to prompting and agent-based methods.
comment: 9 pages, work-in-progress
☆ Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
Despite recent advances in Large Vision Language Models (LVLMs), these models still suffer from generating hallucinatory responses that do not align with the visual input provided. To mitigate such hallucinations, we introduce Efficient Contrastive Decoding (ECD), a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time. By contrasting token probabilities and hallucination scores, ECD subtracts hallucinated concepts from the original distribution, effectively suppressing hallucinations. Notably, our proposed method can be applied to any open-source LVLM and does not require additional LVLM training. We evaluate our method on several benchmark datasets and across different LVLMs. Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
☆ Entropy-Guided Watermarking for LLMs: A Test-Time Framework for Robust and Traceable Text Generation
The rapid development of Large Language Models (LLMs) has intensified concerns about content traceability and potential misuse. Existing watermarking schemes for sampled text often face trade-offs between maintaining text quality and ensuring robust detection against various attacks. To address these issues, we propose a novel watermarking scheme that improves both detectability and text quality by introducing a cumulative watermark entropy threshold. Our approach is compatible with and generalizes existing sampling functions, enhancing adaptability. Experimental results across multiple LLMs show that our scheme significantly outperforms existing methods, achieving over 80\% improvements on widely-used datasets, e.g., MATH and GSM8K, while maintaining high detection accuracy.
☆ Gauging Overprecision in LLMs: An Empirical Study
Recently, overconfidence in large language models (LLMs) has garnered considerable attention due to its fundamental importance in quantifying the trustworthiness of LLM generation. However, existing approaches prompt the \textit{black box LLMs} to produce their confidence (\textit{verbalized confidence}), which can be subject to many biases and hallucinations. Inspired by a different aspect of overconfidence in cognitive science called \textit{overprecision}, we designed a framework for its study in black box LLMs. This framework contains three main phases: 1) generation, 2) refinement and 3) evaluation. In the generation phase we prompt the LLM to generate answers to numerical questions in the form of intervals with a certain level of confidence. This confidence level is imposed in the prompt and not required for the LLM to generate as in previous approaches. We use various prompting techniques and use the same prompt multiple times to gauge the effects of randomness in the generation process. In the refinement phase, answers from the previous phase are refined to generate better answers. The LLM answers are evaluated and studied in the evaluation phase to understand its internal workings. This study allowed us to gain various insights into LLM overprecision: 1) LLMs are highly uncalibrated for numerical tasks 2) {\color{blue}there is no correlation between the length of the interval and the imposed confidence level, which can be symptomatic of a a) lack of understanding of the concept of confidence or b) inability to adjust self-confidence by following instructions}, {\color{blue}3)} LLM numerical precision differs depending on the task, scale of answer and prompting technique {\color{blue}4) Refinement of answers doesn't improve precision in most cases}. We believe this study offers new perspectives on LLM overconfidence and serves as a strong baseline for overprecision in LLMs.
comment: 16 pages
☆ Selective Demonstration Retrieval for Improved Implicit Hate Speech Detection
Hate speech detection is a crucial area of research in natural language processing, essential for ensuring online community safety. However, detecting implicit hate speech, where harmful intent is conveyed in subtle or indirect ways, remains a major challenge. Unlike explicit hate speech, implicit expressions often depend on context, cultural subtleties, and hidden biases, making them more challenging to identify consistently. Additionally, the interpretation of such speech is influenced by external knowledge and demographic biases, resulting in varied detection results across different language models. Furthermore, Large Language Models often show heightened sensitivity to toxic language and references to vulnerable groups, which can lead to misclassifications. This over-sensitivity results in false positives (incorrectly identifying harmless statements as hateful) and false negatives (failing to detect genuinely harmful content). Addressing these issues requires methods that not only improve detection precision but also reduce model biases and enhance robustness. To address these challenges, we propose a novel method, which utilizes in-context learning without requiring model fine-tuning. By adaptively retrieving demonstrations that focus on similar groups or those with the highest similarity scores, our approach enhances contextual comprehension. Experimental results show that our method outperforms current state-of-the-art techniques. Implementation details and code are available at TBD.
☆ Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinical similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evalute this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
comment: 30 pages, 7 figures, 5 supplementary figures
☆ Language Models as Quasi-Crystalline Thought: Structure, Constraint, and Emergence in Generative Systems
This essay proposes an analogy between large language models (LLMs) and quasicrystals: systems that exhibit global coherence without periodic repetition and that are generated through local constraints. While LLMs are often evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that their most characteristic behavior is the production of internally resonant linguistic patterns. Just as quasicrystals forced a redefinition of order in physical systems, viewing LLMs as generators of quasi-structured language opens new paths for evaluation and design: privileging propagation of constraint over token-level accuracy, and coherence of form over fixed meaning. LLM outputs should be read not only for what they say, but for the patterns of constraint and coherence that organize them. This shift reframes generative language as a space of emergent patterning: LLMs are neither fully random nor strictly rule-based, but defined by a logic of constraint, resonance, and structural depth.
☆ SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes SemEval-2025
We present the Mu-SHROOM shared task which is focused on detecting hallucinations and other overgeneration mistakes in the output of instruction-tuned large language models (LLMs). Mu-SHROOM addresses general-purpose LLMs in 14 languages, and frames the hallucination detection problem as a span-labeling task. We received 2,618 submissions from 43 participating teams employing diverse methodologies. The large number of submissions underscores the interest of the community in hallucination detection. We present the results of the participating systems and conduct an empirical analysis to identify key factors contributing to strong performance in this task. We also emphasize relevant current challenges, notably the varying degree of hallucinations across languages and the high annotator disagreement when labeling hallucination spans.
comment: Mu-SHROOM is part of SemEval-2025 (Task 3). TBP: Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
☆ LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.17 (EM) and 0.36 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.
comment: 17 pages; code and data are available at https://github.com/Alab-NII/llm-judge-extract-qa
☆ Robust and Fine-Grained Detection of AI Generated Texts ACL 2025
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: ACL 2025 Feb ARR Submission
☆ ADAT: Time-Series-Aware Adaptive Transformer Architecture for Sign Language Translation
Current sign language machine translation systems rely on recognizing hand movements, facial expressions and body postures, and natural language processing, to convert signs into text. Recent approaches use Transformer architectures to model long-range dependencies via positional encoding. However, they lack accuracy in recognizing fine-grained, short-range temporal dependencies between gestures captured at high frame rates. Moreover, their high computational complexity leads to inefficient training. To mitigate these issues, we propose an Adaptive Transformer (ADAT), which incorporates components for enhanced feature extraction and adaptive feature weighting through a gating mechanism to emphasize contextually relevant features while reducing training overhead and maintaining translation accuracy. To evaluate ADAT, we introduce MedASL, the first public medical American Sign Language dataset. In sign-to-gloss-to-text experiments, ADAT outperforms the encoder-decoder transformer, improving BLEU-4 accuracy by 0.1% while reducing training time by 14.33% on PHOENIX14T and 3.24% on MedASL. In sign-to-text experiments, it improves accuracy by 8.7% and reduces training time by 2.8% on PHOENIX14T and achieves 4.7% higher accuracy and 7.17% faster training on MedASL. Compared to encoder-only and decoder-only baselines in sign-to-text, ADAT is at least 6.8% more accurate despite being up to 12.1% slower due to its dual-stream structure.
☆ An LLM-as-a-judge Approach for Scalable Gender-Neutral Translation Evaluation
Gender-neutral translation (GNT) aims to avoid expressing the gender of human referents when the source text lacks explicit cues about the gender of those referents. Evaluating GNT automatically is particularly challenging, with current solutions being limited to monolingual classifiers. Such solutions are not ideal because they do not factor in the source sentence and require dedicated data and fine-tuning to scale to new languages. In this work, we address such limitations by investigating the use of large language models (LLMs) as evaluators of GNT. Specifically, we explore two prompting approaches: one in which LLMs generate sentence-level assessments only, and another, akin to a chain-of-thought approach, where they first produce detailed phrase-level annotations before a sentence-level judgment. Through extensive experiments on multiple languages with five models, both open and proprietary, we show that LLMs can serve as evaluators of GNT. Moreover, we find that prompting for phrase-level annotations before sentence-level assessments consistently improves the accuracy of all models, providing a better and more scalable alternative to current solutions.
comment: Accepted at GITT 2025
☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
☆ Rethinking LLM-Based Recommendations: A Query Generation-Based, Training-Free Approach
Existing large language model LLM-based recommendation methods face several challenges, including inefficiency in handling large candidate pools, sensitivity to item order within prompts ("lost in the middle" phenomenon) poor scalability, and unrealistic evaluation due to random negative sampling. To address these issues, we propose a Query-to-Recommendation approach that leverages LLMs to generate personalized queries for retrieving relevant items from the entire candidate pool, eliminating the need for candidate pre-selection. This method can be integrated into an ID-based recommendation system without additional training, enhances recommendation performance and diversity through LLMs' world knowledge, and performs well even for less popular item groups. Experiments on three datasets show up to 57 percent improvement, with an average gain of 31 percent, demonstrating strong zero-shot performance and further gains when ensembled with existing models.
☆ Evaluating the Goal-Directedness of Large Language Models
To what extent do LLMs use their capabilities towards their given goal? We take this as a measure of their goal-directedness. We evaluate goal-directedness on tasks that require information gathering, cognitive effort, and plan execution, where we use subtasks to infer each model's relevant capabilities. Our evaluations of LLMs from Google DeepMind, OpenAI, and Anthropic show that goal-directedness is relatively consistent across tasks, differs from task performance, and is only moderately sensitive to motivational prompts. Notably, most models are not fully goal-directed. We hope our goal-directedness evaluations will enable better monitoring of LLM progress, and enable more deliberate design choices of agentic properties in LLMs.
☆ FiSMiness: A Finite State Machine Based Paradigm for Emotional Support Conversations
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Finite State Machine (FSM) on LLMs, and propose a framework called FiSMiness. Our framework allows a single LLM to bootstrap the planning during ESC, and self-reason the seeker's emotion, support strategy and the final response upon each conversational turn. Substantial experiments on ESC datasets suggest that FiSMiness outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and external-assisted methods, even those with many more parameters.
comment: accepted by CMCL
☆ Could Thinking Multilingually Empower LLM Reasoning?
Previous work indicates that large language models exhibit a significant "English bias", i.e. they often perform better when tasks are presented in English. Interestingly, we have observed that using certain other languages in reasoning tasks can yield better performance than English. However, this phenomenon remains under-explored. In this paper, we explore the upper bound of harnessing multilingualism in reasoning tasks, suggesting that multilingual reasoning promises significantly (by nearly 10 Acc@$k$ points) and robustly (tolerance for variations in translation quality and language choice) higher upper bounds than English-only reasoning. Besides analyzing the reason behind the upper bound and challenges in reaching it, we also find that common answer selection methods cannot achieve this upper bound, due to their limitations and biases. These insights could pave the way for future research aimed at fully harnessing the potential of multilingual reasoning in LLMs.
☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
☆ ARWI: Arabic Write and Improve
Although Arabic is spoken by over 400 million people, advanced Arabic writing assistance tools remain limited. To address this gap, we present ARWI, a new writing assistant that helps learners improve essay writing in Modern Standard Arabic. ARWI is the first publicly available Arabic writing assistant to include a prompt database for different proficiency levels, an Arabic text editor, state-of-the-art grammatical error detection and correction, and automated essay scoring aligned with the Common European Framework of Reference standards for language attainment. Moreover, ARWI can be used to gather a growing auto-annotated corpus, facilitating further research on Arabic grammar correction and essay scoring, as well as profiling patterns of errors made by native speakers and non-native learners. A preliminary user study shows that ARWI provides actionable feedback, helping learners identify grammatical gaps, assess language proficiency, and guide improvement.
☆ Efficient and Adaptive Simultaneous Speech Translation with Fully Unidirectional Architecture
Simultaneous speech translation (SimulST) produces translations incrementally while processing partial speech input. Although large language models (LLMs) have showcased strong capabilities in offline translation tasks, applying them to SimulST poses notable challenges. Existing LLM-based SimulST approaches either incur significant computational overhead due to repeated encoding of bidirectional speech encoder, or they depend on a fixed read/write policy, limiting the efficiency and performance. In this work, we introduce Efficient and Adaptive Simultaneous Speech Translation (EASiST) with fully unidirectional architecture, including both speech encoder and LLM. EASiST includes a multi-latency data curation strategy to generate semantically aligned SimulST training samples and redefines SimulST as an interleaved generation task with explicit read/write tokens. To facilitate adaptive inference, we incorporate a lightweight policy head that dynamically predicts read/write actions. Additionally, we employ a multi-stage training strategy to align speech-text modalities and optimize both translation and policy behavior. Experiments on the MuST-C En$\rightarrow$De and En$\rightarrow$Es datasets demonstrate that EASiST offers superior latency-quality trade-offs compared to several strong baselines.
☆ Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
☆ Enhancing Web Agents with Explicit Rollback Mechanisms
With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
☆ Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure is exclusive to Germanic verbs. When seeing them as a cognitive model, however, such etymology-based generalizations face challenges in terms of learnability, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our findings also uncovered previously unrecognized features of the quasi-etymological clusters, offering novel hypotheses for future experimental studies.
☆ Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT?
Recent supervised fine-tuning (SFT) approaches have significantly improved language models' performance on mathematical reasoning tasks, even when models are trained at a small scale. However, the specific capabilities enhanced through such fine-tuning remain poorly understood. In this paper, we conduct a detailed analysis of model performance on the AIME24 dataset to understand how reasoning capabilities evolve. We discover a ladder-like structure in problem difficulty, categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard (Exh)), and identify the specific requirements for advancing between tiers. We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT (500-1K instances), while Hard-level questions suffer from frequent model's errors at each step of the reasoning chain, with accuracy plateauing at around 65% despite logarithmic scaling. Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills that current models uniformly struggle with. Additional findings reveal that carefully curated small-scale datasets offer limited advantage-scaling dataset size proves far more effective. Our analysis provides a clearer roadmap for advancing language model capabilities in mathematical reasoning.
☆ The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation CVPR2025
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce \textbf{RAPO}, a novel \textbf{R}etrieval-\textbf{A}ugmented \textbf{P}rompt \textbf{O}ptimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts. Project website: \href{https://whynothaha.github.io/Prompt_optimizer/RAPO.html}{GitHub}.
comment: accepted by CVPR2025
☆ Higher-Order Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions
Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses during the early phases of survey design. While previous studies have examined whether models can reflect individual opinions or attitudes, we argue that a \emph{higher-order} binding of virtual personas requires successfully approximating not only the opinions of a user as an identified member of a group, but also the nuanced ways in which that user perceives and evaluates those outside the group. In particular, faithfully simulating how humans perceive different social groups is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user ``backstories" generated as extended, multi-turn interview transcripts. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87\% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies. Altogether, our work extends the applicability of LLMs beyond estimating individual self-opinions, enabling their use in a broader range of human studies.
♻ ☆ ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
Post-training Large Language Models (LLMs) with explicit reasoning trajectories can enhance their reasoning abilities. However, acquiring such high-quality trajectory data typically demands meticulous supervision from humans or superior models, which can be either expensive or license-constrained. In this paper, we explore how far an LLM can improve its reasoning by self-synthesizing reasoning paths as training data without any additional supervision. Existing self-synthesizing methods, such as STaR, suffer from poor generalization to out-of-domain (OOD) reasoning tasks. We hypothesize it is due to that their self-synthesized reasoning paths are too task-specific, lacking general task-agnostic reasoning guidance. To address this, we propose Reasoning Generalist via Self-Improvement (ReGenesis), a method to self-synthesize reasoning paths as post-training data by progressing from abstract to concrete. More specifically, ReGenesis self-synthesizes reasoning paths by converting general reasoning guidelines into task-specific ones, generating reasoning structures, and subsequently transforming these structures into reasoning paths, without the need for human-designed task-specific examples used in existing methods. We show that ReGenesis achieves superior performance on all in-domain and OOD settings tested compared to existing methods. For six OOD tasks specifically, while previous methods exhibited an average performance decrease of approximately 4.6% after post training, ReGenesis delivers around 6.1% performance improvement. We also conduct in-depth analysis of our framework and show ReGenesis is effective across various LLMs and design choices.
♻ ☆ Taming Data and Transformers for Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
♻ ☆ How Inclusively do LMs Perceive Social and Moral Norms? NAACL 2025
This paper discusses and contains offensive content. Language models (LMs) are used in decision-making systems and as interactive assistants. However, how well do these models making judgements align with the diversity of human values, particularly regarding social and moral norms? In this work, we investigate how inclusively LMs perceive norms across demographic groups (e.g., gender, age, and income). We prompt 11 LMs on rules-of-thumb (RoTs) and compare their outputs with the existing responses of 100 human annotators. We introduce the Absolute Distance Alignment Metric (ADA-Met) to quantify alignment on ordinal questions. We find notable disparities in LM responses, with younger, higher-income groups showing closer alignment, raising concerns about the representation of marginalized perspectives. Our findings highlight the importance of further efforts to make LMs more inclusive of diverse human values. The code and prompts are available on GitHub under the CC BY-NC 4.0 license.
comment: Accepted at NAACL 2025 Findings
♻ ☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples improve the success rate of over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data. This significant improvement demonstrates RoboTwin's potential to enhance the development and evaluation of dual-arm robotic manipulation systems. Project Page: https://robotwin-benchmark.github.io/early-version/.
comment: Project page: https://robotwin-benchmark.github.io/early-version/
♻ ☆ BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, an algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions. The StructuredOR dataset is available at https://github.com/tengwang0318/StructuredOR.
♻ ☆ Science Out of Its Ivory Tower: Improving Accessibility with Reinforcement Learning
A vast amount of scholarly work is published daily, yet much of it remains inaccessible to the general public due to dense jargon and complex language. To address this challenge in science communication, we introduce a reinforcement learning framework that fine-tunes a language model to rewrite scholarly abstracts into more comprehensible versions. Guided by a carefully balanced combination of word- and sentence-level accessibility rewards, our language model effectively substitutes technical terms with more accessible alternatives, a task which models supervised fine-tuned or guided by conventional readability measures struggle to accomplish. Our best model adjusts the readability level of scholarly abstracts by approximately six U.S. grade levels -- in other words, from a postgraduate to a high school level. This translates to roughly a 90% relative boost over the supervised fine-tuning baseline, all while maintaining factual accuracy and high-quality language. An in-depth analysis of our approach shows that balanced rewards lead to systematic modifications in the base model, likely contributing to smoother optimization and superior performance. We envision this work as a step toward bridging the gap between scholarly research and the general public, particularly younger readers and those without a college degree.
♻ ☆ Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment, particularly through situational judgment tests (SJTs), is a vital tool for psychological research, talent selection, and educational evaluation. This study explores the potential of GPT-4, a state-of-the-art large language model (LLM), to automate the generation of personality situational judgment tests (PSJTs) in Chinese. Traditional SJT development is labor-intensive and prone to biases, while GPT-4 offers a scalable, efficient alternative. Two studies were conducted: Study 1 evaluated the impact of prompt design and temperature settings on content validity, finding that optimized prompts with a temperature of 1.0 produced creative and accurate items. Study 2 assessed the psychometric properties of GPT-4-generated PSJTs, revealing that they demonstrated satisfactory reliability and validity, surpassing the performance of manually developed tests in measuring the Big Five personality traits. This research highlights GPT-4's effectiveness in developing high-quality PSJTs, providing a scalable and innovative method for psychometric test development. These findings expand the possibilities of automatic item generation and the application of LLMs in psychology, and offer practical implications for streamlining test development processes in resource-limited settings.
comment: Submitted to Psychological Methods. 56 pages (main text), 12 pages (appendix), and 5 figures
♻ ☆ FastCuRL: Curriculum Reinforcement Learning with Progressive Context Extension for Efficient Training R1-like Reasoning Models
Improving the training efficiency remains one of the most significant challenges in large-scale reinforcement learning. In this paper, we investigate how the model's context length and the complexity of the training dataset influence the training process of R1-like models. Our experiments reveal three key insights: (1) adopting longer context lengths may not necessarily result in better performance; (2) selecting an appropriate context length helps mitigate entropy collapse; and (3) appropriately controlling the model's context length and curating training data based on input prompt length can effectively improve RL training efficiency, achieving better performance with shorter thinking length. Inspired by these insights, we propose FastCuRL, a curriculum reinforcement learning framework with the progressive context extension strategy, and successfully accelerate the training process of RL models. Experimental results demonstrate that FastCuRL-1.5B-Preview surpasses DeepScaleR-1.5B-Preview across all five benchmarks while only utilizing 50\% of training steps. Furthermore, all training stages for FastCuRL-1.5B-Preview are completed using a single node with 8 GPUs.
comment: Ongoing Work
♻ ☆ Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Document parsing is essential for converting unstructured and semi-structured documents such as contracts, academic papers, and invoices into structured, machine-readable data. Document parsing reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It outlines future research directions and emphasizes the importance of developing larger and more diverse datasets.
♻ ☆ Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
♻ ☆ LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.
♻ ☆ Automated Python Translation
Python is one of the most commonly used programming languages in industry and education. Its English keywords and built-in functions/modules allow it to come close to pseudo-code in terms of its readability and ease of writing. However, those who do not speak English may not experience these advantages. In fact, they may even be hindered in their ability to understand Python code, as the English nature of its terms creates an additional layer of overhead. To that end, we introduce the task of automatically translating Python's natural modality (keywords, error types, identifiers, etc.) into other human languages. This presents a unique challenge, considering the abbreviated nature of these forms, as well as potential untranslatability of advanced mathematical/programming concepts across languages. We therefore create an automated pipeline to translate Python into other human languages, comparing strategies using machine translation and large language models. We then use this pipeline to acquire translations from five common Python libraries (pytorch, pandas, tensorflow, numpy, and random) in seven languages, and do a quality test on a subset of these terms in French, Greek, and Bengali. We hope this will provide a clearer path forward towards creating a universal Python, accessible to anyone regardless of nationality or language background.
comment: 15 pages, 4 figures, 17 tables
♻ ☆ StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
comment: https://github.com/Picsart-AI-Research/StreamingT2V
♻ ☆ Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
comment: 12 pages, work-in-progress
♻ ☆ Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation
With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
comment: 44 pages, 7 figures, 8 tables
♻ ☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
♻ ☆ Orthus: Autoregressive Interleaved Image-Text Generation with Modality-Specific Heads
We introduce Orthus, an autoregressive (AR) transformer that excels in generating images given textual prompts, answering questions based on visual inputs, and even crafting lengthy image-text interleaved contents. Unlike prior arts on unified multimodal modeling, Orthus simultaneously copes with discrete text tokens and continuous image features under the AR modeling principle. The continuous treatment of visual signals minimizes the information loss for both image understanding and generation while the fully AR formulation renders the characterization of the correlation between modalities straightforward. The key mechanism enabling Orthus to leverage these advantages lies in its modality-specific heads -- one regular language modeling (LM) head predicts discrete text tokens and one diffusion head generates continuous image features conditioning on the output of the backbone. We devise an efficient strategy for building Orthus -- by substituting the Vector Quantization (VQ) operation in the existing unified AR model with a soft alternative, introducing a diffusion head, and tuning the added modules to reconstruct images, we can create an Orthus-base model effortlessly (e.g., within mere 72 A100 GPU hours). Orthus-base can further embrace post-training to better model interleaved images and texts. Empirically, Orthus surpasses competing baselines including Show-o and Chameleon across standard benchmarks, achieving a GenEval score of 0.58 and an MME-P score of 1265.8 using 7B parameters. Orthus also shows exceptional mixed-modality generation capabilities, reflecting the potential for handling intricate practical generation tasks.
♻ ☆ Local Grammar-Based Coding Revisited
In the setting of minimal local grammar-based coding, the input string is represented as a grammar with the minimal output length defined via simple symbol-by-symbol encoding. This paper discusses four contributions to this field. First, we invoke a simple harmonic bound on ranked probabilities, which reminds Zipf's law and simplifies universality proofs for minimal local grammar-based codes. Second, we refine known bounds on the vocabulary size, showing its partial power-law equivalence with mutual information and redundancy. These bounds are relevant for linking Zipf's law with the neural scaling law for large language models. Third, we develop a framework for universal codes with fixed infinite vocabularies, recasting universal coding as matching ranked patterns that are independent of empirical data. Finally, we analyze grammar-based codes with finite vocabularies being empirical rank lists, proving that that such codes are also universal. These results extend foundations of universal grammar-based coding and reaffirm previously stated connections to power laws for human language and language models.
comment: 41 pages, no figures
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL: a developer can change one and the LLM automatically updates the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ Leveraging Social Determinants of Health in Alzheimer's Research Using LLM-Augmented Literature Mining and Knowledge Graphs
Growing evidence suggests that social determinants of health (SDoH), a set of nonmedical factors, affect individuals' risks of developing Alzheimer's disease (AD) and related dementias. Nevertheless, the etiological mechanisms underlying such relationships remain largely unclear, mainly due to difficulties in collecting relevant information. This study presents a novel, automated framework that leverages recent advancements of large language model (LLM) and natural language processing techniques to mine SDoH knowledge from extensive literature and integrate it with AD-related biological entities extracted from the general-purpose knowledge graph PrimeKG. Utilizing graph neural networks, we performed link prediction tasks to evaluate the resultant SDoH-augmented knowledge graph. Our framework shows promise for enhancing knowledge discovery in AD and can be generalized to other SDoH-related research areas, offering a new tool for exploring the impact of social determinants on health outcomes. Our code is available at: https://github.com/hwq0726/SDoHenPKG
comment: Accepted by AMIA-IS'25: AMIA Informatics Summit
♻ ☆ Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models
Predicting phenotypes with complex genetic bases based on a small, interpretable set of variant features remains a challenging task. Conventionally, data-driven approaches are utilized for this task, yet the high dimensional nature of genotype data makes the analysis and prediction difficult. Motivated by the extensive knowledge encoded in pre-trained LLMs and their success in processing complex biomedical concepts, we set to examine the ability of LLMs in feature selection and engineering for tabular genotype data, with a novel knowledge-driven framework. We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling, designed with chain-of-thought and ensembling principles, to select and engineer features with the intrinsic knowledge of LLMs. Evaluated on two distinct genotype-phenotype datasets, genetic ancestry and hereditary hearing loss, we find this framework outperforms several data-driven methods, particularly on low-shot regimes. FREEFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
comment: accepted by AMIA-IS'25: AMIA Informatics Summit [Marco Ramoni Distinguished Paper Award for Translational Bioinformatics]
♻ ☆ Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
♻ ☆ What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions. Our repository is available on https://github.com/testtimescaling/testtimescaling.github.io/
comment: v2: Creating the GitHub repository, Citing some missed works, Incorporating two new domains (agentic and evaluation) in where to scale, Incorporating one direction (thoughtology research) in challenge and future work
♻ ☆ Sequence-Level Leakage Risk of Training Data in Large Language Models
This work quantifies the risk of training data leakage from LLMs (Large Language Models) using sequence-level probabilities. Computing extraction probabilities for individual sequences provides finer-grained information than has been studied in prior benchmarking work. We re-analyze the effects of decoding schemes, model sizes, prefix lengths, partial sequence leakages, and token positions to uncover new insights that were not possible in previous works due to their choice of metrics. We perform this study on two pre-trained models, Llama and OPT, trained on the Common Crawl and The Pile respectively. We discover that 1) Extraction Rate, the predominant metric used in prior quantification work, underestimates the threat of leakage of training data in randomized LLMs by as much as 2.14X. 2) Although on average, larger models and longer prefixes can extract more data, this is not true for a substantial portion of individual sequences. 30.4-41.5% of our sequences are easier to extract with either shorter prefixes or smaller models. 3) Contrary to previous beliefs, partial leakage in commonly used decoding schemes like top-k and top-p is not easier than leaking verbatim training data. The aim of this work is to encourage the adoption of this metric for future work on quantification of training data extraction.
♻ ☆ ChaosEater: Fully Automating Chaos Engineering with Large Language Models
Chaos Engineering (CE) is an engineering technique aimed at improving the resiliency of distributed systems. It involves artificially injecting specific failures into a distributed system and observing its behavior in response. Based on the observation, the system can be proactively improved to handle those failures. Recent CE tools implement the automated execution of predefined CE experiments. However, defining these experiments and improving the system based on the experimental results still remain manual. To reduce the costs of the manual operations, we propose ChaosEater, a system for automating the entire CE operations with Large Language Models (LLMs). It predefines the agentic workflow according to a systematic CE cycle and assigns subdivided operations within the workflow to LLMs. ChaosEater targets CE for Kubernetes systems, which are managed through code (i.e., Infrastructure as Code). Therefore, the LLMs in ChaosEater perform software engineering tasks to complete CE cycles, including requirement definition, code generation, debugging, and testing. We evaluate ChaosEater through case studies on both small and large Kubernetes systems. The results demonstrate that it stably completes reasonable single CE cycles with significantly low time and monetary costs. The CE cycles are also qualitatively validated by human engineers and LLMs.
comment: 114 pages (7 main), 11 figures. Project page: https://ntt-dkiku.github.io/chaos-eater
♻ ☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
♻ ☆ KPC-cF: Aspect-Based Sentiment Analysis via Implicit-Feature Alignment with Corpus Filtering ICML 2024
Investigations into Aspect-Based Sentiment Analysis (ABSA) for Korean industrial reviews are notably lacking in the existing literature. Our research proposes an intuitive and effective framework for ABSA in low-resource languages such as Korean. It optimizes prediction labels by integrating translated benchmark and unlabeled Korean data. Using a model fine-tuned on translated data, we pseudo-labeled the actual Korean NLI set. Subsequently, we applied LaBSE and \MSP{}-based filtering to this pseudo-NLI set as implicit feature, enhancing Aspect Category Detection and Polarity determination through additional training. Incorporating dual filtering, this model bridged dataset gaps and facilitates feature alignment with minimal resources. By implementing alignment pipelines, our approach aims to leverage high-resource datasets to develop reliable predictive and refined models within corporate or individual communities in low-resource language countries. Compared to English ABSA, our framework showed an approximately 3\% difference in F1 scores and accuracy. We will release our dataset and code for Korean ABSA, at this link.
comment: Work in Progress, DMLR@ICML 2024
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ Large Visual-Language Models Are Also Good Classifiers: A Study of In-Context Multimodal Fake News Detection
Large visual-language models (LVLMs) exhibit exceptional performance in visual-language reasoning across diverse cross-modal benchmarks. Despite these advances, recent research indicates that Large Language Models (LLMs), like GPT-3.5-turbo, underachieve compared to well-trained smaller models, such as BERT, in Fake News Detection (FND), prompting inquiries into LVLMs' efficacy in FND tasks. Although performance could improve through fine-tuning LVLMs, the substantial parameters and requisite pre-trained weights render it a resource-heavy endeavor for FND applications. This paper initially assesses the FND capabilities of two notable LVLMs, CogVLM and GPT4V, in comparison to a smaller yet adeptly trained CLIP model in a zero-shot context. The findings demonstrate that LVLMs can attain performance competitive with that of the smaller model. Next, we integrate standard in-context learning (ICL) with LVLMs, noting improvements in FND performance, though limited in scope and consistency. To address this, we introduce the \textbf{I}n-context \textbf{M}ultimodal \textbf{F}ake \textbf{N}ews \textbf{D}etection (IMFND) framework, enriching in-context examples and test inputs with predictions and corresponding probabilities from a well-trained smaller model. This strategic integration directs the LVLMs' focus towards news segments associated with higher probabilities, thereby improving their analytical accuracy. The experimental results suggest that the IMFND framework significantly boosts the FND efficiency of LVLMs, achieving enhanced accuracy over the standard ICL approach across three publicly available FND datasets.
comment: Withdraw for new experiments
Computation and Language
☆ DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
The capacity for complex mathematical reasoning is a key benchmark for artificial intelligence. While reinforcement learning (RL) applied to LLMs shows promise, progress is significantly hindered by the lack of large-scale training data that is sufficiently challenging, possesses verifiable answer formats suitable for RL, and is free from contamination with evaluation benchmarks. To address these limitations, we introduce DeepMath-103K, a new, large-scale dataset comprising approximately 103K mathematical problems, specifically designed to train advanced reasoning models via RL. DeepMath-103K is curated through a rigorous pipeline involving source analysis, stringent decontamination against numerous benchmarks, and filtering for high difficulty (primarily Levels 5-9), significantly exceeding existing open resources in challenge. Each problem includes a verifiable final answer, enabling rule-based RL, and three distinct R1-generated solutions suitable for diverse training paradigms like supervised fine-tuning or distillation. Spanning a wide range of mathematical topics, DeepMath-103K promotes the development of generalizable reasoning. We demonstrate that models trained on DeepMath-103K achieve significant improvements on challenging mathematical benchmarks, validating its effectiveness. We release DeepMath-103K publicly to facilitate community progress in building more capable AI reasoning systems: https://github.com/zwhe99/DeepMath.
comment: WIP
☆ TextArena
TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.
comment: work in progress; 5 pages, 3 figures
☆ TADACap: Time-series Adaptive Domain-Aware Captioning
While image captioning has gained significant attention, the potential of captioning time-series images, prevalent in areas like finance and healthcare, remains largely untapped. Existing time-series captioning methods typically offer generic, domain-agnostic descriptions of time-series shapes and struggle to adapt to new domains without substantial retraining. To address these limitations, we introduce TADACap, a retrieval-based framework to generate domain-aware captions for time-series images, capable of adapting to new domains without retraining. Building on TADACap, we propose a novel retrieval strategy that retrieves diverse image-caption pairs from a target domain database, namely TADACap-diverse. We benchmarked TADACap-diverse against state-of-the-art methods and ablation variants. TADACap-diverse demonstrates comparable semantic accuracy while requiring significantly less annotation effort.
comment: Accepted to ICAIF 2024
☆ Masculine Defaults via Gendered Discourse in Podcasts and Large Language Models
Masculine defaults are widely recognized as a significant type of gender bias, but they are often unseen as they are under-researched. Masculine defaults involve three key parts: (i) the cultural context, (ii) the masculine characteristics or behaviors, and (iii) the reward for, or simply acceptance of, those masculine characteristics or behaviors. In this work, we study discourse-based masculine defaults, and propose a twofold framework for (i) the large-scale discovery and analysis of gendered discourse words in spoken content via our Gendered Discourse Correlation Framework (GDCF); and (ii) the measurement of the gender bias associated with these gendered discourse words in LLMs via our Discourse Word-Embedding Association Test (D-WEAT). We focus our study on podcasts, a popular and growing form of social media, analyzing 15,117 podcast episodes. We analyze correlations between gender and discourse words -- discovered via LDA and BERTopic -- to automatically form gendered discourse word lists. We then study the prevalence of these gendered discourse words in domain-specific contexts, and find that gendered discourse-based masculine defaults exist in the domains of business, technology/politics, and video games. Next, we study the representation of these gendered discourse words from a state-of-the-art LLM embedding model from OpenAI, and find that the masculine discourse words have a more stable and robust representation than the feminine discourse words, which may result in better system performance on downstream tasks for men. Hence, men are rewarded for their discourse patterns with better system performance by one of the state-of-the-art language models -- and this embedding disparity is a representational harm and a masculine default.
comment: To appear in ICWSM 2025
☆ A Dual-Space Framework for General Knowledge Distillation of Large Language Models
Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the teacher model and the student model to transfer more information. However, we reveal that the current white-box KD framework exhibits two limitations: a) bridging probability distributions from different output spaces will limit the similarity between the teacher model and the student model; b) this framework cannot be applied to LLMs with different vocabularies. One of the root causes for these limitations is that the distributions from the teacher and the student for KD are output by different prediction heads, which yield distributions in different output spaces and dimensions. Therefore, in this paper, we propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD. Specifically, we first introduce two projectors with ideal initialization to project the teacher/student hidden states into the student/teacher representation spaces. After this, the hidden states from different models can share the same head and unify the output spaces of the distributions. Furthermore, we develop an exact token alignment (ETA) algorithm to align the same tokens in two differently-tokenized sequences. Based on the above, our DSKD framework is a general KD framework that supports both off-policy and on-policy KD, and KD between any two LLMs regardless of their vocabularies. Extensive experiments on instruction-following, mathematical reasoning, and code generation benchmarks show that DSKD significantly outperforms existing methods based on the current white-box KD framework and surpasses other cross-tokenizer KD methods for LLMs with different vocabularies.
comment: 19 pages, 9 figures, 11 tables, under review. Code is available at: https://github.com/songmzhang/DSKDv2. arXiv admin note: text overlap with arXiv:2406.17328
☆ Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks. While retrieval-augmented frameworks traditionally focus on selecting top-ranked documents in a single pass, many real-world scenarios demand compositional retrieval, where multiple sources must be combined in a coordinated manner. In this work, we propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP), decomposing the probability of retrieving a set of elements into a sequence of conditional probabilities and allowing each retrieval step to be conditioned on previously selected examples. We train the retriever in two stages: first, we efficiently construct supervised sequential data for initial policy training; we then refine the policy to align with the LLM's preferences using a reward grounded in the structural correspondence of generated programs. Experimental results show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies. These findings highlight the potential of compositional retrieval for tasks requiring multiple pieces of evidence or examples.
comment: 19 pages, 8 figures
☆ Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
☆ DataDecide: How to Predict Best Pretraining Data with Small Experiments
Because large language models are expensive to pretrain on different datasets, using smaller-scale experiments to decide on data is crucial for reducing costs. Which benchmarks and methods of making decisions from observed performance at small scale most accurately predict the datasets that yield the best large models? To empower open exploration of this question, we release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale. We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds. We find that the ranking of models at a single, small size (e.g., 150M parameters) is a strong baseline for predicting best models at our larger target scale (1B) (~80% of com parisons correct). No scaling law methods among 8 baselines exceed the compute-decision frontier of single-scale predictions, but DataDecide can measure improvement in future scaling laws. We also identify that using continuous likelihood metrics as proxies in small experiments makes benchmarks including MMLU, ARC, HellaSwag, MBPP, and HumanEval >80% predictable at the target 1B scale with just 0.01% of the compute.
☆ RankAlign: A Ranking View of the Generator-Validator Gap in Large Language Models
Although large language models (LLMs) have become generally more capable and accurate across many tasks, some fundamental sources of unreliability remain in their behavior. One key limitation is their inconsistency at reporting the the same information when prompts are changed. In this paper, we consider the discrepancy between a model's generated answer and their own verification of that answer, the generator-validator gap. We define this gap in a more stringent way than prior work: we expect correlation of scores from a generator and a validator over the entire set of candidate answers. We show that according to this measure, a large gap exists in various settings, including question answering, lexical semantics tasks, and next-word prediction. We then propose RankAlign, a ranking-based training method, and show that it significantly closes the gap by 31.8% on average, surpassing all baseline methods. Moreover, this approach generalizes well to out-of-domain tasks and lexical items.
☆ Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) as a new form of internet search for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with detailed clinical contexts. In this paper, we first evaluate LLMs on cancer-related questions drawn from real patients, reviewed by three hematology oncology physicians. While responses are generally accurate, with GPT-4-Turbo scoring 4.13 out of 5, the models frequently fail to recognize or address false presuppositions in the questions-posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-4o, Gemini-1.Pro, and Claude-3.5-Sonnet -- corrects these false presuppositions more than 30% of the time. Even advanced medical agentic methods do not prevent LLMs from ignoring false presuppositions. These findings expose a critical gap in the clinical reliability of LLMs and underscore the need for more robust safeguards in medical AI systems.
☆ OpenTuringBench: An Open-Model-based Benchmark and Framework for Machine-Generated Text Detection and Attribution
Open Large Language Models (OLLMs) are increasingly leveraged in generative AI applications, posing new challenges for detecting their outputs. We propose OpenTuringBench, a new benchmark based on OLLMs, designed to train and evaluate machine-generated text detectors on the Turing Test and Authorship Attribution problems. OpenTuringBench focuses on a representative set of OLLMs, and features a number of challenging evaluation tasks, including human/machine-manipulated texts, out-of-domain texts, and texts from previously unseen models. We also provide OTBDetector, a contrastive learning framework to detect and attribute OLLM-based machine-generated texts. Results highlight the relevance and varying degrees of difficulty of the OpenTuringBench tasks, with our detector achieving remarkable capabilities across the various tasks and outperforming most existing detectors. Resources are available on the OpenTuringBench Hugging Face repository at https://huggingface.co/datasets/MLNTeam-Unical/OpenTuringBench
comment: Under review with ARR
☆ Network Alignment
Complex networks are frequently employed to model physical or virtual complex systems. When certain entities exist across multiple systems simultaneously, unveiling their corresponding relationships across the networks becomes crucial. This problem, known as network alignment, holds significant importance. It enhances our understanding of complex system structures and behaviours, facilitates the validation and extension of theoretical physics research about studying complex systems, and fosters diverse practical applications across various fields. However, due to variations in the structure, characteristics, and properties of complex networks across different fields, the study of network alignment is often isolated within each domain, with even the terminologies and concepts lacking uniformity. This review comprehensively summarizes the latest advancements in network alignment research, focusing on analyzing network alignment characteristics and progress in various domains such as social network analysis, bioinformatics, computational linguistics and privacy protection. It provides a detailed analysis of various methods' implementation principles, processes, and performance differences, including structure consistency-based methods, network embedding-based methods, and graph neural network-based (GNN-based) methods. Additionally, the methods for network alignment under different conditions, such as in attributed networks, heterogeneous networks, directed networks, and dynamic networks, are presented. Furthermore, the challenges and the open issues for future studies are also discussed.
☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
☆ A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce
Reinforcement learning (RL) has become a prevailing approach for fine-tuning large language models (LLMs) on complex reasoning tasks. Among recent methods, GRPO stands out for its empirical success in training models such as DeepSeek-R1, yet the sources of its effectiveness remain poorly understood. In this work, we revisit GRPO from a reinforce-like algorithm perspective and analyze its core components. Surprisingly, we find that a simple rejection sampling baseline, RAFT, which trains only on positively rewarded samples, yields competitive performance than GRPO and PPO. Our ablation studies reveal that GRPO's main advantage arises from discarding prompts with entirely incorrect responses, rather than from its reward normalization. Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples. Reinforce-Rej improves KL efficiency and stability, serving as a lightweight yet effective alternative to more complex RL algorithms. We advocate RAFT as a robust and interpretable baseline, and suggest that future advances should focus on more principled designs for incorporating negative samples, rather than relying on them indiscriminately. Our findings provide guidance for future work in reward-based LLM post-training.
comment: 12 pages, 4 figures
☆ REWARD CONSISTENCY: Improving Multi-Objective Alignment from a Data-Centric Perspective
Multi-objective preference alignment in language models often encounters a challenging trade-off: optimizing for one human preference (e.g., helpfulness) frequently compromises others (e.g., harmlessness) due to the inherent conflicts between competing objectives. While prior work mainly focuses on algorithmic solutions, we explore a novel data-driven approach to uncover the types of data that can effectively mitigate these conflicts. Specifically, we propose the concept of Reward Consistency (RC), which identifies samples that align with multiple preference objectives, thereby reducing conflicts during training. Through gradient-based analysis, we demonstrate that RC-compliant samples inherently constrain performance degradation during multi-objective optimization. Building on these insights, we further develop Reward Consistency Sampling, a framework that automatically constructs preference datasets that effectively mitigate conflicts during multi-objective alignment. Our generated data achieves an average improvement of 13.37% in both the harmless rate and helpfulness win rate when optimizing harmlessness and helpfulness, and can consistently resolve conflicts in varying multi-objective scenarios.
☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
☆ Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis ACM MM2025
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
comment: submitted to ACM MM2025
☆ Automated Python Translation
Python is one of the most commonly used programming languages in industry and education. Its English keywords and built-in functions/modules allow it to come close to pseudo-code in terms of its readability and ease of writing. However, those who do not speak English may not experience these advantages. In fact, they may even be hindered in their ability to understand Python code, as the English nature of its terms creates an additional layer of overhead. To that end, we introduce the task of automatically translating Python's natural modality (keywords, error types, identifiers, etc.) into other human languages. This presents a unique challenge, considering the abbreviated nature of these forms, as well as potential untranslatability of advanced mathematical/programming concepts across languages. We therefore create an automated pipeline to translate Python into other human languages, comparing strategies using machine translation and large language models. We then use this pipeline to acquire translations from five common Python libraries (pytorch, pandas, tensorflow, numpy, and random) in seven languages, and do a quality test on a subset of these terms in French, Greek, and Bengali. We hope this will provide a clearer path forward towards creating a universal Python, accessible to anyone regardless of nationality or language background.
comment: 15 pages, 4 figures, 17 tables
☆ The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections
A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions. It does so by perceiving and interpreting the graphical user interfaces (GUIs) of relevant apps, often visually, inferring necessary sequences of actions, and then interacting with GUIs by executing the actions such as clicking, typing, and tapping. To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data. However, this autonomy introduces new privacy and security risks. Adversaries can inject malicious content into the GUIs that alters agent behaviors or induces unintended disclosures of private information. These attacks often exploit the discrepancy between visual saliency for agents and human users, or the agent's limited ability to detect violations of contextual integrity in task automation. In this paper, we characterized six types of such attacks, and conducted an experimental study to test these attacks with six state-of-the-art GUI agents, 234 adversarial webpages, and 39 human participants. Our findings suggest that GUI agents are highly vulnerable, particularly to contextually embedded threats. Moreover, human users are also susceptible to many of these attacks, indicating that simple human oversight may not reliably prevent failures. This misalignment highlights the need for privacy-aware agent design. We propose practical defense strategies to inform the development of safer and more reliable GUI agents.
☆ From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering (QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information. We will publicly release our code upon acceptance.
☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation.In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/
☆ Towards Automated Safety Requirements Derivation Using Agent-based RAG
We study the automated derivation of safety requirements in a self-driving vehicle use case, leveraging LLMs in combination with agent-based retrieval-augmented generation. Conventional approaches that utilise pre-trained LLMs to assist in safety analyses typically lack domain-specific knowledge. Existing RAG approaches address this issue, yet their performance deteriorates when handling complex queries and it becomes increasingly harder to retrieve the most relevant information. This is particularly relevant for safety-relevant applications. In this paper, we propose the use of agent-based RAG to derive safety requirements and show that the retrieved information is more relevant to the queries. We implement an agent-based approach on a document pool of automotive standards and the Apollo case study, as a representative example of an automated driving perception system. Our solution is tested on a data set of safety requirement questions and answers, extracted from the Apollo data. Evaluating a set of selected RAG metrics, we present and discuss advantages of a agent-based approach compared to default RAG methods.
comment: 9 pages, 3 figures
☆ Nondeterministic Polynomial-time Problem Challenge: An Ever-Scaling Reasoning Benchmark for LLMs
Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are uncrushable, unhackable, auto-verifiable and general. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver: which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval: which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the aha moments, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs' performances to below 10%, demonstrating that NPPC is uncrushable, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 outperforms Claude-3.7-Sonnet and o1/o3-mini in most NP-complete problems considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. We believe that NPPC is the first ever-scaling reasoning benchmark, serving as the uncrushable and unhackable testbed for LLMs toward artificial general intelligence (AGI).
comment: Preliminary work, 10 pages for main text
☆ Enhancing multimodal analogical reasoning with Logic Augmented Generation
Recent advances in Large Language Models have demonstrated their capabilities across a variety of tasks. However, automatically extracting implicit knowledge from natural language remains a significant challenge, as machines lack active experience with the physical world. Given this scenario, semantic knowledge graphs can serve as conceptual spaces that guide the automated text generation reasoning process to achieve more efficient and explainable results. In this paper, we apply a logic-augmented generation (LAG) framework that leverages the explicit representation of a text through a semantic knowledge graph and applies it in combination with prompt heuristics to elicit implicit analogical connections. This method generates extended knowledge graph triples representing implicit meaning, enabling systems to reason on unlabeled multimodal data regardless of the domain. We validate our work through three metaphor detection and understanding tasks across four datasets, as they require deep analogical reasoning capabilities. The results show that this integrated approach surpasses current baselines, performs better than humans in understanding visual metaphors, and enables more explainable reasoning processes, though still has inherent limitations in metaphor understanding, especially for domain-specific metaphors. Furthermore, we propose a thorough error analysis, discussing issues with metaphorical annotations and current evaluation methods.
☆ Benchmarking Next-Generation Reasoning-Focused Large Language Models in Ophthalmology: A Head-to-Head Evaluation on 5,888 Items
Recent advances in reasoning-focused large language models (LLMs) mark a shift from general LLMs toward models designed for complex decision-making, a crucial aspect in medicine. However, their performance in specialized domains like ophthalmology remains underexplored. This study comprehensively evaluated and compared the accuracy and reasoning capabilities of four newly developed reasoning-focused LLMs, namely DeepSeek-R1, OpenAI o1, o3-mini, and Gemini 2.0 Flash-Thinking. Each model was assessed using 5,888 multiple-choice ophthalmology exam questions from the MedMCQA dataset in zero-shot setting. Quantitative evaluation included accuracy, Macro-F1, and five text-generation metrics (ROUGE-L, METEOR, BERTScore, BARTScore, and AlignScore), computed against ground-truth reasonings. Average inference time was recorded for a subset of 100 randomly selected questions. Additionally, two board-certified ophthalmologists qualitatively assessed clarity, completeness, and reasoning structure of responses to differential diagnosis questions.O1 (0.902) and DeepSeek-R1 (0.888) achieved the highest accuracy, with o1 also leading in Macro-F1 (0.900). The performance of models across the text-generation metrics varied: O3-mini excelled in ROUGE-L (0.151), o1 in METEOR (0.232), DeepSeek-R1 and o3-mini tied for BERTScore (0.673), DeepSeek-R1 (-4.105) and Gemini 2.0 Flash-Thinking (-4.127) performed best in BARTScore, while o3-mini (0.181) and o1 (0.176) led AlignScore. Inference time across the models varied, with DeepSeek-R1 being slowest (40.4 seconds) and Gemini 2.0 Flash-Thinking fastest (6.7 seconds). Qualitative evaluation revealed that DeepSeek-R1 and Gemini 2.0 Flash-Thinking tended to provide detailed and comprehensive intermediate reasoning, whereas o1 and o3-mini displayed concise and summarized justifications.
comment: 83 pages, 6 figures, 3 tables, 9 supplementary figures, 7 supplementary tables
☆ Bias Beyond English: Evaluating Social Bias and Debiasing Methods in a Low-Resource Setting
Social bias in language models can potentially exacerbate social inequalities. Despite it having garnered wide attention, most research focuses on English data. In a low-resource scenario, the models often perform worse due to insufficient training data. This study aims to leverage high-resource language corpora to evaluate bias and experiment with debiasing methods in low-resource languages. We evaluated the performance of recent multilingual models in five languages: English (\textsc{eng}), Chinese (\textsc{zho}), Russian (\textsc{rus}), Indonesian (\textsc{ind}) and Thai (\textsc{tha}), and analyzed four bias dimensions: \textit{gender}, \textit{religion}, \textit{nationality}, and \textit{race-color}. By constructing multilingual bias evaluation datasets, this study allows fair comparisons between models across languages. We have further investigated three debiasing methods-\texttt{CDA}, \texttt{Dropout}, \texttt{SenDeb}-and demonstrated that debiasing methods from high-resource languages can be effectively transferred to low-resource ones, providing actionable insights for fairness research in multilingual NLP.
☆ MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $\approx$ 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contribution of textual and multimodal labels in the classification of sexist and non-sexist content; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.
☆ Benchmarking Vision Language Models on German Factual Data
Similar to LLMs, the development of vision language models is mainly driven by English datasets and models trained in English and Chinese language, whereas support for other languages, even those considered high-resource languages such as German, remains significantly weaker. In this work we present an analysis of open-weight VLMs on factual knowledge in the German and English language. We disentangle the image-related aspects from the textual ones by analyzing accu-racy with jury-as-a-judge in both prompt languages and images from German and international contexts. We found that for celebrities and sights, VLMs struggle because they are lacking visual cognition of German image contents. For animals and plants, the tested models can often correctly identify the image contents ac-cording to the scientific name or English common name but fail in German lan-guage. Cars and supermarket products were identified equally well in English and German images across both prompt languages.
☆ Using LLMs as prompt modifier to avoid biases in AI image generators
This study examines how Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts. We define bias as a model's unfair deviation from population statistics given neutral prompts. Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves. While occasionally producing results that diverge from original user intent for elaborate prompts, this approach generally provides more varied interpretations of underspecified requests rather than superficial variations. The method works particularly well for less advanced image generators, though limitations persist for certain contexts like disability representation. All prompts and generated images are available at https://iisys-hof.github.io/llm-prompt-img-gen/
☆ DeepMLF: Multimodal language model with learnable tokens for deep fusion in sentiment analysis
While multimodal fusion has been extensively studied in Multimodal Sentiment Analysis (MSA), the role of fusion depth and multimodal capacity allocation remains underexplored. In this work, we position fusion depth, scalability, and dedicated multimodal capacity as primary factors for effective fusion. We introduce DeepMLF, a novel multimodal language model (LM) with learnable tokens tailored toward deep fusion. DeepMLF leverages an audiovisual encoder and a pretrained decoder LM augmented with multimodal information across its layers. We append learnable tokens to the LM that: 1) capture modality interactions in a controlled fashion and 2) preserve independent information flow for each modality. These fusion tokens gather linguistic information via causal self-attention in LM Blocks and integrate with audiovisual information through cross-attention MM Blocks. Serving as dedicated multimodal capacity, this design enables progressive fusion across multiple layers, providing depth in the fusion process. Our training recipe combines modality-specific losses and language modelling loss, with the decoder LM tasked to predict ground truth polarity. Across three MSA benchmarks with varying dataset characteristics, DeepMLF achieves state-of-the-art performance. Our results confirm that deeper fusion leads to better performance, with optimal fusion depths (5-7) exceeding those of existing approaches. Additionally, our analysis on the number of fusion tokens reveals that small token sets ($\sim$20) achieve optimal performance. We examine the importance of representation learning order (fusion curriculum) through audiovisual encoder initialization experiments. Our ablation studies demonstrate the superiority of the proposed fusion design and gating while providing a holistic examination of DeepMLF's scalability to LLMs, and the impact of each training objective and embedding regularization.
comment: Preprint
☆ LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/arxiv2025-lazy-review)
comment: 29 pages, 18 Figures, 15 Tables
☆ Dynamic Compressing Prompts for Efficient Inference of Large Language Models
Large Language Models (LLMs) have shown outstanding performance across a variety of tasks, partly due to advanced prompting techniques. However, these techniques often require lengthy prompts, which increase computational costs and can hinder performance because of the limited context windows of LLMs. While prompt compression is a straightforward solution, existing methods confront the challenges of retaining essential information, adapting to context changes, and remaining effective across different tasks. To tackle these issues, we propose a task-agnostic method called Dynamic Compressing Prompts (LLM-DCP). Our method reduces the number of prompt tokens while aiming to preserve the performance as much as possible. We model prompt compression as a Markov Decision Process (MDP), enabling the DCP-Agent to sequentially remove redundant tokens by adapting to dynamic contexts and retaining crucial content. We develop a reward function for training the DCP-Agent that balances the compression rate, the quality of the LLM output, and the retention of key information. This allows for prompt token reduction without needing an external black-box LLM. Inspired by the progressive difficulty adjustment in curriculum learning, we introduce a Hierarchical Prompt Compression (HPC) training strategy that gradually increases the compression difficulty, enabling the DCP-Agent to learn an effective compression method that maintains information integrity. Experiments demonstrate that our method outperforms state-of-the-art techniques, especially at higher compression rates. The code for our approach will be available at https://github.com/Fhujinwu/DCP.
comment: Under review (submited in 2024.11)
☆ ReZero: Enhancing LLM search ability by trying one-more-time
Retrieval-Augmented Generation (RAG) improves Large Language Model (LLM) performance on knowledge-intensive tasks but depends heavily on initial search query quality. Current methods, often using Reinforcement Learning (RL), typically focus on query formulation or reasoning over results, without explicitly encouraging persistence after a failed search. We introduce ReZero (Retry-Zero), a novel RL framework that directly rewards the act of retrying a search query following an initial unsuccessful attempt. This incentivizes the LLM to explore alternative queries rather than prematurely halting. ReZero demonstrates significant improvement, achieving 46.88% accuracy compared to a 25% baseline. By rewarding persistence, ReZero enhances LLM robustness in complex information-seeking scenarios where initial queries may prove insufficient.
☆ Exploring the Role of KG-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
☆ Understanding LLMs' Cross-Lingual Context Retrieval: How Good It Is And Where It Comes From
The ability of cross-lingual context retrieval is a fundamental aspect of cross-lingual alignment of large language models (LLMs), where the model extracts context information in one language based on requests in another language. Despite its importance in real-life applications, this ability has not been adequately investigated for state-of-the-art models. In this paper, we evaluate the cross-lingual context retrieval ability of over 40 LLMs across 12 languages to understand the source of this ability, using cross-lingual machine reading comprehension (xMRC) as a representative scenario. Our results show that several small, post-trained open LLMs show strong cross-lingual context retrieval ability, comparable to closed-source LLMs such as GPT-4o, and their estimated oracle performances greatly improve after post-training. Our interpretability analysis shows that the cross-lingual context retrieval process can be divided into two main phases: question encoding and answer retrieval, which are formed in pre-training and post-training, respectively. The phasing stability correlates with xMRC performance, and the xMRC bottleneck lies at the last model layers in the second phase, where the effect of post-training can be evidently observed. Our results also indicate that larger-scale pretraining cannot improve the xMRC performance. Instead, larger LLMs need further multilingual post-training to fully unlock their cross-lingual context retrieval potential. Our code and is available at https://github.com/NJUNLP/Cross-Lingual-Context-Retrieval
☆ Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
☆ ARise: Towards Knowledge-Augmented Reasoning via Risk-Adaptive Search
Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%.
comment: Project homepage: https://opencausalab.github.io/ARise
☆ Exploring Persona-dependent LLM Alignment for the Moral Machine Experiment ICLR 2025
Deploying large language models (LLMs) with agency in real-world applications raises critical questions about how these models will behave. In particular, how will their decisions align with humans when faced with moral dilemmas? This study examines the alignment between LLM-driven decisions and human judgment in various contexts of the moral machine experiment, including personas reflecting different sociodemographics. We find that the moral decisions of LLMs vary substantially by persona, showing greater shifts in moral decisions for critical tasks than humans. Our data also indicate an interesting partisan sorting phenomenon, where political persona predominates the direction and degree of LLM decisions. We discuss the ethical implications and risks associated with deploying these models in applications that involve moral decisions.
comment: Accepted to ICLR 2025 Workshop - BiAlign (Bidirectional Human-AI Alignment)
☆ Ai2 Scholar QA: Organized Literature Synthesis with Attribution
Retrieval-augmented generation is increasingly effective in answering scientific questions from literature, but many state-of-the-art systems are expensive and closed-source. We introduce Ai2 Scholar QA, a free online scientific question answering application. To facilitate research, we make our entire pipeline public: as a customizable open-source Python package and interactive web app, along with paper indexes accessible through public APIs and downloadable datasets. We describe our system in detail and present experiments analyzing its key design decisions. In an evaluation on a recent scientific QA benchmark, we find that Ai2 Scholar QA outperforms competing systems.
comment: 7 pages
☆ Moving Beyond Next-Token Prediction: Transformers are Context-Sensitive Language Generators
Large Language Models (LLMs), powered by Transformers, have demonstrated human-like intelligence capabilities, yet their underlying mechanisms remain poorly understood. This paper presents a novel framework for interpreting LLMs as probabilistic left context-sensitive languages (CSLs) generators. We hypothesize that Transformers can be effectively decomposed into three fundamental components: context windows, attention mechanisms, and autoregressive generation frameworks. This decomposition allows for the development of more flexible and interpretable computational models, moving beyond the traditional view of attention and autoregression as inseparable processes. We argue that next-token predictions can be understood as probabilistic, dynamic approximations of left CSL production rules, providing an intuitive explanation for how simple token predictions can yield human-like intelligence outputs. Given that all CSLs are left context-sensitive (Penttonen, 1974), we conclude that Transformers stochastically approximate CSLs, which are widely recognized as models of human-like intelligence. This interpretation bridges the gap between Formal Language Theory and the observed generative power of Transformers, laying a foundation for future advancements in generative AI theory and applications. Our novel perspective on Transformer architectures will foster a deeper understanding of LLMs and their future potentials.
comment: 11 pages, 2 figures
☆ CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives
Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.
☆ CSPLADE: Learned Sparse Retrieval with Causal Language Models
In recent years, dense retrieval has been the focus of information retrieval (IR) research. While effective, dense retrieval produces uninterpretable dense vectors, and suffers from the drawback of large index size. Learned sparse retrieval (LSR) has emerged as promising alternative, achieving competitive retrieval performance while also being able to leverage the classical inverted index data structure for efficient retrieval. However, limited works have explored scaling LSR beyond BERT scale. In this work, we identify two challenges in training large language models (LLM) for LSR: (1) training instability during the early stage of contrastive training; (2) suboptimal performance due to pre-trained LLM's unidirectional attention. To address these challenges, we propose two corresponding techniques: (1) a lightweight adaptation training phase to eliminate training instability; (2) two model variants to enable bidirectional information. With these techniques, we are able to train LSR models with 8B scale LLM, and achieve competitive retrieval performance with reduced index size. Furthermore, we are among the first to analyze the performance-efficiency tradeoff of LLM-based LSR model through the lens of model quantization. Our findings provide insights into adapting LLMs for efficient retrieval modeling.
☆ Name of Thrones: Evaluating How LLMs Rank Student Names, Race, and Gender in Status Hierarchies
Across cultures, names tell a lot about their bearers as they carry deep personal and cultural significance. Names also serve as powerful signals of gender, race, and status in the social hierarchy - a pecking order in which individual positions shape others' expectations on their perceived competence and worth. With the widespread adoption of LLMs and as names are often an input for LLMs, it is crucial to evaluate whether LLMs may sort people into status positions based on first and last names and, if so, whether it is in an unfair, biased fashion. While prior work has primarily investigated biases in first names, little attention has been paid to last names and even less to the combined effects of first and last names. In this study, we conduct a large-scale analysis of name variations across 5 ethnicities to examine how AI exhibits name biases. Our study investigates three key characteristics of inequality and finds that LLMs reflect and reinforce status hierarchies based on names that signal gender and ethnicity as they encode differential expectations of competence, leadership, and economic potential. Contrary to the common assumption that AI tends to favor Whites, we show that East and, in some contexts, South Asian names receive higher rankings. We also disaggregate Asians, a population projected to be the largest immigrant group in the U.S. by 2055. Our results challenge the monolithic Asian model minority assumption, illustrating a more complex and stratified model of bias. Gender moderates biases, with girls facing unfair disadvantages in certain racial groups. Additionally, spanning cultural categories by adopting Western first names improves AI-perceived status for East and Southeast Asian students, particularly for girls. Our findings underscore the importance of intersectional and more nuanced understandings of race, gender, and mixed identities in the evaluation of LLMs.
☆ GUM-SAGE: A Novel Dataset and Approach for Graded Entity Salience Prediction
Determining and ranking the most salient entities in a text is critical for user-facing systems, especially as users increasingly rely on models to interpret long documents they only partially read. Graded entity salience addresses this need by assigning entities scores that reflect their relative importance in a text. Existing approaches fall into two main categories: subjective judgments of salience, which allow for gradient scoring but lack consistency, and summarization-based methods, which define salience as mention-worthiness in a summary, promoting explainability but limiting outputs to binary labels (entities are either summary-worthy or not). In this paper, we introduce a novel approach for graded entity salience that combines the strengths of both approaches. Using an English dataset spanning 12 spoken and written genres, we collect 5 summaries per document and calculate each entity's salience score based on its presence across these summaries. Our approach shows stronger correlation with scores based on human summaries and alignments, and outperforms existing techniques, including LLMs. We release our data and code at https://github.com/jl908069/gum_sum_salience to support further research on graded salient entity extraction.
☆ The Art of Audience Engagement: LLM-Based Thin-Slicing of Scientific Talks
This paper examines the thin-slicing approach - the ability to make accurate judgments based on minimal information - in the context of scientific presentations. Drawing on research from nonverbal communication and personality psychology, we show that brief excerpts (thin slices) reliably predict overall presentation quality. Using a novel corpus of over one hundred real-life science talks, we employ Large Language Models (LLMs) to evaluate transcripts of full presentations and their thin slices. By correlating LLM-based evaluations of short excerpts with full-talk assessments, we determine how much information is needed for accurate predictions. Our results demonstrate that LLM-based evaluations align closely with human ratings, proving their validity, reliability, and efficiency. Critically, even very short excerpts (less than 10 percent of a talk) strongly predict overall evaluations. This suggests that the first moments of a presentation convey relevant information that is used in quality evaluations and can shape lasting impressions. The findings are robust across different LLMs and prompting strategies. This work extends thin-slicing research to public speaking and connects theories of impression formation to LLMs and current research on AI communication. We discuss implications for communication and social cognition research on message reception. Lastly, we suggest an LLM-based thin-slicing framework as a scalable feedback tool to enhance human communication.
☆ Improving Instruct Models for Free: A Study on Partial Adaptation
Instruct models, obtained from various instruction tuning or post-training steps, are commonly deemed superior and more usable than their base counterpart. While the model gains instruction following ability, instruction tuning may lead to forgetting the knowledge from pre-training or it may encourage the model being overly conversational or verbose. This, in turn, can lead to degradation of in-context few-shot learning performance. In this work, we study the performance trajectory between base and instruct models by scaling down the strength of instruction-tuning via the partial adaption method. We show that, across several model families and model sizes, reducing the strength of instruction-tuning results in material improvement on a few-shot in-context learning benchmark covering a variety of classic natural language tasks. This comes at the cost of losing some degree of instruction following ability as measured by AlpacaEval. Our study shines light on the potential trade-off between in-context learning and instruction following abilities that is worth considering in practice.
comment: Author ordering chosen at random
☆ AskQE: Question Answering as Automatic Evaluation for Machine Translation
How can a monolingual English speaker determine whether an automatic translation in French is good enough to be shared? Existing MT error detection and quality estimation (QE) techniques do not address this practical scenario. We introduce AskQE, a question generation and answering framework designed to detect critical MT errors and provide actionable feedback, helping users decide whether to accept or reject MT outputs even without the knowledge of the target language. Using ContraTICO, a dataset of contrastive synthetic MT errors in the COVID-19 domain, we explore design choices for AskQE and develop an optimized version relying on LLaMA-3 70B and entailed facts to guide question generation. We evaluate the resulting system on the BioMQM dataset of naturally occurring MT errors, where AskQE has higher Kendall's Tau correlation and decision accuracy with human ratings compared to other QE metrics.
comment: 38 pages, 7 figures
☆ GraphicBench: A Planning Benchmark for Graphic Design with Language Agents
Large Language Model (LLM)-powered agents have unlocked new possibilities for automating human tasks. While prior work has focused on well-defined tasks with specified goals, the capabilities of agents in creative design tasks with open-ended goals remain underexplored. We introduce GraphicBench, a new planning benchmark for graphic design that covers 1,079 user queries and input images across four design types. We further present GraphicTown, an LLM agent framework with three design experts and 46 actions (tools) to choose from for executing each step of the planned workflows in web environments. Experiments with six LLMs demonstrate their ability to generate workflows that integrate both explicit design constraints from user queries and implicit commonsense constraints. However, these workflows often do not lead to successful execution outcomes, primarily due to challenges in: (1) reasoning about spatial relationships, (2) coordinating global dependencies across experts, and (3) retrieving the most appropriate action per step. We envision GraphicBench as a challenging yet valuable testbed for advancing LLM-agent planning and execution in creative design tasks.
comment: 41 pages, 11 figures
☆ ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
☆ HypoBench: Towards Systematic and Principled Benchmarking for Hypothesis Generation
There is growing interest in hypothesis generation with large language models (LLMs). However, fundamental questions remain: what makes a good hypothesis, and how can we systematically evaluate methods for hypothesis generation? To address this, we introduce HypoBench, a novel benchmark designed to evaluate LLMs and hypothesis generation methods across multiple aspects, including practical utility, generalizability, and hypothesis discovery rate. HypoBench includes 7 real-world tasks and 5 synthetic tasks with 194 distinct datasets. We evaluate four state-of-the-art LLMs combined with six existing hypothesis-generation methods. Overall, our results suggest that existing methods are capable of discovering valid and novel patterns in the data. However, the results from synthetic datasets indicate that there is still significant room for improvement, as current hypothesis generation methods do not fully uncover all relevant or meaningful patterns. Specifically, in synthetic settings, as task difficulty increases, performance significantly drops, with best models and methods only recovering 38.8% of the ground-truth hypotheses. These findings highlight challenges in hypothesis generation and demonstrate that HypoBench serves as a valuable resource for improving AI systems designed to assist scientific discovery.
comment: 29 pages, 6 figures, website link: https://chicagohai.github.io/HypoBench/
☆ Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
♻ ☆ Graph Linearization Methods for Reasoning on Graphs with Large Language Models
Large language models have evolved to process multiple modalities beyond text, such as images and audio, which motivates us to explore how to effectively leverage them for graph reasoning tasks. The key question, therefore, is how to transform graphs into linear sequences of tokens, a process we term "graph linearization", so that LLMs can handle graphs naturally. We consider that graphs should be linearized meaningfully to reflect certain properties of natural language text, such as local dependency and global alignment, in order to ease contemporary LLMs, trained on trillions of textual tokens, better understand graphs. To achieve this, we developed several graph linearization methods based on graph centrality and degeneracy. These methods are further enhanced using node relabeling techniques. The experimental results demonstrate the effectiveness of our methods compared to the random linearization baseline. Our work introduces novel graph representations suitable for LLMs, contributing to the potential integration of graph machine learning with the trend of multimodal processing using a unified transformer model.
♻ ☆ Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
♻ ☆ Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review
♻ ☆ Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment, particularly through situational judgment tests (SJTs), is a vital tool for psychological research, talent selection, and educational evaluation. This study explores the potential of GPT-4, a state-of-the-art large language model (LLM), to automate the generation of personality situational judgment tests (PSJTs) in Chinese. Traditional SJT development is labor-intensive and prone to biases, while GPT-4 offers a scalable, efficient alternative. Two studies were conducted: Study 1 evaluated the impact of prompt design and temperature settings on content validity, finding that optimized prompts with a temperature of 1.0 produced creative and accurate items. Study 2 assessed the psychometric properties of GPT-4-generated PSJTs, revealing that they demonstrated satisfactory reliability and validity, surpassing the performance of manually developed tests in measuring the Big Five personality traits. This research highlights GPT-4's effectiveness in developing high-quality PSJTs, providing a scalable and innovative method for psychometric test development. These findings expand the possibilities of automatic item generation and the application of LLMs in psychology, and offer practical implications for streamlining test development processes in resource-limited settings.
comment: Submitted to Computers in Human Behavior Reports. 54 pages (main text), 12 pages (appendix), and 5 figures
♻ ☆ Lateral Phishing With Large Language Models: A Large Organization Comparative Study
The emergence of Large Language Models (LLMs) has heightened the threat of phishing emails by enabling the generation of highly targeted, personalized, and automated attacks. Traditionally, many phishing emails have been characterized by typos, errors, and poor language. These errors can be mitigated by LLMs, potentially lowering the barrier for attackers. Despite this, there is a lack of large-scale studies comparing the effectiveness of LLM-generated lateral phishing emails to those crafted by humans. Current literature does not adequately address the comparative effectiveness of LLM and human-generated lateral phishing emails in a real-world, large-scale organizational setting, especially considering the potential for LLMs to generate more convincing and error-free phishing content. To address this gap, we conducted a pioneering study within a large university, targeting its workforce of approximately 9,000 individuals including faculty, staff, administrators, and student workers. Our results indicate that LLM-generated lateral phishing emails are as effective as those written by communications professionals, emphasizing the critical threat posed by LLMs in leading phishing campaigns. We break down the results of the overall phishing experiment, comparing vulnerability between departments and job roles. Furthermore, to gather qualitative data, we administered a detailed questionnaire, revealing insights into the reasons and motivations behind vulnerable employee's actions. This study contributes to the understanding of cyber security threats in educational institutions and provides a comprehensive comparison of LLM and human-generated phishing emails' effectiveness, considering the potential for LLMs to generate more convincing content. The findings highlight the need for enhanced user education and system defenses to mitigate the growing threat of AI-powered phishing attacks.
comment: Accepted for publication in IEEE Access. This version includes revisions following peer review
♻ ☆ CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models
Open large language models (LLMs) have significantly advanced the field of natural language processing, showcasing impressive performance across various tasks.Despite the significant advancements in LLMs, their effective operation still relies heavily on human input to accurately guide the dialogue flow, with agent tuning being a crucial optimization technique that involves human adjustments to the model for better response to such guidance.Addressing this dependency, our work introduces the TinyAgent model, trained on a meticulously curated high-quality dataset. We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an innovative system designed to augment language agent capabilities through adaptive weight updates based on environmental feedback. This framework fosters collaborative learning and real-time adaptation among multiple intelligent agents, enhancing their context-awareness and long-term memory. In this research, we propose a new communication agent framework that integrates multi-agent systems with environmental feedback mechanisms, offering a scalable method to explore cooperative behaviors. Notably, our TinyAgent-7B model exhibits performance on par with GPT-3.5, despite having fewer parameters, signifying a substantial improvement in the efficiency and effectiveness of LLMs.
♻ ☆ Enhancing Commentary Strategies for Imperfect Information Card Games: A Study of Large Language Models in Guandan Commentary
Recent advancements in large language models (LLMs) have unlocked the potential for generating high-quality game commentary. However, producing insightful and engaging commentary for complex games with incomplete information remains a significant challenge. In this paper, we introduce a novel commentary method that combine Reinforcement Learning (RL) and LLMs, tailored specifically for the Chinese card game \textit{Guandan}. Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text, effectively emulating the strategic analysis and narrative prowess of professional commentators. The framework comprises a state commentary guide, a Theory of Mind (ToM)-based strategy analyzer, and a style retrieval module, which seamlessly collaborate to deliver detailed and context-relevant game commentary in the Chinese language environment. We empower LLMs with ToM capabilities and refine both retrieval and information filtering mechanisms. This facilitates the generation of personalized commentary content. Our experimental results showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs, surpassing the performance of GPT-4 across multiple evaluation metrics.
♻ ☆ MultiLoKo: a multilingual local knowledge benchmark for LLMs spanning 31 languages
We present MultiLoKo, a new benchmark for evaluating multilinguality in LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For comparison, we also release corresponding machine-authored translations. The data is equally distributed over two splits: a dev split and a blind, out-of-distribution test split. MultiLoKo can be used to study a variety of questions regarding the multilinguality of LLMs as well as meta-questions about multilingual benchmark creation. We compute MultiLoKo scores for 11 base and chat models marketed to be multilingual and study their average performance, their performance parity across languages, how much their ability to answer questions depends on the question language, and which languages are most difficult. None of the models we studied performs well on MultiLoKo, as indicated by low average scores as well as large differences between the best and worst scoring languages. Furthermore, we find a substantial effect of the question language, indicating sub-optimal knowledge transfer between languages. Lastly, we find that using local vs English-translated data can result in differences more than 20 points for the best performing models, drastically change the estimated difficulty of some languages. For using machines instead of human translations, we find a weaker effect on ordering of language difficulty, a larger difference in model rankings, and a substantial drop in estimated performance for all models.
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
♻ ☆ SafeChat: A Framework for Building Trustworthy Collaborative Assistants and a Case Study of its Usefulness
Collaborative assistants, or chatbots, are data-driven decision support systems that enable natural interaction for task completion. While they can meet critical needs in modern society, concerns about their reliability and trustworthiness persist. In particular, Large Language Model (LLM)-based chatbots like ChatGPT, Gemini, and DeepSeek are becoming more accessible. However, such chatbots have limitations, including their inability to explain response generation, the risk of generating problematic content, the lack of standardized testing for reliability, and the need for deep AI expertise and extended development times. These issues make chatbots unsuitable for trust-sensitive applications like elections or healthcare. To address these concerns, we introduce SafeChat, a general architecture for building safe and trustworthy chatbots, with a focus on information retrieval use cases. Key features of SafeChat include: (a) safety, with a domain-agnostic design where responses are grounded and traceable to approved sources (provenance), and 'do-not-respond' strategies to prevent harmful answers; (b) usability, with automatic extractive summarization of long responses, traceable to their sources, and automated trust assessments to communicate expected chatbot behavior, such as sentiment; and (c) fast, scalable development, including a CSV-driven workflow, automated testing, and integration with various devices. We implemented SafeChat in an executable framework using the open-source chatbot platform Rasa. A case study demonstrates its application in building ElectionBot-SC, a chatbot designed to safely disseminate official election information. SafeChat is being used in many domains, validating its potential, and is available at: https://github.com/ai4society/trustworthy-chatbot.
♻ ☆ Towards Predictive Communication with Brain-Computer Interfaces integrating Large Language Models
This perspective article aims at providing an outline of the state of the art and future developments towards the integration of cutting-edge predictive language models with BCI. A synthetic overview of early and more recent linguistic models, from natural language processing (NLP) models to recent LLM, that to a varying extent improved predictive writing systems, is first provided. Second, a summary of previous BCI implementations integrating language models is presented. The few preliminary studies investigating the possible combination of LLM with BCI spellers to efficiently support fast communication and control are then described. Finally, current challenges and limitations towards the full integration of LLM with BCI systems are discussed. Recent investigations suggest that the combination of LLM with BCI might drastically improve human-computer interaction in patients with motor or language disorders as well as in healthy individuals. In particular, the pretrained autoregressive transformer models, such as GPT, that capitalize from parallelization, learning through pre-training and fine-tuning, promise a substantial improvement of BCI for communication with respect to previous systems incorporating simpler language models. Indeed, among various models, the GPT-2 was shown to represent an excellent candidate for its integration into BCI although testing was only perfomed on simulated conversations and not on real BCI scenarios. Prospectively, the full integration of LLM with advanced BCI systems might lead to a big leap forward towards fast, efficient and user-adaptive neurotechnology.
comment: needs major revision
♻ ☆ Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. We are releasing Nemotron-H base model checkpoints with support in Hugging Face and NeMo.
♻ ☆ Retro-Search: Exploring Untaken Paths for Deeper and Efficient Reasoning
Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.
comment: Code and data will be publicly released upon internal approval
♻ ☆ Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
♻ ☆ What is the Role of Small Models in the LLM Era: A Survey
Large Language Models (LLMs) have made significant progress in advancing artificial general intelligence (AGI), leading to the development of increasingly large models such as GPT-4 and LLaMA-405B. However, scaling up model sizes results in exponentially higher computational costs and energy consumption, making these models impractical for academic researchers and businesses with limited resources. At the same time, Small Models (SMs) are frequently used in practical settings, although their significance is currently underestimated. This raises important questions about the role of small models in the era of LLMs, a topic that has received limited attention in prior research. In this work, we systematically examine the relationship between LLMs and SMs from two key perspectives: Collaboration and Competition. We hope this survey provides valuable insights for practitioners, fostering a deeper understanding of the contribution of small models and promoting more efficient use of computational resources. The code is available at https://github.com/tigerchen52/role_of_small_models
comment: a survey paper of small models
♻ ☆ VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
comment: 56 pages, 43 figures
♻ ☆ What Is a Good Caption? A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions using F1-score. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides the first holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of capabilities.
♻ ☆ Safe Text-to-Image Generation: Simply Sanitize the Prompt Embedding
In recent years, text-to-image (T2I) generation models have made significant progress in generating high-quality images that align with text descriptions. However, these models also face the risk of unsafe generation, potentially producing harmful content that violates usage policies, such as explicit material. Existing safe generation methods typically focus on suppressing inappropriate content by erasing undesired concepts from visual representations, while neglecting to sanitize the textual representation. Although these methods help mitigate the risk of misuse to some extent, their robustness remains insufficient when dealing with adversarial attacks. Given that semantic consistency between input text and output image is a core requirement of T2I models, we identify that textual representations are likely the primary source of unsafe generation. To this end, we propose Embedding Sanitizer (ES), which enhances the safety of T2I models by sanitizing inappropriate concepts in prompt embeddings. To our knowledge, ES is the first interpretable safe generation framework that assigns a score to each token in the prompt to indicate its potential harmfulness. In addition, ES adopts a plug-and-play modular design, offering compatibility for seamless integration with various T2I models and other safeguards. Evaluations on five prompt benchmarks show that ES outperforms eleven existing safeguard baselines, achieving state-of-the-art robustness while maintaining high-quality image generation.
♻ ☆ Can you map it to English? The Role of Cross-Lingual Alignment in Multilingual Performance of LLMs
Large language models (LLMs) pre-trained predominantly on English text exhibit surprising multilingual capabilities, yet the mechanisms driving cross-lingual generalization remain poorly understood. This work investigates how the alignment of representations for text written in different languages correlates with LLM performance on natural language understanding tasks and translation tasks, both at the language and the instance level. For this purpose, we introduce cross-lingual alignment metrics such as the Discriminative Alignment Index (DALI) to quantify the alignment at an instance level for discriminative tasks. Through experiments on three natural language understanding tasks (Belebele, XStoryCloze, XCOPA), and machine translation, we find that while cross-lingual alignment metrics strongly correlate with task accuracy at the language level, the sample-level alignment often fails to distinguish correct from incorrect predictions, exposing alignment as a necessary but insufficient condition for success.
♻ ☆ Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
♻ ☆ Causal Graphical Models for Vision-Language Compositional Understanding ICLR 2025
Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
comment: Accepted at ICLR 2025
♻ ☆ Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
♻ ☆ SEA-LION: Southeast Asian Languages in One Network
Recently, Large Language Models (LLMs) have dominated much of the artificial intelligence scene with their ability to process and generate natural languages. However, the majority of LLM research and development remains English-centric, leaving low-resource languages such as those in the Southeast Asian (SEA) region under-represented. To address this representation gap, we introduce Llama-SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, two cutting-edge multilingual LLMs designed for SEA languages. The SEA-LION family of LLMs supports 11 SEA languages, namely English, Chinese, Indonesian, Vietnamese, Malay, Thai, Burmese, Lao, Filipino, Tamil, and Khmer. Our work leverages large-scale multilingual continued pre-training with a comprehensive post-training regime involving multiple stages of instruction fine-tuning, alignment, and model merging. Evaluation results on multilingual benchmarks indicate that our models achieve state-of-the-art performance across LLMs supporting SEA languages. We open-source the models to benefit the wider SEA community.
comment: We released our model at https://huggingface.co/collections/aisingapore/sea-lionv3-672589a39cdadd6a5b199581
♻ ☆ Do "New Snow Tablets" Contain Snow? Large Language Models Over-Rely on Names to Identify Ingredients of Chinese Drugs
Traditional Chinese Medicine (TCM) has seen increasing adoption in healthcare, with specialized Large Language Models (LLMs) emerging to support clinical applications. A fundamental requirement for these models is accurate identification of TCM drug ingredients. In this paper, we evaluate how general and TCM-specialized LLMs perform when identifying ingredients of Chinese drugs. Our systematic analysis reveals consistent failure patterns: models often interpret drug names literally, overuse common herbs regardless of relevance, and exhibit erratic behaviors when faced with unfamiliar formulations. LLMs also fail to understand the verification task. These findings demonstrate that current LLMs rely primarily on drug names rather than possessing systematic pharmacological knowledge. To address these limitations, we propose a Retrieval Augmented Generation (RAG) approach focused on ingredient names. Experiments across 220 TCM formulations show our method significantly improves accuracy from approximately 50% to 82% in ingredient verification tasks. Our work highlights critical weaknesses in current TCM-specific LLMs and offers a practical solution for enhancing their clinical reliability.
♻ ☆ Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since active interventions are costly, we study to what extent a system can learn causal reasoning from symbolic demonstrations of causal axioms. Specifically, we present an axiomatic training method where the system learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the system would learn to generalize from the axiom demonstrations to more complex scenarios. Our results, based on applying axiomatic training to learn the transitivity axiom and d-separation rule, indicate that such generalization is possible. To avoid data contamination issues, we start with a 67 million parameter transformer model and train it from scratch. On both tasks, we find that a model trained on linear causal chains (along with some noisy variations) can generalize well to complex graphs, including longer causal chains, causal chains with reversed order, and graphs with branching.To handle diverse text inputs, the same method is extended to finetune language models. Finetuning Llama-3.1 8B model on our axiomatic data leads to significant gains on causal benchmarks such as Corr2Cause and CLEAR, in some cases providing state-of-the-art performance surpassing GPT-4.
♻ ☆ ELTEX: A Framework for Domain-Driven Synthetic Data Generation
We introduce Efficient LLM Token Extraction (ELTEX), a framework addressing the critical challenge of LLM domain specialization by systematically extracting and integrating domain indicators throughout synthetic data generation. Unlike approaches relying on implicit knowledge transfer, ELTEX explicitly leverages domain signals to maintain specialized knowledge integrity. In our cybersecurity case study, ELTEX-enhanced data enables a fine-tuned Gemma-2B model to achieve performance competitive with GPT-4o on blockchain cyberattack classification while reducing computational requirements. Our Google Sheets implementation makes ELTEX accessible to non-technical users. Our contributions include: (1) the ELTEX framework; (2) Google Sheets Add-on implementation; (3) empirical validation showing how ELTEX bridges performance gaps between small and large models; and (4) a synthetic dataset of 11,448 texts for blockchain cyberattack detection.
♻ ☆ Preference-based Learning with Retrieval Augmented Generation for Conversational Question Answering WWW 2025
Conversational Question Answering (ConvQA) involves multiple subtasks, i) to understand incomplete questions in their context, ii) to retrieve relevant information, and iii) to generate answers. This work presents PRAISE, a pipeline-based approach for ConvQA that trains LLM adapters for each of the three subtasks. As labeled training data for individual subtasks is unavailable in practice, PRAISE learns from its own generations using the final answering performance as feedback signal without human intervention and treats intermediate information, like relevant evidence, as weakly labeled data. We apply Direct Preference Optimization by contrasting successful and unsuccessful samples for each subtask. In our experiments, we show the effectiveness of this training paradigm: PRAISE shows improvements per subtask and achieves new state-of-the-art performance on a popular ConvQA benchmark, by gaining 15.5 percentage points increase in precision over baselines.
comment: WWW 2025 Short Paper, 5 pages
♻ ☆ ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model
Recent advances in reasoning with large language models (LLMs)has shown remarkable reasoning capabilities in domains such as mathematics and coding, yet their application to clinical diagnosis remains underexplored. Here, we introduce ClinicalGPT-R1, a reasoning enhanced generalist large language model for disease diagnosis. Trained on a dataset of 20,000 real-world clinical records, ClinicalGPT-R1 leverages diverse training strategies to enhance diagnostic reasoning. To benchmark performance, we curated MedBench-Hard, a challenging dataset spanning seven major medical specialties and representative diseases. Experimental results demonstrate that ClinicalGPT-R1 outperforms GPT-4o in Chinese diagnostic tasks and achieves comparable performance to GPT-4 in English settings. This comparative study effectively validates the superior performance of ClinicalGPT-R1 in disease diagnosis tasks. Resources are available at https://github.com/medfound/medfound.
comment: 8 pages, 6 figures
♻ ☆ Linear-MoE: Linear Sequence Modeling Meets Mixture-of-Experts
Linear Sequence Modeling (LSM) like linear attention, state space models and linear RNNs, and Mixture-of-Experts (MoE) have recently emerged as significant architectural improvements. In this paper, we introduce Linear-MoE, a production-level system for modeling and training large-scale models that integrate LSM with MoE. Linear-MoE leverages the advantages of both LSM modules for linear-complexity sequence modeling and MoE layers for sparsely activation, aiming to offer high performance with efficient training. The Linear-MoE system comprises: 1) Modeling subsystem, which provides a unified framework supporting all instances of LSM. and 2) Training subsystem, which facilitates efficient training by incorporating various advanced parallelism technologies, particularly Sequence Parallelism designed for Linear-MoE models. Additionally, we explore hybrid models that combine Linear-MoE layers with standard Transformer-MoE layers with its Sequence Parallelism to further enhance model flexibility and performance. Evaluations on two model series, A0.3B-2B and A1B-7B, demonstrate Linear-MoE achieves efficiency gains while maintaining competitive performance on various benchmarks, showcasing its potential as a next-generation foundational model architecture. Code: https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 17 pages
♻ ☆ Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization
Large language models (LLMs) have shown great progress in responding to user questions, allowing for a multitude of diverse applications. Yet, the quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly. Therefore, recent works have developed many strategies for improving the prompt, including both manual crafting and in-domain optimization. However, their efficacy in unrestricted scenarios remains questionable, as the former depends on human design for specific questions and the latter usually generalizes poorly to unseen scenarios. To address these problems, we give LLMs the freedom to design the best prompts according to themselves. Specifically, we include a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query. We term this pipeline Hierarchical Multi-Agent Workflow, or HMAW. In contrast with prior works, HMAW imposes no human restriction and requires no training, and is completely task-agnostic while capable of adjusting to the nuances of the underlying task. Through both quantitative and qualitative experiments across multiple benchmarks, we verify that despite its simplicity, the proposed approach can create detailed and suitable prompts, further boosting the performance of current LLMs.
♻ ☆ CARE: Aligning Language Models for Regional Cultural Awareness
Existing language models (LMs) often exhibit a Western-centric bias and struggle to represent diverse cultural knowledge. Previous attempts to address this rely on synthetic data and express cultural knowledge only in English. In this work, we study whether a small amount of human-written, multilingual cultural preference data can improve LMs across various model families and sizes. We first introduce CARE, a multilingual resource of 24.1k responses with human preferences on 2,580 questions about Chinese and Arab cultures, all carefully annotated by native speakers and offering more balanced coverage. Using CARE, we demonstrate that cultural alignment improves existing LMs beyond generic resources without compromising general capabilities. Moreover, we evaluate the cultural awareness of LMs, native speakers, and retrieved web content when queried in different languages. Our experiment reveals regional disparities among LMs, which may also be reflected in the documentation gap: native speakers often take everyday cultural commonsense and social norms for granted, while non-natives are more likely to actively seek out and document them. CARE is publicly available at https://github.com/Guochry/CARE (we plan to add Japanese data in the near future).
comment: 24 pages
♻ ☆ FairPy: A Toolkit for Evaluation of Prediction Biases and their Mitigation in Large Language Models
Recent studies have demonstrated that large pretrained language models (LLMs) such as BERT and GPT-2 exhibit biases in token prediction, often inherited from the data distributions present in their training corpora. In response, a number of mathematical frameworks have been proposed to quantify, identify, and mitigate these the likelihood of biased token predictions. In this paper, we present a comprehensive survey of such techniques tailored towards widely used LLMs such as BERT, GPT-2, etc. We additionally introduce Fairpy, a modular and extensible toolkit that provides plug-and-play interfaces for integrating these mathematical tools, enabling users to evaluate both pretrained and custom language models. Fairpy supports the implementation of existing debiasing algorithms. The toolkit is open-source and publicly available at: \href{https://github.com/HrishikeshVish/Fairpy}{https://github.com/HrishikeshVish/Fairpy}
♻ ☆ TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights ICLR 2025
Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.
comment: Published in ICLR 2025, code in https://github.com/exlaw/TIS-DPO
♻ ☆ LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving
Existing learning-based autonomous driving (AD) systems face challenges in comprehending high-level information, generalizing to rare events, and providing interpretability. To address these problems, this work employs Large Language Models (LLMs) as a decision-making component for complex AD scenarios that require human commonsense understanding. We devise cognitive pathways to enable comprehensive reasoning with LLMs, and develop algorithms for translating LLM decisions into actionable driving commands. Through this approach, LLM decisions are seamlessly integrated with low-level controllers by guided parameter matrix adaptation. Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination, thanks to the commonsense reasoning capabilities of LLMs. This paper presents an initial step toward leveraging LLMs as effective decision-makers for intricate AD scenarios in terms of safety, efficiency, generalizability, and interoperability. We aspire for it to serve as inspiration for future research in this field. Project page: https://sites.google.com/view/llm-mpc
♻ ☆ System-1.x: Learning to Balance Fast and Slow Planning with Language Models ICLR 2025
Language models can be used to solve long-horizon planning problems in two distinct modes: a fast 'System-1' mode, directly generating plans without any explicit search or backtracking, and a slow 'System-2' mode, planning step-by-step by explicitly searching over possible actions. While System-2 is typically more effective, it is also more computationally expensive, making it infeasible for long plans or large action spaces. Moreover, isolated System-1 or 2 ignores the user's end goals, failing to provide ways to control the model's behavior. To this end, we propose the System-1.x Planner, a controllable planning framework with LLMs that is capable of generating hybrid plans and balancing between the two planning modes based on the difficulty of the problem at hand. System-1.x consists of (i) a controller, (ii) a System-1 Planner, and (iii) a System-2 Planner. Based on a user-specified hybridization factor (x) governing the mixture between System-1 and 2, the controller decomposes a problem into sub-goals, and classifies them as easy or hard to be solved by either System-1 or 2, respectively. We fine-tune all three components on top of a single base LLM, requiring only search traces as supervision. Experiments with two diverse planning tasks -- Maze Navigation and Blocksworld -- show that our System-1.x Planner outperforms a System-1 Planner, a System-2 Planner trained to approximate A* search, and also a symbolic planner (A*). We demonstrate the following key properties of our planner: (1) controllability: increasing the hybridization factor (e.g., System-1.75 vs 1.5) performs more search, improving performance, (2) flexibility: by building a neuro-symbolic variant with a neural System-1 and a symbolic System-2, we can use existing symbolic methods, and (3) generalizability: by being able to learn from different search algorithms, our method is robust to the choice of search algorithm.
comment: ICLR 2025 (Camera-Ready)
♻ ☆ LLM$\times$MapReduce-V2: Entropy-Driven Convolutional Test-Time Scaling for Generating Long-Form Articles from Extremely Long Resources
Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLM$\times$MapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLM$\times$MapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines. Both LLM$\times$MapReduce-V2 and SurveyEval are publicly available at https://github.com/thunlp/LLMxMapReduce .
♻ ☆ IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities AAAI 2025
In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
comment: AAAI 2025
♻ ☆ Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
Structured pruning is a promising approach to create smaller, faster LLMs. However, existing methods typically rely on backward passes, which can inflate memory requirements and compute costs. In this work we introduce Bonsai, a gradient-free structured pruning method that eliminates the need for backpropagation, significantly reducing memory requirements and compute costs while achieving state-of-the-art pruning performance. Bonsai uses forward-pass-only perturbative pruning to enable efficient compression of large models on a broader range of hardware configurations. Unlike existing structured pruning approaches, Bonsai not only achieves better compression with fewer resources, but also produces models that are twice as fast as those generated by semi-structured pruning. As a concrete demonstration, we use Bonsai to prune an 8B LLaMA-3 model to 50% sparsity on a single A6000 GPU -- a task infeasible with backprop-based methods, which require 2-3x memory. Our results show that removing backprop as a requirement not only enables pruning larger models on constrained hardware but can also lead to state-of-the-art efficiency and performance.
comment: 19 pages, 6 fiigures, 16 tables
♻ ☆ Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
♻ ☆ DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
♻ ☆ AFlow: Automating Agentic Workflow Generation
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains, typically by employing agentic workflows that follow detailed instructions and operational sequences. However, constructing these workflows requires significant human effort, limiting scalability and generalizability. Recent research has sought to automate the generation and optimization of these workflows, but existing methods still rely on initial manual setup and fall short of achieving fully automated and effective workflow generation. To address this challenge, we reformulate workflow optimization as a search problem over code-represented workflows, where LLM-invoking nodes are connected by edges. We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search, iteratively refining workflows through code modification, tree-structured experience, and execution feedback. Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines. Furthermore, AFlow enables smaller models to outperform GPT-4o on specific tasks at 4.55% of its inference cost in dollars. The code is available at https://github.com/FoundationAgents/AFlow.
♻ ☆ Are Generative AI Agents Effective Personalized Financial Advisors? SIGIR 2025
Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice.
comment: Accepted for presentation at SIGIR 2025
♻ ☆ Evaluation Under Imperfect Benchmarks and Ratings: A Case Study in Text Simplification
Despite the successes of language models, their evaluation remains a daunting challenge for new and existing tasks. We consider the task of text simplification, commonly used to improve information accessibility, where evaluation faces two major challenges. First, the data in existing benchmarks might not reflect the capabilities of current language models on the task, often containing disfluent, incoherent, or simplistic examples. Second, existing human ratings associated with the benchmarks often contain a high degree of disagreement, resulting in inconsistent ratings; nevertheless, existing metrics still have to show higher correlations with these imperfect ratings. As a result, evaluation for the task is not reliable and does not reflect expected trends (e.g., more powerful models being assigned higher scores). We address these challenges for the task of text simplification through three contributions. First, we introduce SynthSimpliEval, a synthetic benchmark for text simplification featuring simplified sentences generated by models of varying sizes. Through a pilot study, we show that human ratings on our benchmark exhibit high inter-annotator agreement and reflect the expected trend: larger models produce higher-quality simplifications. Second, we show that auto-evaluation with a panel of LLM judges (LLMs-as-a-jury) often suffices to obtain consistent ratings for the evaluation of text simplification. Third, we demonstrate that existing learnable metrics for text simplification benefit from training on our LLMs-as-a-jury-rated synthetic data, closing the gap with pure LLMs-as-a-jury for evaluation. Overall, through our case study on text simplification, we show that a reliable evaluation requires higher quality test data, which could be obtained through synthetic data and LLMs-as-a-jury ratings.
comment: 9 pages, 6 figures
♻ ☆ Assessing how hyperparameters impact Large Language Models' sarcasm detection performance
Sarcasm detection is challenging for both humans and machines. This work explores how model characteristics impact sarcasm detection in OpenAI's GPT, and Meta's Llama-2 models, given their strong natural language understanding, and popularity. We evaluate fine-tuned and zero-shot models across various sizes, releases, and hyperparameters. Experiments were conducted on the political and balanced (pol-bal) portion of the popular Self-Annotated Reddit Corpus (SARC2.0) sarcasm dataset. Fine-tuned performance improves monotonically with model size within a model family, while hyperparameter tuning also impacts performance. In the fine-tuning scenario, full precision Llama-2-13b achieves state-of-the-art accuracy and $F_1$-score, both measured at 0.83, comparable to average human performance. In the zero-shot setting, one GPT-4 model achieves competitive performance to prior attempts, yielding an accuracy of 0.70 and an $F_1$-score of 0.75. Furthermore, a model's performance may increase or decline with each release, highlighting the need to reassess performance after each release.
comment: arXiv admin note: substantial text overlap with arXiv:2312.04642
♻ ☆ No Need to Talk: Asynchronous Mixture of Language Models
We introduce SMALLTALK LM, an innovative method for training a mixture of language models in an almost asynchronous manner. Each model of the mixture specializes in distinct parts of the data distribution, without the need for high-bandwidth communication between the nodes training each model. At inference, a lightweight router directs a given sequence to a single expert, according to a short prefix. This inference scheme naturally uses a fraction of the parameters from the overall mixture model. Unlike prior works on asynchronous LLM training, our routing method does not rely on full corpus clustering or access to metadata, making it more suitable for real-world applications. Our experiments on language modeling demonstrate that SMALLTALK LM achieves significantly lower perplexity than dense model baselines for the same total training FLOPs and an almost identical inference cost. Finally, in our downstream evaluations we outperform the dense baseline on 75% of the tasks.
comment: 23 pages
♻ ☆ Knowledge Graph Reasoning with Self-supervised Reinforcement Learning
Reinforcement learning (RL) is an effective method of finding reasoning pathways in incomplete knowledge graphs (KGs). To overcome the challenges of a large action space, a self-supervised pre-training method is proposed to warm up the policy network before the RL training stage. To alleviate the distributional mismatch issue in general self-supervised RL (SSRL), in our supervised learning (SL) stage, the agent selects actions based on the policy network and learns from generated labels; this self-generation of labels is the intuition behind the name self-supervised. With this training framework, the information density of our SL objective is increased and the agent is prevented from getting stuck with the early rewarded paths. Our self-supervised RL (SSRL) method improves the performance of RL by pairing it with the wide coverage achieved by SL during pretraining, since the breadth of the SL objective makes it infeasible to train an agent with that alone. We show that our SSRL model meets or exceeds current state-of-the-art results on all Hits@k and mean reciprocal rank (MRR) metrics on four large benchmark KG datasets. This SSRL method can be used as a plug-in for any RL architecture for a KGR task. We adopt two RL architectures, i.e., MINERVA and MultiHopKG as our baseline RL models and experimentally show that our SSRL model consistently outperforms both baselines on all of these four KG reasoning tasks. Full code for the paper available at https://github.com/owenonline/Knowledge-Graph-Reasoning-with-Self-supervised-Reinforcement-Learning.
comment: 17 pages, 11 figures
♻ ☆ Enhancing Privacy in the Early Detection of Sexual Predators Through Federated Learning and Differential Privacy AAAI
The increased screen time and isolation caused by the COVID-19 pandemic have led to a significant surge in cases of online grooming, which is the use of strategies by predators to lure children into sexual exploitation. Previous efforts to detect grooming in industry and academia have involved accessing and monitoring private conversations through centrally-trained models or sending private conversations to a global server. In this work, we implement a privacy-preserving pipeline for the early detection of sexual predators. We leverage federated learning and differential privacy in order to create safer online spaces for children while respecting their privacy. We investigate various privacy-preserving implementations and discuss their benefits and shortcomings. Our extensive evaluation using real-world data proves that privacy and utility can coexist with only a slight reduction in utility.
comment: Accepted to AAAI-Social Impact Track - Oral
♻ ☆ FourierNAT: A Fourier-Mixing-Based Non-Autoregressive Transformer for Parallel Sequence Generation
We present FourierNAT, a novel non-autoregressive Transformer (NAT) architecture that employs Fourier-based mixing in the decoder to generate output sequences in parallel. While traditional NAT approaches often face challenges with capturing global dependencies, our method leverages a discrete Fourier transform to mix token embeddings across the entire sequence dimension, coupled with learned frequency-domain gating. This allows the model to efficiently propagate context without explicit autoregressive steps. Empirically, FourierNAT achieves competitive results against leading NAT baselines on standard benchmarks like WMT machine translation and CNN/DailyMail summarization, providing significant speed advantages over autoregressive Transformers. We further demonstrate that learned frequency-domain parameters allow the model to adaptively focus on long-range or short-range dependencies, partially mitigating the well-known coherence gaps in one-pass NAT generation. Overall, FourierNAT highlights the potential of integrating spectral-domain operations to accelerate and improve parallel text generation. This approach can potentially provide great computational and time savings in inference tasks LLMs.
comment: 11 pages, 1 figure
♻ ☆ Automatic Input Rewriting Improves Translation with Large Language Models
Can we improve machine translation (MT) with LLMs by rewriting their inputs automatically? Users commonly rely on the intuition that well-written text is easier to translate when using off-the-shelf MT systems. LLMs can rewrite text in many ways but in the context of MT, these capabilities have been primarily exploited to rewrite outputs via post-editing. We present an empirical study of 21 input rewriting methods with 3 open-weight LLMs for translating from English into 6 target languages. We show that text simplification is the most effective MT-agnostic rewrite strategy and that it can be improved further when using quality estimation to assess translatability. Human evaluation further confirms that simplified rewrites and their MT outputs both largely preserve the original meaning of the source and MT. These results suggest LLM-assisted input rewriting as a promising direction for improving translations.
comment: 27 pages, 8 figures
♻ ☆ Visual Theory of Mind Enables the Invention of Proto-Writing
Symbolic writing systems are graphical semiotic codes that are ubiquitous in modern society but are otherwise absent in the animal kingdom. Anthropological evidence suggests that the earliest forms of some writing systems originally consisted of iconic pictographs, which signify their referent via visual resemblance. While previous studies have examined the emergence and, separately, the evolution of pictographic systems through a computational lens, most employ non-naturalistic methodologies that make it difficult to draw clear analogies to human and animal cognition. We develop a multi-agent reinforcement learning testbed for emergent communication called a Signification Game, and formulate a model of inferential communication that enables agents to leverage visual theory of mind to communicate actions using pictographs. Our model, which is situated within a broader formalism for animal communication, sheds light on the cognitive and cultural processes underlying the emergence of proto-writing.
comment: Accepted to CogSci 2025, published here with permission from organizers
♻ ☆ Figurative Archive: an open dataset and web-based application for the study of metaphor
Research on metaphor has steadily increased over the last decades, as this phenomenon opens a window into a range of linguistic and cognitive processes. At the same time, the demand for rigorously constructed and extensively normed experimental materials increased as well. Here, we present the Figurative Archive, an open database of 997 metaphors in Italian enriched with rating and corpus-based measures (from familiarity to concreteness), derived by collecting stimuli used across 11 studies. It includes both everyday and literary metaphors, varying in structure and semantic domains, and is validated based on correlations between familiarity and other measures. The archive has several aspects of novelty: it is increased in size compared to previous resources; it includes a measure of inclusiveness, to comply with recommendations for non-discriminatory language use; it is displayed in a web-based interface, with features for a customized consultation. We provide guidelines for using the archive as a source of material for studies investigating metaphor processing and the relationships between metaphor features in humans and computational models.
♻ ☆ Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework
The integration of experimental technologies with large language models (LLMs) is transforming scientific research. It positions AI as a versatile research assistant rather than a mere problem-solving tool. In the field of power systems, however, managing simulations -- one of the essential experimental technologies -- remains a challenge for LLMs due to their limited domain-specific knowledge, restricted reasoning capabilities, and imprecise handling of simulation parameters. To address these limitations, this paper proposes a feedback-driven, multi-agent framework. It incorporates three proposed modules: an enhanced retrieval-augmented generation (RAG) module, an improved reasoning module, and a dynamic environmental acting module with an error-feedback mechanism. Validated on 69 diverse tasks from Daline and MATPOWER, this framework achieves success rates of 93.13% and 96.85%, respectively. It significantly outperforms ChatGPT 4o, o1-preview, and the fine-tuned GPT-4o, which all achieved a success rate lower than 30% on complex tasks. Additionally, the proposed framework also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens. Overall, this adaptable framework lays a foundation for developing intelligent LLM-based assistants for human researchers, facilitating power system research and beyond.
comment: 15 pages
♻ ☆ Application of AI-based Models for Online Fraud Detection and Analysis
Fraud is a prevalent offence that extends beyond financial loss, causing psychological and physical harm to victims. The advancements in online communication technologies alowed for online fraud to thrive in this vast network, with fraudsters increasingly using these channels for deception. With the progression of technologies like AI, there is a growing concern that fraud will scale up, using sophisticated methods, like deep-fakes in phishing campaigns, all generated by language generation models like ChatGPT. However, the application of AI in detecting and analyzing online fraud remains understudied. We conduct a Systematic Literature Review on AI and NLP techniques for online fraud detection. The review adhered the PRISMA-ScR protocol, with eligibility criteria including relevance to online fraud, use of text data, and AI methodologies. We screened 2,457 academic records, 350 met our eligibility criteria, and included 223. We report the state-of-the-art NLP techniques for analysing various online fraud categories; the training data sources; the NLP algorithms and models built; and the performance metrics employed for model evaluation. We find that current research on online fraud is divided into various scam activitiesand identify 16 different frauds that researchers focus on. This SLR enhances the academic understanding of AI-based detection methods for online fraud and offers insights for policymakers, law enforcement, and businesses on safeguarding against such activities. We conclude that focusing on specific scams lacks generalization, as multiple models are required for different fraud types. The evolving nature of scams limits the effectiveness of models trained on outdated data. We also identify issues in data limitations, training bias reporting, and selective presentation of metrics in model performance reporting, which can lead to potential biases in model evaluation.
comment: Manuscript accepted in Crime Science Journal. Please cite accordingly
♻ ☆ Bridging the Visual Gap: Fine-Tuning Multimodal Models with Knowledge-Adapted Captions NAACL 2025
Recent research increasingly focuses on training vision-language models (VLMs) with long, detailed image captions. However, small-scale VLMs often struggle to balance the richness of these captions with the risk of hallucinating content during fine-tuning. In this paper, we explore how well VLMs adapt to such captions. To quantify caption quality, we propose Decomposed NLI (DNLI), an evaluation framework that breaks down generated captions into individual propositions, assessing each in isolation. This fine-grained analysis reveals a critical balance between capturing descriptive details and preventing hallucinations. Our findings show that simply reducing caption complexity or employing standard data curation techniques does not effectively resolve this issue. To tackle this challenge, we introduce Knowledge Adapted (KnowAda) fine-tuning, a data-centric approach that automatically adapts training data with the model's existing knowledge and visual understanding. KnowAda minimizes hallucinations while preserving high descriptiveness. We validate this approach across several small-scale VLMs (up to 7B parameters) and dense caption datasets, demonstrating that KnowAda effectively balances hallucination reduction and descriptiveness. Our results show that KnowAda outperforms various baselines in both automatic metrics and human evaluations. We will release our code and models.
comment: Accepted to NAACL 2025
Computation and Language
☆ xVerify: Efficient Answer Verifier for Reasoning Model Evaluations
With the release of the o1 model by OpenAI, reasoning models adopting slow thinking strategies have gradually emerged. As the responses generated by such models often include complex reasoning, intermediate steps, and self-reflection, existing evaluation methods are often inadequate. They struggle to determine whether the LLM output is truly equivalent to the reference answer, and also have difficulty identifying and extracting the final answer from long, complex responses. To address this issue, we propose xVerify, an efficient answer verifier for reasoning model evaluations. xVerify demonstrates strong capability in equivalence judgment, enabling it to effectively determine whether the answers produced by reasoning models are equivalent to reference answers across various types of objective questions. To train and evaluate xVerify, we construct the VAR dataset by collecting question-answer pairs generated by multiple LLMs across various datasets, leveraging multiple reasoning models and challenging evaluation sets designed specifically for reasoning model assessment. A multi-round annotation process is employed to ensure label accuracy. Based on the VAR dataset, we train multiple xVerify models of different scales. In evaluation experiments conducted on both the test set and generalization set, all xVerify models achieve overall F1 scores and accuracy exceeding 95\%. Notably, the smallest variant, xVerify-0.5B-I, outperforms all evaluation methods except GPT-4o, while xVerify-3B-Ib surpasses GPT-4o in overall performance. These results validate the effectiveness and generalizability of xVerify.
comment: 32 pages
☆ MIEB: Massive Image Embedding Benchmark
Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
☆ Multimodal Long Video Modeling Based on Temporal Dynamic Context
Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.
☆ LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
comment: 20 pages, 7 figures, 4 tables
☆ Can We Edit LLMs for Long-Tail Biomedical Knowledge?
Knowledge editing has emerged as an effective approach for updating large language models (LLMs) by modifying their internal knowledge. However, their application to the biomedical domain faces unique challenges due to the long-tailed distribution of biomedical knowledge, where rare and infrequent information is prevalent. In this paper, we conduct the first comprehensive study to investigate the effectiveness of knowledge editing methods for editing long-tail biomedical knowledge. Our results indicate that, while existing editing methods can enhance LLMs' performance on long-tail biomedical knowledge, their performance on long-tail knowledge remains inferior to that on high-frequency popular knowledge, even after editing. Our further analysis reveals that long-tail biomedical knowledge contains a significant amount of one-to-many knowledge, where one subject and relation link to multiple objects. This high prevalence of one-to-many knowledge limits the effectiveness of knowledge editing in improving LLMs' understanding of long-tail biomedical knowledge, highlighting the need for tailored strategies to bridge this performance gap.
☆ Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
☆ CliniChat: A Multi-Source Knowledge-Driven Framework for Clinical Interview Dialogue Reconstruction and Evaluation
Large language models (LLMs) hold great promise for assisting clinical interviews due to their fluent interactive capabilities and extensive medical knowledge. However, the lack of high-quality interview dialogue data and widely accepted evaluation methods has significantly impeded this process. So we propose CliniChat, a framework that integrates multi-source knowledge to enable LLMs to simulate real-world clinical interviews. It consists of two modules: Clini-Recon and Clini-Eval, each responsible for reconstructing and evaluating interview dialogues, respectively. By incorporating three sources of knowledge, Clini-Recon transforms clinical notes into systematic, professional, and empathetic interview dialogues. Clini-Eval combines a comprehensive evaluation metric system with a two-phase automatic evaluation approach, enabling LLMs to assess interview performance like experts. We contribute MedQA-Dialog, a high-quality synthetic interview dialogue dataset, and CliniChatGLM, a model specialized for clinical interviews. Experimental results demonstrate that CliniChatGLM's interview capabilities undergo a comprehensive upgrade, particularly in history-taking, achieving state-of-the-art performance.
☆ LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models
Scientific equation discovery is a fundamental task in the history of scientific progress, enabling the derivation of laws governing natural phenomena. Recently, Large Language Models (LLMs) have gained interest for this task due to their potential to leverage embedded scientific knowledge for hypothesis generation. However, evaluating the true discovery capabilities of these methods remains challenging, as existing benchmarks often rely on common equations that are susceptible to memorization by LLMs, leading to inflated performance metrics that do not reflect discovery. In this paper, we introduce LLM-SRBench, a comprehensive benchmark with 239 challenging problems across four scientific domains specifically designed to evaluate LLM-based scientific equation discovery methods while preventing trivial memorization. Our benchmark comprises two main categories: LSR-Transform, which transforms common physical models into less common mathematical representations to test reasoning beyond memorized forms, and LSR-Synth, which introduces synthetic, discovery-driven problems requiring data-driven reasoning. Through extensive evaluation of several state-of-the-art methods, using both open and closed LLMs, we find that the best-performing system so far achieves only 31.5% symbolic accuracy. These findings highlight the challenges of scientific equation discovery, positioning LLM-SRBench as a valuable resource for future research.
comment: Project page: https://github.com/deep-symbolic-mathematics/llm-srbench , Benchmark page: https://huggingface.co/datasets/nnheui/llm-srbench
☆ Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
comment: 21 pages, 6 figures, 4 tables. Acknowledgements: The authors acknowledge the support of the AITriage4SU Project (2024.07400.IACDC/2024), funded by the FCT (Foundation for Science and Technology), Portugal
☆ LLM-driven Constrained Copy Generation through Iterative Refinement
Crafting a marketing message (copy), or copywriting is a challenging generation task, as the copy must adhere to various constraints. Copy creation is inherently iterative for humans, starting with an initial draft followed by successive refinements. However, manual copy creation is time-consuming and expensive, resulting in only a few copies for each use case. This limitation restricts our ability to personalize content to customers. Contrary to the manual approach, LLMs can generate copies quickly, but the generated content does not consistently meet all the constraints on the first attempt (similar to humans). While recent studies have shown promise in improving constrained generation through iterative refinement, they have primarily addressed tasks with only a few simple constraints. Consequently, the effectiveness of iterative refinement for tasks such as copy generation, which involves many intricate constraints, remains unclear. To address this gap, we propose an LLM-based end-to-end framework for scalable copy generation using iterative refinement. To the best of our knowledge, this is the first study to address multiple challenging constraints simultaneously in copy generation. Examples of these constraints include length, topics, keywords, preferred lexical ordering, and tone of voice. We demonstrate the performance of our framework by creating copies for e-commerce banners for three different use cases of varying complexity. Our results show that iterative refinement increases the copy success rate by $16.25-35.91$% across use cases. Furthermore, the copies generated using our approach outperformed manually created content in multiple pilot studies using a multi-armed bandit framework. The winning copy improved the click-through rate by $38.5-45.21$%.
comment: 10 pages, 2 figures, 7 Tables
☆ A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
Combinatorial optimization problems are funda- mental for various fields ranging from finance to wireless net- works. This work presents a simulated bifurcation (SB) Ising solver in CMOS for NP-hard optimization problems. Analog domain computing led to a superior implementation of this algorithm as inherent and injected noise is required in SB Ising solvers. The architecture novelties include the use of SRAM compute-in-memory (CIM) to accelerate bifurcation as well as the generation and injection of optimal decaying noise in the analog domain. We propose a novel 10-T SRAM cell capable of performing ternary multiplication. When measured with 60- node, 50% density, random, binary MAXCUT graphs, this all- to-all connected Ising solver reliably achieves above 93% of the ground state solution in 0.6us with 10.8mW average power in TSMC 180nm CMOS. Our chip achieves an order of magnitude improvement in time-to-solution and power compared to previously proposed Ising solvers in CMOS and other platforms.
☆ S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models
We introduce S1-Bench, a novel benchmark designed to evaluate Large Reasoning Models' (LRMs) performance on simple tasks that favor intuitive system 1 thinking rather than deliberative system 2 reasoning. While LRMs have achieved significant breakthroughs in complex reasoning tasks through explicit chains of thought, their reliance on deep analytical thinking may limit their system 1 thinking capabilities. Moreover, a lack of benchmark currently exists to evaluate LRMs' performance in tasks that require such capabilities. To fill this gap, S1-Bench presents a set of simple, diverse, and naturally clear questions across multiple domains and languages, specifically designed to assess LRMs' performance in such tasks. Our comprehensive evaluation of 22 LRMs reveals significant lower efficiency tendencies, with outputs averaging 15.5 times longer than those of traditional small LLMs. Additionally, LRMs often identify correct answers early but continue unnecessary deliberation, with some models even producing numerous errors. These findings highlight the rigid reasoning patterns of current LRMs and underscore the substantial development needed to achieve balanced dual-system thinking capabilities that can adapt appropriately to task complexity.
comment: Work in Progress
☆ DICE: A Framework for Dimensional and Contextual Evaluation of Language Models
Language models (LMs) are increasingly being integrated into a wide range of applications, yet the modern evaluation paradigm does not sufficiently reflect how they are actually being used. Current evaluations rely on benchmarks that often lack direct applicability to the real-world contexts in which LMs are being deployed. To address this gap, we propose Dimensional and Contextual Evaluation (DICE), an approach that evaluates LMs on granular, context-dependent dimensions. In this position paper, we begin by examining the insufficiency of existing LM benchmarks, highlighting their limited applicability to real-world use cases. Next, we propose a set of granular evaluation parameters that capture dimensions of LM behavior that are more meaningful to stakeholders across a variety of application domains. Specifically, we introduce the concept of context-agnostic parameters - such as robustness, coherence, and epistemic honesty - and context-specific parameters that must be tailored to the specific contextual constraints and demands of stakeholders choosing to deploy LMs into a particular setting. We then discuss potential approaches to operationalize this evaluation framework, finishing with the opportunities and challenges DICE presents to the LM evaluation landscape. Ultimately, this work serves as a practical and approachable starting point for context-specific and stakeholder-relevant evaluation of LMs.
☆ MultiLoKo: a multilingual local knowledge benchmark for LLMs spanning 31 languages
We present MultiLoKo, a new benchmark for evaluating multilinguality in LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For comparison, we also release corresponding machine-authored translations. The data is equally distributed over two splits: a dev split and a blind, out-of-distribution test split. MultiLoKo can be used to study a variety of questions regarding the multilinguality of LLMs as well as meta-questions about multilingual benchmark creation. We compute MultiLoKo scores for 11 base and chat models marketed to be multilingual and study their average performance, their performance parity across languages, how much their ability to answer questions depends on the question language, and which languages are most difficult. None of the models we studied performs well on MultiLoKo, as indicated by low average scores as well as large differences between the best and worst scoring languages. Furthermore, we find a substantial effect of the question language, indicating sub-optimal knowledge transfer between languages. Lastly, we find that using local vs English-translated data can result in differences more than 20 points for the best performing models, drastically change the estimated difficulty of some languages. For using machines instead of human translations, we find a weaker effect on ordering of language difficulty, a larger difference in model rankings, and a substantial drop in estimated performance for all models.
☆ Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis ACM MM 2025
Recent zero-shot text-to-speech (TTS) systems face a common dilemma: autoregressive (AR) models suffer from slow generation and lack duration controllability, while non-autoregressive (NAR) models lack temporal modeling and typically require complex designs. In this paper, we introduce a novel pseudo-autoregressive (PAR) codec language modeling approach that unifies AR and NAR modeling. Combining explicit temporal modeling from AR with parallel generation from NAR, PAR generates dynamic-length spans at fixed time steps. Building on PAR, we propose PALLE, a two-stage TTS system that leverages PAR for initial generation followed by NAR refinement. In the first stage, PAR progressively generates speech tokens along the time dimension, with each step predicting all positions in parallel but only retaining the left-most span. In the second stage, low-confidence tokens are iteratively refined in parallel, leveraging the global contextual information. Experiments demonstrate that PALLE, trained on LibriTTS, outperforms state-of-the-art systems trained on large-scale data, including F5-TTS, E2-TTS, and MaskGCT, on the LibriSpeech test-clean set in terms of speech quality, speaker similarity, and intelligibility, while achieving up to ten times faster inference speed. Audio samples are available at https://anonymous-palle.github.io.
comment: Submitted to ACM MM 2025
☆ VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
comment: 56 pages, 43 figures
☆ Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings--extracted via an LLM-assisted annotation pipeline--serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
☆ MorphTok: Morphologically Grounded Tokenization for Indian Languages
Tokenization is a crucial step in NLP, especially with the rise of large language models (LLMs), impacting downstream performance, computational cost, and efficiency. Existing LLMs rely on the classical Byte-pair Encoding (BPE) algorithm for subword tokenization that greedily merges frequent character bigrams. This often leads to segmentation that does not align with linguistically meaningful units. To address this, we propose morphology-aware segmentation as a pre-tokenization step prior to applying BPE. To facilitate morphology-aware segmentation, we create a novel dataset for Hindi and Marathi, incorporating sandhi splitting to enhance the subword tokenization. Experiments on downstream tasks show that morphologically grounded tokenization improves performance for machine translation and language modeling. Additionally, to handle the ambiguity in the Unicode characters for diacritics, particularly dependent vowels in syllable-based writing systems, we introduce Constrained BPE (CBPE), an extension to the traditional BPE algorithm that incorporates script-specific constraints. Specifically, CBPE handles dependent vowels. Our results show that CBPE achieves a 1.68\% reduction in fertility scores while maintaining comparable or improved downstream performance in machine translation, offering a computationally efficient alternative to standard BPE. Moreover, to evaluate segmentation across different tokenization algorithms, we introduce a new human evaluation metric, \textit{EvalTok}, enabling more human-grounded assessment.
☆ Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
☆ RealHarm: A Collection of Real-World Language Model Application Failures
Language model deployments in consumer-facing applications introduce numerous risks. While existing research on harms and hazards of such applications follows top-down approaches derived from regulatory frameworks and theoretical analyses, empirical evidence of real-world failure modes remains underexplored. In this work, we introduce RealHarm, a dataset of annotated problematic interactions with AI agents built from a systematic review of publicly reported incidents. Analyzing harms, causes, and hazards specifically from the deployer's perspective, we find that reputational damage constitutes the predominant organizational harm, while misinformation emerges as the most common hazard category. We empirically evaluate state-of-the-art guardrails and content moderation systems to probe whether such systems would have prevented the incidents, revealing a significant gap in the protection of AI applications.
☆ MURR: Model Updating with Regularized Replay for Searching a Document Stream ECIR 2025
The Internet produces a continuous stream of new documents and user-generated queries. These naturally change over time based on events in the world and the evolution of language. Neural retrieval models that were trained once on a fixed set of query-document pairs will quickly start misrepresenting newly-created content and queries, leading to less effective retrieval. Traditional statistical sparse retrieval can update collection statistics to reflect these changes in the use of language in documents and queries. In contrast, continued fine-tuning of the language model underlying neural retrieval approaches such as DPR and ColBERT creates incompatibility with previously-encoded documents. Re-encoding and re-indexing all previously-processed documents can be costly. In this work, we explore updating a neural dual encoder retrieval model without reprocessing past documents in the stream. We propose MURR, a model updating strategy with regularized replay, to ensure the model can still faithfully search existing documents without reprocessing, while continuing to update the model for the latest topics. In our simulated streaming environments, we show that fine-tuning models using MURR leads to more effective and more consistent retrieval results than other strategies as the stream of documents and queries progresses.
comment: Published at ECIR 2025. 16 pages, 4 figures
☆ Probing then Editing Response Personality of Large Language Models
Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that exhibit consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in encoding personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly encode personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.
comment: Working in Progress
☆ DioR: Adaptive Cognitive Detection and Contextual Retrieval Optimization for Dynamic Retrieval-Augmented Generation
Dynamic Retrieval-augmented Generation (RAG) has shown great success in mitigating hallucinations in large language models (LLMs) during generation. However, existing dynamic RAG methods face significant limitations in two key aspects: 1) Lack of an effective mechanism to control retrieval triggers, and 2) Lack of effective scrutiny of retrieval content. To address these limitations, we propose an innovative dynamic RAG method, DioR (Adaptive Cognitive Detection and Contextual Retrieval Optimization), which consists of two main components: adaptive cognitive detection and contextual retrieval optimization, specifically designed to determine when retrieval is needed and what to retrieve for LLMs is useful. Experimental results demonstrate that DioR achieves superior performance on all tasks, demonstrating the effectiveness of our work.
comment: 24 pages, 9 figures
☆ Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
Just as humans display language patterns influenced by their native tongue when speaking new languages, LLMs often default to English-centric responses even when generating in other languages. Nevertheless, we observe that local cultural information persists within the models and can be readily activated for cultural customization. We first demonstrate that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses. We term the disparity in model performance with versus without explicit cultural context the explicit-implicit localization gap, indicating that while cultural knowledge exists within LLMs, it may not naturally surface in multilingual interactions if cultural context is not explicitly provided. Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes. Second, we identify an explicit cultural customization vector, conserved across all non-English languages we explore, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world. Steered responses retain the diversity of implicit prompting and reduce stereotypes to dramatically improve the potential for customization. We discuss the implications of explicit cultural customization for understanding the conservation of alternative cultural world models within LLMs, and their controllable utility for translation, cultural customization, and the possibility of making the explicit implicit through soft control for expanded LLM function and appeal.
☆ Deep Reasoning Translation via Reinforcement Learning
Recently, deep reasoning LLMs (e.g., OpenAI o1/o3 and DeepSeek-R1) have shown promising performance in various complex tasks. Free translation is an important and interesting task in the multilingual world, which requires going beyond word-for-word translation and taking cultural differences into account. This task is still under-explored in deep reasoning LLMs. In this paper, we introduce DeepTrans, a deep reasoning translation model that learns free translation via reinforcement learning. Specifically, we carefully build a reward model with pre-defined scoring criteria on both the translation results and the thought process. Given the source sentences, the reward model teaches the deep translation model how to think and free-translate them during reinforcement learning. In this way, training DeepTrans does not need any labeled translations, avoiding the human-intensive annotation or resource-intensive data synthesis. Experimental results show the effectiveness of DeepTrans. Using Qwen2.5-7B as the backbone, DeepTrans improves performance by 16.3% in literature translation, and outperforms strong deep reasoning baselines as well as baselines that are fine-tuned with synthesized data. Moreover, we summarize the failures and interesting findings during our RL exploration. We hope this work could inspire other researchers in free translation.
☆ LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.
☆ The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.
☆ HalluSearch at SemEval-2025 Task 3: A Search-Enhanced RAG Pipeline for Hallucination Detection
In this paper, we present HalluSearch, a multilingual pipeline designed to detect fabricated text spans in Large Language Model (LLM) outputs. Developed as part of Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, HalluSearch couples retrieval-augmented verification with fine-grained factual splitting to identify and localize hallucinations in fourteen different languages. Empirical evaluations show that HalluSearch performs competitively, placing fourth in both English (within the top ten percent) and Czech. While the system's retrieval-based strategy generally proves robust, it faces challenges in languages with limited online coverage, underscoring the need for further research to ensure consistent hallucination detection across diverse linguistic contexts.
☆ C-FAITH: A Chinese Fine-Grained Benchmark for Automated Hallucination Evaluation
Despite the rapid advancement of large language models, they remain highly susceptible to generating hallucinations, which significantly hinders their widespread application. Hallucination research requires dynamic and fine-grained evaluation. However, most existing hallucination benchmarks (especially in Chinese language) rely on human annotations, making automatical and cost-effective hallucination evaluation challenging. To address this, we introduce HaluAgent, an agentic framework that automatically constructs fine-grained QA dataset based on some knowledge documents. Our experiments demonstrate that the manually designed rules and prompt optimization can improve the quality of generated data. Using HaluAgent, we construct C-FAITH, a Chinese QA hallucination benchmark created from 1,399 knowledge documents obtained from web scraping, totaling 60,702 entries. We comprehensively evaluate 16 mainstream LLMs with our proposed C-FAITH, providing detailed experimental results and analysis.
☆ MT-R1-Zero: Advancing LLM-based Machine Translation via R1-Zero-like Reinforcement Learning
Large-scale reinforcement learning (RL) methods have proven highly effective in enhancing the reasoning abilities of large language models (LLMs), particularly for tasks with verifiable solutions such as mathematics and coding. However, applying this idea to machine translation (MT), where outputs are flexibly formatted and difficult to automatically evaluate with explicit rules, remains underexplored. In this work, we introduce MT-R1-Zero, the first open-source adaptation of the R1-Zero RL framework for MT without supervised fine-tuning or cold-start. We propose a rule-metric mixed reward mechanism to guide LLMs towards improved translation quality via emergent reasoning. On the WMT 24 English-Chinese benchmark, our MT-R1-Zero-3B-Mix achieves competitive performance, surpassing TowerInstruct-7B-v0.2 by an average of 1.26 points. Meanwhile, our MT-R1-Zero-7B-Mix attains a high average score of 62.25 across all metrics, placing it on par with advanced proprietary models such as GPT-4o and Claude-3.5-Sonnet, while the MT-R1-Zero-7B-Sem variant achieves state-of-the-art scores on semantic metrics. Moreover, our work exhibits strong generalization capabilities on out-of-distribution MT tasks, robustly supporting multilingual and low-resource settings. Extensive analysis of model behavior across different initializations and reward metrics offers pioneering insight into the critical role of reward design, LLM adaptability, training dynamics, and emergent reasoning patterns within the R1-Zero paradigm for MT. Our code is available at https://github.com/fzp0424/MT-R1-Zero.
comment: Work in progress. Our code is available at https://github.com/fzp0424/MT-R1-Zero
☆ SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
comment: work in progress
☆ Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
☆ CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
☆ RealSafe-R1: Safety-Aligned DeepSeek-R1 without Compromising Reasoning Capability
Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have been rapidly progressing and achieving breakthrough performance on complex reasoning tasks such as mathematics and coding. However, the open-source R1 models have raised safety concerns in wide applications, such as the tendency to comply with malicious queries, which greatly impacts the utility of these powerful models in their applications. In this paper, we introduce RealSafe-R1 as safety-aligned versions of DeepSeek-R1 distilled models. To train these models, we construct a dataset of 15k safety-aware reasoning trajectories generated by DeepSeek-R1, under explicit instructions for expected refusal behavior. Both quantitative experiments and qualitative case studies demonstrate the models' improvements, which are shown in their safety guardrails against both harmful queries and jailbreak attacks. Importantly, unlike prior safety alignment efforts that often compromise reasoning performance, our method preserves the models' reasoning capabilities by maintaining the training data within the original distribution of generation. Model weights of RealSafe-R1 are open-source at https://huggingface.co/RealSafe.
☆ Towards Quantifying Commonsense Reasoning with Mechanistic Insights NAACL 2025
Commonsense reasoning deals with the implicit knowledge that is well understood by humans and typically acquired via interactions with the world. In recent times, commonsense reasoning and understanding of various LLMs have been evaluated using text-based tasks. In this work, we argue that a proxy of this understanding can be maintained as a graphical structure that can further help to perform a rigorous evaluation of commonsense reasoning abilities about various real-world activities. We create an annotation scheme for capturing this implicit knowledge in the form of a graphical structure for 37 daily human activities. We find that the created resource can be used to frame an enormous number of commonsense queries (~ 10^{17}), facilitating rigorous evaluation of commonsense reasoning in LLMs. Moreover, recently, the remarkable performance of LLMs has raised questions about whether these models are truly capable of reasoning in the wild and, in general, how reasoning occurs inside these models. In this resource paper, we bridge this gap by proposing design mechanisms that facilitate research in a similar direction. Our findings suggest that the reasoning components are localized in LLMs that play a prominent role in decision-making when prompted with a commonsense query.
comment: Accepted at NAACL 2025; 28 pages (9 pages + 7 pages references + 12 pages appendix)
☆ Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose $\mathbf{Mavors}$, a novel framework that introduces $\mathbf{M}$ulti-gr$\mathbf{a}$nularity $\mathbf{v}$ide$\mathbf{o}$ $\mathbf{r}$epre$\mathbf{s}$entation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
comment: 22 pages
☆ A Computational Cognitive Model for Processing Repetitions of Hierarchical Relations
Patterns are fundamental to human cognition, enabling the recognition of structure and regularity across diverse domains. In this work, we focus on structural repeats, patterns that arise from the repetition of hierarchical relations within sequential data, and develop a candidate computational model of how humans detect and understand such structural repeats. Based on a weighted deduction system, our model infers the minimal generative process of a given sequence in the form of a Template program, a formalism that enriches the context-free grammar with repetition combinators. Such representation efficiently encodes the repetition of sub-computations in a recursive manner. As a proof of concept, we demonstrate the expressiveness of our model on short sequences from music and action planning. The proposed model offers broader insights into the mental representations and cognitive mechanisms underlying human pattern recognition.
☆ Hallucination Detection in LLMs via Topological Divergence on Attention Graphs
Hallucination, i.e., generating factually incorrect content, remains a critical challenge for large language models (LLMs). We introduce TOHA, a TOpology-based HAllucination detector in the RAG setting, which leverages a topological divergence metric to quantify the structural properties of graphs induced by attention matrices. Examining the topological divergence between prompt and response subgraphs reveals consistent patterns: higher divergence values in specific attention heads correlate with hallucinated outputs, independent of the dataset. Extensive experiments, including evaluation on question answering and data-to-text tasks, show that our approach achieves state-of-the-art or competitive results on several benchmarks, two of which were annotated by us and are being publicly released to facilitate further research. Beyond its strong in-domain performance, TOHA maintains remarkable domain transferability across multiple open-source LLMs. Our findings suggest that analyzing the topological structure of attention matrices can serve as an efficient and robust indicator of factual reliability in LLMs.
☆ Joint Action Language Modelling for Transparent Policy Execution
An agent's intention often remains hidden behind the black-box nature of embodied policies. Communication using natural language statements that describe the next action can provide transparency towards the agent's behavior. We aim to insert transparent behavior directly into the learning process, by transforming the problem of policy learning into a language generation problem and combining it with traditional autoregressive modelling. The resulting model produces transparent natural language statements followed by tokens representing the specific actions to solve long-horizon tasks in the Language-Table environment. Following previous work, the model is able to learn to produce a policy represented by special discretized tokens in an autoregressive manner. We place special emphasis on investigating the relationship between predicting actions and producing high-quality language for a transparent agent. We find that in many cases both the quality of the action trajectory and the transparent statement increase when they are generated simultaneously.
☆ Summarization of Multimodal Presentations with Vision-Language Models: Study of the Effect of Modalities and Structure
Vision-Language Models (VLMs) can process visual and textual information in multiple formats: texts, images, interleaved texts and images, or even hour-long videos. In this work, we conduct fine-grained quantitative and qualitative analyses of automatic summarization of multimodal presentations using VLMs with various representations as input. From these experiments, we suggest cost-effective strategies for generating summaries from text-heavy multimodal documents under different input-length budgets using VLMs. We show that slides extracted from the video stream can be beneficially used as input against the raw video, and that a structured representation from interleaved slides and transcript provides the best performance. Finally, we reflect and comment on the nature of cross-modal interactions in multimodal presentations and share suggestions to improve the capabilities of VLMs to understand documents of this nature.
☆ DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics through Extract-Reason-Verify
Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.
☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
☆ Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? CVPR 2025
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited. Typically, current open-source MLLMs rely on the alignment inherited from their language module to avoid harmful generations. However, the lack of safety measures specifically designed for multi-modal inputs creates an alignment gap, leaving MLLMs vulnerable to vision-domain attacks such as typographic manipulation. Current methods utilize a carefully designed safety dataset to enhance model defense capability, while the specific knowledge or patterns acquired from the high-quality dataset remain unclear. Through comparison experiments, we find that the alignment gap primarily arises from data distribution biases, while image content, response quality, or the contrastive behavior of the dataset makes little contribution to boosting multi-modal safety. To further investigate this and identify the key factors in improving MLLM safety, we propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences. Experiments show that, without the need for labor-intensive collection of high-quality malicious data, model safety can still be significantly improved, as long as a specific fraction of rejection data exists in the finetuning set, indicating the security alignment is not lost but rather obscured during multi-modal pretraining or instruction finetuning. Simply correcting the underlying data bias could narrow the safety gap in the vision domain.
comment: Accepted to CVPR 2025, codes in process
☆ Turn-taking annotation for quantitative and qualitative analyses of conversation
This paper has two goals. First, we present the turn-taking annotation layers created for 95 minutes of conversational speech of the Graz Corpus of Read and Spontaneous Speech (GRASS), available to the scientific community. Second, we describe the annotation system and the annotation process in more detail, so other researchers may use it for their own conversational data. The annotation system was developed with an interdisciplinary application in mind. It should be based on sequential criteria according to Conversation Analysis, suitable for subsequent phonetic analysis, thus time-aligned annotations were made Praat, and it should be suitable for automatic classification, which required the continuous annotation of speech and a label inventory that is not too large and results in a high inter-rater agreement. Turn-taking was annotated on two layers, Inter-Pausal Units (IPU) and points of potential completion (PCOMP; similar to transition relevance places). We provide a detailed description of the annotation process and of segmentation and labelling criteria. A detailed analysis of inter-rater agreement and common confusions shows that agreement for IPU annotation is near-perfect, that agreement for PCOMP annotations is substantial, and that disagreements often are either partial or can be explained by a different analysis of a sequence which also has merit. The annotation system can be applied to a variety of conversational data for linguistic studies and technological applications, and we hope that the annotations, as well as the annotation system will contribute to a stronger cross-fertilization between these disciplines.
comment: 41 pages
☆ C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset WWW2025
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
☆ Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
☆ KeepKV: Eliminating Output Perturbation in KV Cache Compression for Efficient LLMs Inference
Efficient inference of large language models (LLMs) is hindered by an ever-growing key-value (KV) cache, making KV cache compression a critical research direction. Traditional methods selectively evict less important KV cache entries based on attention scores or position heuristics, which leads to information loss and hallucinations. Recently, merging-based strategies have been explored to retain more information by merging KV pairs that would be discarded; however, these existing approaches inevitably introduce inconsistencies in attention distributions before and after merging, causing output perturbation and degraded generation quality. To overcome this challenge, we propose KeepKV, a novel adaptive KV cache merging method designed to eliminate output perturbation while preserving performance under strict memory constraints. KeepKV introduces the Electoral Votes mechanism that records merging history and adaptively adjusts attention scores. Moreover, it further leverages a novel Zero Inference-Perturbation Merging methods, keeping attention consistency and compensating for attention loss resulting from cache merging. KeepKV successfully retains essential context information within a significantly compressed cache. Extensive experiments on various benchmarks and LLM architectures demonstrate that KeepKV substantially reduces memory usage, enhances inference throughput by more than 2x and keeps superior generation quality even with 10% KV cache budgets.
comment: 18 pages, 8 figures
☆ Guiding Reasoning in Small Language Models with LLM Assistance
The limited reasoning capabilities of small language models (SLMs) cast doubt on their suitability for tasks demanding deep, multi-step logical deduction. This paper introduces a framework called Small Reasons, Large Hints (SMART), which selectively augments SLM reasoning with targeted guidance from large language models (LLMs). Inspired by the concept of cognitive scaffolding, SMART employs a score-based evaluation to identify uncertain reasoning steps and injects corrective LLM-generated reasoning only when necessary. By framing structured reasoning as an optimal policy search, our approach steers the reasoning trajectory toward correct solutions without exhaustive sampling. Our experiments on mathematical reasoning datasets demonstrate that targeted external scaffolding significantly improves performance, paving the way for collaborative use of both SLM and LLM to tackle complex reasoning tasks that are currently unsolvable by SLMs alone.
comment: 20 pages, 10 figures, 11 tables
☆ Learning to Erase Private Knowledge from Multi-Documents for Retrieval-Augmented Large Language Models
Retrieval-Augmented Generation (RAG) is a promising technique for applying LLMs to proprietary domains. However, retrieved documents may contain sensitive knowledge, posing risks of privacy leakage in generative results. Thus, effectively erasing private information from retrieved documents is a key challenge for RAG. Unlike traditional text anonymization, RAG should consider: (1) the inherent multi-document reasoning may face de-anonymization attacks; (2) private knowledge varies by scenarios, so users should be allowed to customize which information to erase; (3) preserving sufficient publicly available knowledge for generation tasks. This paper introduces the privacy erasure task for RAG and proposes Eraser4RAG, a private knowledge eraser which effectively removes user-defined private knowledge from documents while preserving sufficient public knowledge for generation. Specifically, we first construct a global knowledge graph to identify potential knowledge across documents, aiming to defend against de-anonymization attacks. Then we randomly split it into private and public sub-graphs, and fine-tune Flan-T5 to rewrite the retrieved documents excluding private triples. Finally, PPO algorithm optimizes the rewriting model to minimize private triples and maximize public triples retention. Experiments on four QA datasets demonstrate that Eraser4RAG achieves superior erase performance than GPT-4o.
☆ Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications
In recent developments, deep learning methodologies applied to Natural Language Processing (NLP) have revealed a paradox: They improve performance but demand considerable data and resources for their training. Alternatively, quantum computing exploits the principles of quantum mechanics to overcome the computational limitations of current methodologies, thereby establishing an emerging field known as quantum natural language processing (QNLP). This domain holds the potential to attain a quantum advantage in the processing of linguistic structures, surpassing classical models in both efficiency and accuracy. In this paper, it is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches. This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area, embracing quantum encoding techniques for classical data, QNLP models for prevalent NLP tasks, and quantum optimisation techniques for hyper parameter tuning. The landscape of quantum computing approaches applied to various NLP tasks is summarised by showcasing the specific QNLP methods used, and the popularity of these methods is indicated by their count. From the findings, it is observed that QNLP approaches are still limited to small data sets, with only a few models explored extensively, and there is increasing interest in the application of quantum computing to natural language processing tasks.
☆ Refining Financial Consumer Complaints through Multi-Scale Model Interaction
Legal writing demands clarity, formality, and domain-specific precision-qualities often lacking in documents authored by individuals without legal training. To bridge this gap, this paper explores the task of legal text refinement that transforms informal, conversational inputs into persuasive legal arguments. We introduce FinDR, a Chinese dataset of financial dispute records, annotated with official judgments on claim reasonableness. Our proposed method, Multi-Scale Model Interaction (MSMI), leverages a lightweight classifier to evaluate outputs and guide iterative refinement by Large Language Models (LLMs). Experimental results demonstrate that MSMI significantly outperforms single-pass prompting strategies. Additionally, we validate the generalizability of MSMI on several short-text benchmarks, showing improved adversarial robustness. Our findings reveal the potential of multi-model collaboration for enhancing legal document generation and broader text refinement tasks.
☆ TWSSenti: A Novel Hybrid Framework for Topic-Wise Sentiment Analysis on Social Media Using Transformer Models
Sentiment analysis is a crucial task in natural language processing (NLP) that enables the extraction of meaningful insights from textual data, particularly from dynamic platforms like Twitter and IMDB. This study explores a hybrid framework combining transformer-based models, specifically BERT, GPT-2, RoBERTa, XLNet, and DistilBERT, to improve sentiment classification accuracy and robustness. The framework addresses challenges such as noisy data, contextual ambiguity, and generalization across diverse datasets by leveraging the unique strengths of these models. BERT captures bidirectional context, GPT-2 enhances generative capabilities, RoBERTa optimizes contextual understanding with larger corpora and dynamic masking, XLNet models dependency through permutation-based learning, and DistilBERT offers efficiency with reduced computational overhead while maintaining high accuracy. We demonstrate text cleaning, tokenization, and feature extraction using Term Frequency Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), ensure high-quality input data for the models. The hybrid approach was evaluated on benchmark datasets Sentiment140 and IMDB, achieving superior accuracy rates of 94\% and 95\%, respectively, outperforming standalone models. The results validate the effectiveness of combining multiple transformer models in ensemble-like setups to address the limitations of individual architectures. This research highlights its applicability to real-world tasks such as social media monitoring, customer sentiment analysis, and public opinion tracking which offers a pathway for future advancements in hybrid NLP frameworks.
comment: 41 pages, 12 figures, includes algorithm and comparative tables
☆ Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In various alignment scenarios, such as general human preference, safety, and confidence alignment, binary preference data collection and reward modeling are resource-intensive but necessary for human preference transferring. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function for LLM alignment. Using similarity as a reward circumvents training reward models, and collecting a single reference answer potentially costs less time than constructing binary preference pairs when multiple candidates are available. Specifically, we develop \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm, which is free of reference and reward models. Instead, RefAlign utilizes BERTScore between sampled generations and high-quality reference answers as the surrogate reward. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, {RefAlign} demonstrates comparable performance to previous alignment methods while offering high efficiency.
comment: work in progress
☆ Investigating Syntactic Biases in Multilingual Transformers with RC Attachment Ambiguities in Italian and English
This paper leverages past sentence processing studies to investigate whether monolingual and multilingual LLMs show human-like preferences when presented with examples of relative clause attachment ambiguities in Italian and English. Furthermore, we test whether these preferences can be modulated by lexical factors (the type of verb/noun in the matrix clause) which have been shown to be tied to subtle constraints on syntactic and semantic relations. Our results overall showcase how LLM behavior varies interestingly across models, but also general failings of these models in correctly capturing human-like preferences. In light of these results, we argue that RC attachment is the ideal benchmark for cross-linguistic investigations of LLMs' linguistic knowledge and biases.
☆ PASS-FC: Progressive and Adaptive Search Scheme for Fact Checking of Comprehensive Claims
Automated fact-checking faces challenges in handling complex real-world claims. We present PASS-FC, a novel framework that addresses these issues through claim augmentation, adaptive question generation, and iterative verification. PASS-FC enhances atomic claims with temporal and entity context, employs advanced search techniques, and utilizes a reflection mechanism. We evaluate PASS-FC on six diverse datasets, demonstrating superior performance across general knowledge, scientific, real-world, and multilingual fact-checking tasks. Our framework often surpasses stronger baseline models. Hyperparameter analysis reveals optimal settings for evidence quantity and reflection label triggers, while ablation studies highlight the importance of claim augmentation and language-specific adaptations. PASS-FC's performance underscores its effectiveness in improving fact-checking accuracy and adaptability across various domains. We will open-source our code and experimental results to facilitate further research in this area.
☆ Reasoning Models Can Be Effective Without Thinking
Recent LLMs have significantly improved reasoning capabilities, primarily by including an explicit, lengthy Thinking process as part of generation. In this paper, we question whether this explicit thinking is necessary. Using the state-of-the-art DeepSeek-R1-Distill-Qwen, we find that bypassing the thinking process via simple prompting, denoted as NoThinking, can be surprisingly effective. When controlling for the number of tokens, NoThinking outperforms Thinking across a diverse set of seven challenging reasoning datasets--including mathematical problem solving, formal theorem proving, and coding--especially in low-budget settings, e.g., 51.3 vs. 28.9 on ACM 23 with 700 tokens. Notably, the performance of NoThinking becomes more competitive with pass@k as k increases. Building on this observation, we demonstrate that a parallel scaling approach that uses NoThinking to generate N outputs independently and aggregates them is highly effective. For aggregation, we use task-specific verifiers when available, or we apply simple best-of-N strategies such as confidence-based selection. Our method outperforms a range of baselines with similar latency using Thinking, and is comparable to Thinking with significantly longer latency (up to 9x). Together, our research encourages a reconsideration of the necessity of lengthy thinking processes, while also establishing a competitive reference for achieving strong reasoning performance in low-budget settings or at low latency using parallel scaling.
comment: 33 pages, 7 main figures, 2 tables
☆ A Survey of Large Language Model-Powered Spatial Intelligence Across Scales: Advances in Embodied Agents, Smart Cities, and Earth Science
Over the past year, the development of large language models (LLMs) has brought spatial intelligence into focus, with much attention on vision-based embodied intelligence. However, spatial intelligence spans a broader range of disciplines and scales, from navigation and urban planning to remote sensing and earth science. What are the differences and connections between spatial intelligence across these fields? In this paper, we first review human spatial cognition and its implications for spatial intelligence in LLMs. We then examine spatial memory, knowledge representations, and abstract reasoning in LLMs, highlighting their roles and connections. Finally, we analyze spatial intelligence across scales -- from embodied to urban and global levels -- following a framework that progresses from spatial memory and understanding to spatial reasoning and intelligence. Through this survey, we aim to provide insights into interdisciplinary spatial intelligence research and inspire future studies.
☆ Abacus-SQL: A Text-to-SQL System Empowering Cross-Domain and Open-Domain Database Retrieval
The existing text-to-SQL systems have made significant progress in SQL query generation, but they still face numerous challenges. Existing systems often lack retrieval capabilities for open-domain databases, requiring users to manually filter relevant databases. Additionally, their cross-domain transferability is limited, making it challenging to accommodate diverse query requirements. To address these issues, we propose Abacus-SQL. Abacus-SQL utilizes database retrieval technology to accurately locate the required databases in an open-domain database environment. It also enhances the system cross-domain transfer ability through data augmentation methods. Moreover, Abacus-SQL employs Pre-SQL and Self-debug methods, thereby enhancing the accuracy of SQL queries. Experimental results demonstrate that Abacus-SQL performs excellently in multi-turn text-to-SQL tasks, effectively validating the approach's effectiveness. Abacus-SQL is publicly accessible at https://huozi.8wss.com/abacus-sql/.
comment: 11 pages, 3figures
☆ Transferable text data distillation by trajectory matching
In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
☆ Augmented Relevance Datasets with Fine-Tuned Small LLMs WSDM '25
Building high-quality datasets and labeling query-document relevance are essential yet resource-intensive tasks, requiring detailed guidelines and substantial effort from human annotators. This paper explores the use of small, fine-tuned large language models (LLMs) to automate relevance assessment, with a focus on improving ranking models' performance by augmenting their training dataset. We fine-tuned small LLMs to enhance relevance assessments, thereby improving dataset creation quality for downstream ranking model training. Our experiments demonstrate that these fine-tuned small LLMs not only outperform certain closed source models on our dataset but also lead to substantial improvements in ranking model performance. These results highlight the potential of leveraging small LLMs for efficient and scalable dataset augmentation, providing a practical solution for search engine optimization.
comment: 10 pages, 3 figures, and 6 tables. Accepted and presented to LLM4EVAL at WSDM '25
☆ Training Small Reasoning LLMs with Cognitive Preference Alignment
The reasoning capabilities of large language models (LLMs), such as OpenAI's o1 and DeepSeek-R1, have seen substantial advancements through deep thinking. However, these enhancements come with significant resource demands, underscoring the need to explore strategies to train effective reasoning LLMs with far fewer parameters. A critical challenge is that smaller models have different capacities and cognitive trajectories than their larger counterparts. Hence, direct distillation of chain-of-thought (CoT) results from large LLMs to smaller ones can be sometimes ineffective and requires a huge amount of annotated data. In this paper, we introduce a novel framework called Critique-Rethink-Verify (CRV), designed for training smaller yet powerful reasoning LLMs. Our CRV framework consists of multiple LLM agents, each specializing in unique abilities: (i) critiquing the CoTs according to the cognitive capabilities of smaller models, (ii) rethinking and refining these CoTs based on the critiques, and (iii) verifying the correctness of the refined results. We further propose the cognitive preference optimization (CogPO) algorithm to enhance the reasoning abilities of smaller models by aligning thoughts of these models with their cognitive capacities. Comprehensive evaluations on challenging reasoning benchmarks demonstrate the efficacy of CRV and CogPO, which outperforms other training methods by a large margin.
☆ VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents CVPR 2025
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
comment: Accepted by CVPR 2025; project page: https://vdocrag.github.io
☆ Reasoning Court: Combining Reasoning, Action, and Judgment for Multi-Hop Reasoning
While large language models (LLMs) have demonstrated strong capabilities in tasks like question answering and fact verification, they continue to suffer from hallucinations and reasoning errors, especially in multi-hop tasks that require integration of multiple information sources. Current methods address these issues through retrieval-based techniques (grounding reasoning in external evidence), reasoning-based approaches (enhancing coherence via improved prompting), or hybrid strategies combining both elements. One prominent hybrid method, ReAct, has outperformed purely retrieval-based or reasoning-based approaches; however, it lacks internal verification of intermediate reasoning steps, allowing potential errors to propagate through complex reasoning tasks. In this paper, we introduce Reasoning Court (RC), a novel framework that extends iterative reasoning-and-retrieval methods, such as ReAct, with a dedicated LLM judge. Unlike ReAct, RC employs this judge to independently evaluate multiple candidate answers and their associated reasoning generated by separate LLM agents. The judge is asked to select the answer that it considers the most factually grounded and logically coherent based on the presented reasoning and evidence, or synthesizes a new answer using available evidence and its pre-trained knowledge if all candidates are inadequate, flawed, or invalid. Evaluations on multi-hop benchmarks (HotpotQA, MuSiQue) and fact-verification (FEVER) demonstrate that RC consistently outperforms state-of-the-art few-shot prompting methods without task-specific fine-tuning.
☆ Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
comment: Project Page: https://zaidkhan.me/EFAGen/
☆ How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients
As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.
☆ CleanMAP: Distilling Multimodal LLMs for Confidence-Driven Crowdsourced HD Map Updates CVPR
The rapid growth of intelligent connected vehicles (ICVs) and integrated vehicle-road-cloud systems has increased the demand for accurate, real-time HD map updates. However, ensuring map reliability remains challenging due to inconsistencies in crowdsourced data, which suffer from motion blur, lighting variations, adverse weather, and lane marking degradation. This paper introduces CleanMAP, a Multimodal Large Language Model (MLLM)-based distillation framework designed to filter and refine crowdsourced data for high-confidence HD map updates. CleanMAP leverages an MLLM-driven lane visibility scoring model that systematically quantifies key visual parameters, assigning confidence scores (0-10) based on their impact on lane detection. A novel dynamic piecewise confidence-scoring function adapts scores based on lane visibility, ensuring strong alignment with human evaluations while effectively filtering unreliable data. To further optimize map accuracy, a confidence-driven local map fusion strategy ranks and selects the top-k highest-scoring local maps within an optimal confidence range (best score minus 10%), striking a balance between data quality and quantity. Experimental evaluations on a real-world autonomous vehicle dataset validate CleanMAP's effectiveness, demonstrating that fusing the top three local maps achieves the lowest mean map update error of 0.28m, outperforming the baseline (0.37m) and meeting stringent accuracy thresholds (<= 0.32m). Further validation with real-vehicle data confirms 84.88% alignment with human evaluators, reinforcing the model's robustness and reliability. This work establishes CleanMAP as a scalable and deployable solution for crowdsourced HD map updates, ensuring more precise and reliable autonomous navigation. The code will be available at https://Ankit-Zefan.github.io/CleanMap/
comment: Kun Jiang, Mengmeng Yang and Diange Yang are Corresponding Author. The main paper and supplementary material are both included here, total 23 pages (main paper is 10 pages and supplementary material is 13 pages), total 17 figures (6 figures in main paper and 11 figures in supplementary material), this paper is Accepted to CVPR WDFM-AD Workshop 2025, The code will be available at https://Ankit-Zefan.github.io/CleanMap/
☆ HELIOS: Adaptive Model And Early-Exit Selection for Efficient LLM Inference Serving
Deploying large language models (LLMs) presents critical challenges due to the inherent trade-offs associated with key performance metrics, such as latency, accuracy, and throughput. Typically, gains in one metric is accompanied with degradation in others. Early-Exit LLMs (EE-LLMs) efficiently navigate this trade-off space by skipping some of the later model layers when it confidently finds an output token early, thus reducing latency without impacting accuracy. However, as the early exits taken depend on the task and are unknown apriori to request processing, EE-LLMs conservatively load the entire model, limiting resource savings and throughput. Also, current frameworks statically select a model for a user task, limiting our ability to adapt to changing nature of the input queries. We propose HELIOS to address these challenges. First, HELIOS shortlists a set of candidate LLMs, evaluates them using a subset of prompts, gathering telemetry data in real-time. Second, HELIOS uses the early exit data from these evaluations to greedily load the selected model only up to a limited number of layers. This approach yields memory savings which enables us to process more requests at the same time, thereby improving throughput. Third, HELIOS monitors and periodically reassesses the performance of the candidate LLMs and if needed, switches to another model that can service incoming queries more efficiently (such as using fewer layers without lowering accuracy). Our evaluations show that HELIOS achieves 1.48$\times$ throughput, 1.10$\times$ energy-efficiency, 1.39$\times$ lower response time, and 3.7$\times$ improvements in inference batch sizes compared to the baseline, when optimizing for the respective service level objectives.
☆ EMAFusion: A Self-Optimizing System for Seamless LLM Selection and Integration
While recent advances in large language models (LLMs) have significantly enhanced performance across diverse natural language tasks, the high computational and financial costs associated with their deployment remain substantial barriers. Existing routing strategies partially alleviate this challenge by assigning queries to cheaper or specialized models, but they frequently rely on extensive labeled data or fragile task-specific heuristics. Conversely, fusion techniques aggregate multiple LLM outputs to boost accuracy and robustness, yet they often exacerbate cost and may reinforce shared biases. We introduce EMAFusion, a new framework that self-optimizes for seamless LLM selection and reliable execution for a given query. Specifically, EMAFusion integrates a taxonomy-based router for familiar query types, a learned router for ambiguous inputs, and a cascading approach that progressively escalates from cheaper to more expensive models based on multi-judge confidence evaluations. Through extensive evaluations, we find EMAFusion outperforms the best individual models by over 2.6 percentage points (94.3% vs. 91.7%), while being 4X cheaper than the average cost. EMAFusion further achieves a remarkable 17.1 percentage point improvement over models like GPT-4 at less than 1/20th the cost. Our combined routing approach delivers 94.3% accuracy compared to taxonomy-based (88.1%) and learned model predictor-based (91.7%) methods alone, demonstrating the effectiveness of our unified strategy. Finally, EMAFusion supports flexible cost-accuracy trade-offs, allowing users to balance their budgetary constraints and performance needs.
☆ Keyword Extraction, and Aspect Classification in Sinhala, English, and Code-Mixed Content
Brand reputation in the banking sector is maintained through insightful analysis of customer opinion on code-mixed and multilingual content. Conventional NLP models misclassify or ignore code-mixed text, when mix with low resource languages such as Sinhala-English and fail to capture domain-specific knowledge. This study introduces a hybrid NLP method to improve keyword extraction, content filtering, and aspect-based classification of banking content. Keyword extraction in English is performed with a hybrid approach comprising a fine-tuned SpaCy NER model, FinBERT-based KeyBERT embeddings, YAKE, and EmbedRank, which results in a combined accuracy of 91.2%. Code-mixed and Sinhala keywords are extracted using a fine-tuned XLM-RoBERTa model integrated with a domain-specific Sinhala financial vocabulary, and it results in an accuracy of 87.4%. To ensure data quality, irrelevant comment filtering was performed using several models, with the BERT-base-uncased model achieving 85.2% for English and XLM-RoBERTa 88.1% for Sinhala, which was better than GPT-4o, SVM, and keyword-based filtering. Aspect classification followed the same pattern, with the BERT-base-uncased model achieving 87.4% for English and XLM-RoBERTa 85.9% for Sinhala, both exceeding GPT-4 and keyword-based approaches. These findings confirm that fine-tuned transformer models outperform traditional methods in multilingual financial text analysis. The present framework offers an accurate and scalable solution for brand reputation monitoring in code-mixed and low-resource banking environments.
comment: 6 Pages, 2 figures, 7 Tables
☆ Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
☆ LITERA: An LLM Based Approach to Latin-to-English Translation NAACL
This paper introduces an LLM-based Latin-to-English translation platform designed to address the challenges of translating Latin texts. We named the model LITERA, which stands for Latin Interpretation and Translations into English for Research Assistance. Through a multi-layered translation process utilizing a fine-tuned version of GPT-4o-mini and GPT-4o, LITERA offers an unprecedented level of accuracy, showcased by greatly improved BLEU scores, particularly in classical Latin, along with improved BLEURT scores. The development of LITERA involved close collaboration with Duke University's Classical Studies Department, which was instrumental in creating a small, high-quality parallel Latin-English dataset. This paper details the architecture, fine-tuning methodology, and prompting strategies used in LITERA, emphasizing its ability to produce literal translations.
comment: NAACL Findings
☆ Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices
The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.
comment: 5 pages, 0 figures, International Workshop on Spoken Dialogue Systems Technology (IWSDS) 2025
☆ Improving In-Context Learning with Reasoning Distillation
Language models rely on semantic priors to perform in-context learning, which leads to poor performance on tasks involving inductive reasoning. Instruction-tuning methods based on imitation learning can superficially enhance the in-context learning performance of language models, but they often fail to improve the model's understanding of the underlying rules that connect inputs and outputs in few-shot demonstrations. We propose ReDis, a reasoning distillation technique designed to improve the inductive reasoning capabilities of language models. Through a careful combination of data augmentation, filtering, supervised fine-tuning, and alignment, ReDis achieves significant performance improvements across a diverse range of tasks, including 1D-ARC, List Function, ACRE, and MiniSCAN. Experiments on three language model backbones show that ReDis outperforms equivalent few-shot prompting baselines across all tasks and even surpasses the teacher model, GPT-4o, in some cases. ReDis, based on the LLaMA-3 backbone, achieves relative improvements of 23.2%, 2.8%, and 66.6% over GPT-4o on 1D-ARC, ACRE, and MiniSCAN, respectively, within a similar hypothesis search space. The code, dataset, and model checkpoints will be made available at https://github.com/NafisSadeq/reasoning-distillation.git.
☆ Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning
Large language models (LLMs) have demonstrated remarkable reasoning capabilities when prompted with strategies such as Chain-of-Thought (CoT). However, these approaches focus on token-level output without considering internal weight dynamics. We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways. Unlike existing methods, WoT explores the weight space through graph-based message passing, multi-step reasoning processes, and attention mechanisms. Our implementation creates an interconnected graph of reasoning nodes. Experiments on diverse reasoning tasks (syllogistic, mathematical, algebraic, combinatorial, and geometric) demonstrate that WoT achieves superior performance compared to traditional methods, particularly for complex problems. This approach leads to both improved performance and greater interpretability of the reasoning process, offering a promising direction for enhancing LLM reasoning capabilities.
☆ Better Estimation of the KL Divergence Between Language Models
Estimating the Kullback--Leibler (KL) divergence between language models has many applications, e.g., reinforcement learning from human feedback (RLHF), interpretability, and knowledge distillation. However, computing the exact KL divergence between two arbitrary language models is intractable. Thus, practitioners often resort to the use of sampling-based estimators. While it is easy to fashion a simple Monte Carlo (MC) estimator that provides an unbiased estimate of the KL divergence between language models, this estimator notoriously suffers from high variance, and can even result in a negative estimate of the KL divergence, a non-negative quantity. In this paper, we introduce a Rao--Blackwellized estimator that is also unbiased and provably has variance less than or equal to that of the standard Monte Carlo estimator. In an empirical study on sentiment-controlled fine-tuning, we show that our estimator provides more stable KL estimates and reduces variance substantially in practice. Additionally, we derive an analogous Rao--Blackwellized estimator of the gradient of the KL divergence, which leads to more stable training and produces models that more frequently appear on the Pareto frontier of reward vs. KL compared to the ones trained with the MC estimator of the gradient.
☆ Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models
Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.
♻ ☆ SuperBPE: Space Travel for Language Models
The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.
comment: updated related work
♻ ☆ MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
As Large Language Models (LLMs) are increasingly applied across various tasks, instruction tuning has emerged as a critical method for enhancing model performance. However, current data management strategies face substantial challenges in generating diverse and comprehensive data, restricting further improvements in model performance. To address this gap, we propose MDIT, a novel model-free data interpolation method for diverse instruction tuning, which generates varied and high-quality instruction data by performing task interpolation. Moreover, it contains diversity-based clustering strategies to ensure the diversity of the training data. Extensive experiments show that our method achieves superior performance in multiple benchmark tasks. The LLMs finetuned with MDIT show significant improvements in numerous tasks such as general question answering, math reasoning, and code generation. MDIT offers an efficient and automatic data synthetic method, generating diverse instruction data without depending on external resources while expanding the application potential of LLMs in complex environments.
♻ ☆ Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods
Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge.
♻ ☆ Learning Free Token Reduction for Multi-Modal Large Language Models
Vision-Language Models (VLMs) have achieved remarkable success across a range of multimodal tasks; however, their practical deployment is often constrained by high computational costs and prolonged inference times. Since the vision modality typically carries more information than the text modality, compressing visual prompts offers a promising solution to alleviate these challenges. Existing approaches predominantly focus on refining model architectures or directly reducing the number of visual tokens. However, these methods often compromise inference performance due to a lack of consideration for the unique spatial and temporal characteristics of visual data. In this work, we propose a token compression paradigm that operates on both spatial and temporal dimensions. Our approach includes a learning-free, plug-and-play compression pipeline that can be seamlessly integrated into most Multimodal Large Language Model (MLLM) frameworks. By leveraging this method, we enhance the model inference capability while simultaneously reducing its computational cost. Experimental results on the Video-QA task demonstrate the effectiveness of the proposed approach, showcasing significant improvements in efficiency without sacrificing performance.
♻ ☆ Towards Safer Chatbots: A Framework for Policy Compliance Evaluation of Custom GPTs
Large Language Models (LLMs) have gained unprecedented prominence, achieving widespread adoption across diverse domains and integrating deeply into society. The capability to fine-tune general-purpose LLMs, such as Generative Pre-trained Transformers (GPT), for specific tasks has facilitated the emergence of numerous Custom GPTs. These tailored models are increasingly made available through dedicated marketplaces, such as OpenAI's GPT Store. However, their black-box nature introduces significant safety and compliance risks. In this work, we present a scalable framework for the automated evaluation of Custom GPTs against OpenAI's usage policies, which define the permissible behaviors of these systems. Our framework integrates three core components: (1) automated discovery and data collection of models from the GPT store, (2) a red-teaming prompt generator tailored to specific policy categories and the characteristics of each target GPT, and (3) an LLM-as-a-judge technique to analyze each prompt-response pair for potential policy violations. We validate our framework with a manually annotated ground truth, and evaluate it through a large-scale study with 782 Custom GPTs across three categories: Romantic, Cybersecurity, and Academic GPTs. Our manual annotation process achieved an F1 score of 0.975 in identifying policy violations, confirming the reliability of the framework's assessments. The results reveal that 58.7% of the analyzed models exhibit indications of non-compliance, exposing weaknesses in the GPT store's review and approval processes. Furthermore, our findings indicate that a model's popularity does not correlate with compliance, and non-compliance issues largely stem from behaviors inherited from base models rather than user-driven customizations. We believe this approach is extendable to other chatbot platforms and policy domains, improving LLM-based systems safety.
♻ ☆ COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling
The therapeutic working alliance is a critical predictor of psychotherapy success. Traditionally, working alliance assessment relies on questionnaires completed by both therapists and patients. In this paper, we present COMPASS, a novel framework to directly infer the therapeutic working alliance from the natural language used in psychotherapy sessions. Our approach leverages advanced large language models (LLMs) to analyze session transcripts and map them to distributed representations. These representations capture the semantic similarities between the dialogues and psychometric instruments, such as the Working Alliance Inventory. Analyzing a dataset of over 950 sessions spanning diverse psychiatric conditions -- including anxiety (N=498), depression (N=377), schizophrenia (N=71), and suicidal tendencies (N=12) -- collected between 1970 and 2012, we demonstrate the effectiveness of our method in providing fine-grained mapping of patient-therapist alignment trajectories, offering interpretable insights for clinical practice, and identifying emerging patterns related to the condition being treated. By employing various deep learning-based topic modeling techniques in combination with prompting generative language models, we analyze the topical characteristics of different psychiatric conditions and how these topics evolve during each turn of the conversation. This integrated framework enhances the understanding of therapeutic interactions, enables timely feedback for therapists on the quality of therapeutic relationships, and provides clear, actionable insights to improve the effectiveness of psychotherapy.
comment: Translational Psychiatry, in press. This work extends our research series in computational psychiatry (e.g auto annotation in arXiv:2204.05522, topic extraction in arXiv:2204.10189, and diagnosis in arXiv:2210.15603) with the introduction of LLMs to complete the full cycle of interpreting and understanding psychotherapy strategies as a comprehensive analytical framework
♻ ☆ Hatred Stems from Ignorance! Distillation of the Persuasion Modes in Countering Conversational Hate Speech
Examining the factors that the counterspeech uses are at the core of understanding the optimal methods for confronting hate speech online. Various studies have assessed the emotional base factors used in counter speech, such as emotional empathy, offensiveness, and hostility. To better understand the counterspeech used in conversations, this study distills persuasion modes into reason, emotion, and credibility and evaluates their use in two types of conversation interactions: closed (multi-turn) and open (single-turn) concerning racism, sexism, and religious bigotry. The evaluation covers the distinct behaviors seen with human-sourced as opposed to machine-generated counterspeech. It also assesses the interplay between the stance taken and the mode of persuasion seen in the counterspeech. Notably, we observe nuanced differences in the counterspeech persuasion modes used in open and closed interactions, especially in terms of the topic, with a general tendency to use reason as a persuasion mode to express the counterpoint to hate comments. The machine-generated counterspeech tends to exhibit an emotional persuasion mode, while human counters lean toward reason. Furthermore, our study shows that reason tends to obtain more supportive replies than other persuasion modes. The findings highlight the potential for incorporating persuasion modes into studies about countering hate speech, as they can serve as an optimal means of explainability and pave the way for the further adoption of the reply's stance and the role it plays in assessing what comprises the optimal counterspeech.
comment: Accepted to appear @ ICWSM 2025. The link to the camera-ready paper will be added soon
♻ ☆ RAISE: Reinforenced Adaptive Instruction Selection For Large Language Models
In the instruction fine-tuning of large language models (LLMs), it has become a consensus that a few high-quality instructions are superior to a large number of low-quality instructions. At present, many instruction selection methods have been proposed, but most of these methods select instruction based on heuristic quality metrics, and only consider data selection before training. These designs lead to insufficient optimization of instruction fine-tuning, and fixed heuristic indicators are often difficult to optimize for specific tasks. So we designed a dynamic, task-objective-driven instruction selection framework RAISE(Reinforenced Adaptive Instruction SElection), which incorporates the entire instruction fine-tuning process into optimization, selecting instruction at each step based on the expected impact of instruction on model performance improvement. Our approach is well interpretable and has strong task-specific optimization capabilities. By modeling dynamic instruction selection as a sequential decision-making process, we use RL to train our selection strategy. Extensive experiments and result analysis prove the superiority of our method compared with other instruction selection methods. Notably, RAISE achieves superior performance by updating only 1\% of the training steps compared to full-data training, demonstrating its efficiency and effectiveness.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ Testing the Predictions of Surprisal Theory in 11 Languages
A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.
comment: This is a revised version of the paper: The original version of the paper used raw frequencies instead of unigram surprisals in our regression models, despite stating otherwise in the text. This has been amended, and several typos have been fixed
♻ ☆ Words and Action: Modeling Linguistic Leadership in #BlackLivesMatter Communities
In this project, we describe a method of modeling semantic leadership across a set of communities associated with the #BlackLivesMatter movement, which has been informed by qualitative research on the structure of social media and Black Twitter in particular. We describe our bespoke approaches to time-binning, community clustering, and connecting communities over time, as well as our adaptation of state-of-the-art approaches to semantic change detection and semantic leadership induction. We find substantial evidence of the leadership role of BLM activists and progressives, as well as Black celebrities. We also find evidence of the sustained engagement of the conservative community with this discourse, suggesting an alternative explanation for how we arrived at the present moment, in which "anti-woke" and "anti-CRT" bills are being enacted nationwide.
comment: Accepted at ICWSM 2025
♻ ☆ A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
♻ ☆ IPA-CHILDES & G2P+: Feature-Rich Resources for Cross-Lingual Phonology and Phonemic Language Modeling CoNLL 2025
In this paper, we introduce two resources: (i) G2P+, a tool for converting orthographic datasets to a consistent phonemic representation; and (ii) IPA CHILDES, a phonemic dataset of child-centered speech across 31 languages. Prior tools for grapheme-to-phoneme conversion result in phonemic vocabularies that are inconsistent with established phonemic inventories, an issue which G2P+ addresses by leveraging the inventories in the Phoible database. Using this tool, we augment CHILDES with phonemic transcriptions to produce IPA CHILDES. This new resource fills several gaps in existing phonemic datasets, which often lack multilingual coverage, spontaneous speech, and a focus on child-directed language. We demonstrate the utility of this dataset for phonological research by training phoneme language models on 11 languages and probing them for distinctive features, finding that the distributional properties of phonemes are sufficient to learn major class and place features cross-lingually.
comment: 19 pages, 7 figures. Submitted to CoNLL 2025
♻ ☆ VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages, fix some minor typos in the previous version
♻ ☆ BabyLM's First Words: Word Segmentation as a Phonological Probing Task CoNLL 2025
Language models provide a key framework for studying linguistic theories based on prediction, but phonological analysis using large language models (LLMs) is difficult; there are few phonological benchmarks beyond English and the standard input representation used in LLMs (subwords of graphemes) is not suitable for analyzing the representation of phonemes. In this work, we demonstrate how word segmentation can be used as a phonological probing task, allowing us to study the representations learned by phoneme-based language models trained on child-directed speech across 31 languages. Following computational models of word segmentation, we present unsupervised methods for extracting word boundaries from a trained model using the observation that prediction-error peaks at the start of words. We also use linear probes to identify that these models implicitly track word boundaries, even when they do not appear in training. This cross-lingual work corroborates statistical learning theories of acquisition and empirically motivates new methods for training subword tokenizers.
comment: 17 pages, 10 figures, submitted to CoNLL 2025
♻ ☆ ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation
Reranking documents based on their relevance to a given query is a critical task in information retrieval. Traditional reranking methods often lack transparency and rely on proprietary models, hindering reproducibility and interpretability. We propose Reason-to-Rank (R2R), a novel open-source reranking approach that enhances transparency by generating two types of reasoning: direct relevance reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another. We leverage large language models (LLMs) as teacher models to generate these explanations and distill this knowledge into smaller, openly available student models. Our student models are trained to generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets, including MSMARCO and BRIGHT. Experiments demonstrate that R2R not only improves reranking accuracy but also provides valuable insights into the decision-making process. By offering a structured and interpretable solution with openly accessible resources, R2R aims to bridge the gap between effectiveness and transparency in information retrieval, fostering reproducibility and further research in the field.
♻ ☆ A Semantic-based Optimization Approach for Repairing LLMs: Case Study on Code Generation
Language Models (LMs) are widely used in software engineering for code generation, but they may produce code with errors. Rather than repairing the generated code, an alternative way is to address the underlying failures of models. LM repair offers a lightweight solution to this challenge: it requires minimal data, reduces computational costs, and reduces the side effects. Unlike retraining, LM repair focuses on applying tailored updates to targeted neurons, making it ideal for scenarios with limited resources, high-performance demands, or strict safety requirements. In this paper, we propose \ul{S}emantic \ul{T}argeting for \ul{A}nalytical \ul{R}epair (\textsc{STAR}), a pioneering and novel semantic-based optimization approach for repairing LLMs. \textsc{STAR} realizes main operations in LM repair methods in an optimization process, including locating ``buggy neurons'', solving ``neuron patches'', and patching ``buggy neurons''. Correspondingly, it computes the deltas of weight matrix as the prior information to guide optimization; and attributes the targeted layers and neurons leveraging statistical insights. The neuron patches are computed with a solid semantic-based analytical formula, which directly bridges the changes to logits with the deltas of neurons, by steering latent representations. Compared to the prior work of LM repair (\textsc{MINT}) and optimization methods (\textsc{SGD}), \textsc{STAR} integrates their strengths while mitigating their limitations. \textsc{STAR} supports solving multiple failures together, significantly improving the usefulness. Evaluated on three code generation tasks using popular code LMs, \textsc{STAR} demonstrates superior effectiveness. Additionally, \textsc{STAR} exhibits better efficiency. In terms of side effects, namely the balance between generalization and specificity, \textsc{STAR} outperforms prior work by a significant margin.
comment: 12 pages, 6 figure, 6 tables, under peer-review
♻ ☆ Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
♻ ☆ Function Alignment: A New Theory of Mind and Intelligence, Part I: Foundations
This paper introduces function alignment, a novel theory of mind and intelligence that is both intuitively compelling and structurally grounded. It explicitly models how meaning, interpretation, and analogy emerge from interactions among layered representations, forming a coherent framework capable not only of modeling minds but also of serving as a blueprint for building them. One of the key theoretical insights derived from function alignment is bounded interpretability, which provides a unified explanation for previously fragmented ideas in cognitive science, such as bounded rationality, symbol grounding, and analogy-making. Beyond modeling, the function alignment framework bridges disciplines often kept apart, linking computational architecture, psychological theory, and even contemplative traditions such as Zen. Rather than building on any philosophical systems, it offers a structural foundation upon which multiple ways of understanding the mind may be reconstructed.
comment: 12 pages, 2 figures. Part I of a multi-part position paper on a new theory of mind
♻ ☆ Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM AAAI 2025
Despite being empowered with alignment mechanisms, large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks that can compromise their alignment mechanisms. This vulnerability poses significant risks to real-world applications. Existing work faces challenges in both training efficiency and generalization capabilities (i.e., Reinforcement Learning from Human Feedback and Red-Teaming). Developing effective strategies to enable LLMs to resist continuously evolving jailbreak attempts represents a significant challenge. To address this challenge, we propose a novel defensive paradigm called GuidelineLLM, which assists LLMs in recognizing queries that may have harmful content. Before LLMs respond to a query, GuidelineLLM first identifies potential risks associated with the query, summarizes these risks into guideline suggestions, and then feeds these guidelines to the responding LLMs. Importantly, our approach eliminates the necessity for additional safety fine-tuning of the LLMs themselves; only the GuidelineLLM requires fine-tuning. This characteristic enhances the general applicability of GuidelineLLM across various LLMs. Experimental results demonstrate that GuidelineLLM can significantly reduce the attack success rate (ASR) against LLM (an average reduction of 34.17\% ASR) while maintaining the usefulness of LLM in handling benign queries. The code is available at https://github.com/sqzhang-lazy/GuidelineLLM.
comment: AAAI 2025
♻ ☆ Command A: An Enterprise-Ready Large Language Model
In this report we describe the development of Command A, a powerful large language model purpose-built to excel at real-world enterprise use cases. Command A is an agent-optimised and multilingual-capable model, with support for 23 languages of global business, and a novel hybrid architecture balancing efficiency with top of the range performance. It offers best-in-class Retrieval Augmented Generation (RAG) capabilities with grounding and tool use to automate sophisticated business processes. These abilities are achieved through a decentralised training approach, including self-refinement algorithms and model merging techniques. We also include results for Command R7B which shares capability and architectural similarities to Command A. Weights for both models have been released for research purposes. This technical report details our original training pipeline and presents an extensive evaluation of our models across a suite of enterprise-relevant tasks and public benchmarks, demonstrating excellent performance and efficiency.
comment: 55 pages
♻ ☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
♻ ☆ Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and reduced computational performance due to the disproportionate representation of tokens in the model's vocabulary. In this work, we address these issues by developing a pipeline for the adaptation of English-oriented pre-trained models to other languages and constructing efficient bilingual LLMs. Using this pipeline, we construct Vikhr, a series of bilingual open-source instruction-following LLMs designed specifically for the Russian language. ``Vikhr'' refers to the name of the Mistral LLM series and means a ``strong gust of wind.'' Unlike previous Russian-language models that typically rely on LoRA adapters on top of English-oriented models, sacrificing performance for lower training costs, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This not only enhances the model's performance but also significantly improves its computational and contextual efficiency. We also expanded the instruction datasets and corpora for continued pre-training. The model weights, instruction sets, and code are publicly available.
♻ ☆ I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
The remarkable achievements of large language models (LLMs) have led many to conclude that they exhibit a form of intelligence. This is as opposed to explanations of their capabilities based on their ability to perform relatively simple manipulations of vast volumes of data. To illuminate the distinction between these explanations, we introduce a novel generative model that generates tokens on the basis of human interpretable concepts represented as latent discrete variables. Under mild conditions, even when the mapping from the latent space to the observed space is non-invertible, we establish an identifiability result: the representations learned by LLMs through next-token prediction can be approximately modeled as the logarithm of the posterior probabilities of these latent discrete concepts, up to an invertible linear transformation. This theoretical finding not only provides evidence that LLMs capture underlying generative factors, but also strongly reinforces the linear representation hypothesis, which posits that LLMs learn linear representations of human-interpretable concepts. Empirically, we validate our theoretical results through evaluations on both simulation data and the Pythia, Llama, and DeepSeek model families.
♻ ☆ From Vulnerabilities to Remediation: A Systematic Literature Review of LLMs in Code Security
Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks, including security-related ones, such as detecting and fixing vulnerabilities. Despite their promising capabilities, when required to produce or modify pre-existing code, LLMs could introduce vulnerabilities unbeknown to the programmer. When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones. In this Systematic Literature Review (SLR), we aim to investigate both the security benefits and potential drawbacks of using LLMs for a variety of code-related tasks. In particular, first we focus on the types of vulnerabilities that could be introduced by LLMs, when used for producing code. Second, we analyze the capabilities of LLMs to detect and fix vulnerabilities, in any given code, and how the prompting strategy of choice impacts their performance in these two tasks. Last, we provide an in-depth analysis on how data poisoning attacks on LLMs can impact performance in the aforementioned tasks.
♻ ☆ Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws
Large language model (LLM) scaling laws are empirical formulas that estimate changes in model quality as a result of increasing parameter count and training data. However, these formulas, including the popular Deepmind Chinchilla scaling laws, neglect to include the cost of inference. We modify the Chinchilla scaling laws to calculate the optimal LLM parameter count and pre-training data size to train and deploy a model of a given quality and inference demand. We conduct our analysis both in terms of a compute budget and real-world costs and find that LLM researchers expecting reasonably large inference demand (~1B requests) should train models smaller and longer than Chinchilla-optimal. Furthermore, we train 47 models of varying sizes and parameter counts to validate our formula and find that model quality continues to improve as we scale tokens per parameter to extreme ranges (up to 10,000). Finally, we ablate the procedure used to fit the Chinchilla scaling law coefficients and find that developing scaling laws only from data collected at typical token/parameter ratios overestimates the impact of additional tokens at these extreme ranges.
comment: 16 pages, 7 figures, In the 41st International Conference on Machine Learning, 2024
♻ ☆ Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
♻ ☆ EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
comment: 22 pages, 4 figures
♻ ☆ Improving Instruction-Following in Language Models through Activation Steering ICLR 2025
The ability to follow instructions is crucial for numerous real-world applications of language models. In pursuit of deeper insights and more powerful capabilities, we derive instruction-specific vector representations from language models and use them to steer models accordingly. These vectors are computed as the difference in activations between inputs with and without instructions, enabling a modular approach to activation steering. We demonstrate how this method can enhance model adherence to constraints such as output format, length, and word inclusion, providing inference-time control over instruction following. Our experiments across four models demonstrate how we can use the activation vectors to guide models to follow constraints even without explicit instructions and to enhance performance when instructions are present. Additionally, we explore the compositionality of activation steering, successfully applying multiple instructions simultaneously. Finally, we demonstrate that steering vectors computed on instruction-tuned models can transfer to improve base models. Our findings demonstrate that activation steering offers a practical and scalable approach for fine-grained control in language generation. Our code and data are available at https://github.com/microsoft/llm-steer-instruct.
comment: ICLR 2025
♻ ☆ Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
♻ ☆ Unveiling the Deficiencies of Pre-trained Text-and-Layout Models in Real-world Visually-rich Document Information Extraction
Recently developed pre-trained text-and-layout models (PTLMs) have shown remarkable success in multiple information extraction tasks on visually-rich documents (VrDs). However, despite achieving extremely high performance on benchmarks, their real-world performance falls short of expectations. Owing to this issue, we investigate the prevailing evaluation pipeline to reveal that: (1) The inadequate annotations within benchmark datasets introduce spurious correlations between task inputs and labels, which would lead to overly-optimistic estimation of model performance. (2) The evaluation solely relies on the performance on benchmarks and is insufficient to comprehensively explore the capabilities of methods in real-world scenarios. These problems impede the prevailing evaluation pipeline from reflecting the real-world performance of methods, misleading the design choices of method optimization. In this work, we introduce EC-FUNSD, an entity-centric dataset crafted for benchmarking information extraction from visually-rich documents. This dataset contains diverse layouts and high-quality annotations. Additionally, this dataset disentangles the falsely-coupled segment and entity annotations that arises from the block-level annotation of FUNSD. Using the proposed dataset, we evaluate the real-world information extraction capabilities of PTLMs from multiple aspects, including their absolute performance, as well as generalization, robustness and fairness. The results indicate that prevalent PTLMs do not perform as well as anticipated in real-world information extraction scenarios. We hope that our study can inspire reflection on the directions of PTLM development.
♻ ☆ Summarization Metrics for Spanish and Basque: Do Automatic Scores and LLM-Judges Correlate with Humans?
Studies on evaluation metrics and LLM-as-a-Judge models for automatic text summarization have largely been focused on English, limiting our understanding of their effectiveness in other languages. Through our new dataset BASSE (BAsque and Spanish Summarization Evaluation), we address this situation by collecting human judgments on 2,040 abstractive summaries in Basque and Spanish, generated either manually or by five LLMs with four different prompts. For each summary, annotators evaluated five criteria on a 5-point Likert scale: coherence, consistency, fluency, relevance, and 5W1H. We use these data to reevaluate traditional automatic metrics used for evaluating summaries, as well as several LLM-as-a-Judge models that show strong performance on this task in English. Our results show that currently proprietary judge LLMs have the highest correlation with human judgments, followed by criteria-specific automatic metrics, while open-sourced judge LLMs perform poorly. We release BASSE and our code publicly, along with the first large-scale Basque summarization dataset containing 22,525 news articles with their subheads.
♻ ☆ Ham2Pose: Animating Sign Language Notation into Pose Sequences
Translating spoken languages into Sign languages is necessary for open communication between the hearing and hearing-impaired communities. To achieve this goal, we propose the first method for animating a text written in HamNoSys, a lexical Sign language notation, into signed pose sequences. As HamNoSys is universal, our proposed method offers a generic solution invariant to the target Sign language. Our method gradually generates pose predictions using transformer encoders that create meaningful representations of the text and poses while considering their spatial and temporal information. We use weak supervision for the training process and show that our method succeeds in learning from partial and inaccurate data. Additionally, we offer a new distance measurement for pose sequences, normalized Dynamic Time Warping (nDTW), based on DTW over normalized keypoints trajectories, and validate its correctness using AUTSL, a large-scale Sign language dataset. We show that it measures the distance between pose sequences more accurately than existing measurements and use it to assess the quality of our generated pose sequences. Code for the data pre-processing, the model, and the distance measurement is publicly released for future research.
♻ ☆ Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
♻ ☆ Psychological Health Knowledge-Enhanced LLM-based Social Network Crisis Intervention Text Transfer Recognition Method
As the prevalence of mental health crises increases on social media platforms, identifying and preventing potential harm has become an urgent challenge. This study introduces a large language model (LLM)-based text transfer recognition method for social network crisis intervention, enhanced with domain-specific mental health knowledge. We propose a multi-level framework that incorporates transfer learning using BERT, and integrates mental health knowledge, sentiment analysis, and behavior prediction techniques. The framework includes a crisis annotation tool trained on social media datasets from real-world events, enabling the model to detect nuanced emotional cues and identify psychological crises. Experimental results show that the proposed method outperforms traditional models in crisis detection accuracy and exhibits greater sensitivity to subtle emotional and contextual variations.
♻ ☆ Tulu 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce Tulu 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. Tulu 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With Tulu 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the Tulu 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the Tulu 3 approach to more domains.
comment: Added Tulu 3 405B results and additional analyses
♻ ☆ AI Enabled User-Specific Cyberbullying Severity Detection with Explainability
The rise of social media has significantly increased the prevalence of cyberbullying (CB), posing serious risks to both mental and physical well-being. Effective detection systems are essential for mitigating its impact. While several machine learning (ML) models have been developed, few incorporate victims' psychological, demographic, and behavioral factors alongside bullying comments to assess severity. In this study, we propose an AI model intregrating user-specific attributes, including psychological factors (self-esteem, anxiety, depression), online behavior (internet usage, disciplinary history), and demographic attributes (race, gender, ethnicity), along with social media comments. Additionally, we introduce a re-labeling technique that categorizes social media comments into three severity levels: Not Bullying, Mild Bullying, and Severe Bullying, considering user-specific factors.Our LSTM model is trained using 146 features, incorporating emotional, topical, and word2vec representations of social media comments as well as user-level attributes and it outperforms existing baseline models, achieving the highest accuracy of 98\% and an F1-score of 0.97. To identify key factors influencing the severity of cyberbullying, we employ explainable AI techniques (SHAP and LIME) to interpret the model's decision-making process. Our findings reveal that, beyond hate comments, victims belonging to specific racial and gender groups are more frequently targeted and exhibit higher incidences of depression, disciplinary issues, and low self-esteem. Additionally, individuals with a prior history of bullying are at a greater risk of becoming victims of cyberbullying.
♻ ☆ ToxiCraft: A Novel Framework for Synthetic Generation of Harmful Information EMNLP 2024
In different NLP tasks, detecting harmful content is crucial for online environments, especially with the growing influence of social media. However, previous research has two main issues: 1) a lack of data in low-resource settings, and 2) inconsistent definitions and criteria for judging harmful content, requiring classification models to be robust to spurious features and diverse. We propose Toxicraft, a novel framework for synthesizing datasets of harmful information to address these weaknesses. With only a small amount of seed data, our framework can generate a wide variety of synthetic, yet remarkably realistic, examples of toxic information. Experimentation across various datasets showcases a notable enhancement in detection model robustness and adaptability, surpassing or close to the gold labels.
comment: EMNLP 2024
Computation and Language
☆ Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM \textbf{Mantra-14B} with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
comment: ARR Feb 2025 submission
☆ Can LLM feedback enhance review quality? A randomized study of 20K reviews at ICLR 2025
Peer review at AI conferences is stressed by rapidly rising submission volumes, leading to deteriorating review quality and increased author dissatisfaction. To address these issues, we developed Review Feedback Agent, a system leveraging multiple large language models (LLMs) to improve review clarity and actionability by providing automated feedback on vague comments, content misunderstandings, and unprofessional remarks to reviewers. Implemented at ICLR 2025 as a large randomized control study, our system provided optional feedback to more than 20,000 randomly selected reviews. To ensure high-quality feedback for reviewers at this scale, we also developed a suite of automated reliability tests powered by LLMs that acted as guardrails to ensure feedback quality, with feedback only being sent to reviewers if it passed all the tests. The results show that 27% of reviewers who received feedback updated their reviews, and over 12,000 feedback suggestions from the agent were incorporated by those reviewers. This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers. Moreover, reviewers who were selected to receive AI feedback were also more engaged during paper rebuttals, as seen in longer author-reviewer discussions. This work demonstrates that carefully designed LLM-generated review feedback can enhance peer review quality by making reviews more specific and actionable while increasing engagement between reviewers and authors. The Review Feedback Agent is publicly available at https://github.com/zou-group/review_feedback_agent.
comment: 30 pages, 7 figures
☆ AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
☆ Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish
The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages.
☆ DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
☆ GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Recent advances in R1-like reasoning models leveraging Group Relative Policy Optimization (GRPO) have significantly improved the performance of language models on mathematical reasoning tasks. However, current GRPO implementations encounter critical challenges, including reward sparsity due to binary accuracy metrics, limited incentives for conciseness, and insufficient focus on complex reasoning tasks. To address these issues, we propose GRPO-LEAD, a suite of novel enhancements tailored for mathematical reasoning. Specifically, GRPO-LEAD introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems. Furthermore, we systematically examine the impact of model scale and supervised fine-tuning (SFT) strategies, demonstrating that larger-scale base models and carefully curated datasets significantly enhance reinforcement learning effectiveness. Extensive empirical evaluations and ablation studies confirm that GRPO-LEAD substantially mitigates previous shortcomings, resulting in language models that produce more concise, accurate, and robust reasoning across diverse mathematical tasks.
☆ EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
☆ Domain-Adaptive Continued Pre-Training of Small Language Models
Continued pre-training of small language models offers a promising path for domain adaptation with limited computational resources. I've investigated this approach within educational domains, evaluating it as a resource-efficient alternative to training models from scratch. Using a 125M parameter model, I demonstrate significant performance improvements through incremental training on 400 million tokens, followed by further training to reach 1 billion tokens. My approach includes comprehensive data preprocessing, memory-optimized training configurations, and benchmark-based evaluation. Results show notable gains in knowledge-intensive tasks (MMLU +8.1%) and contextual understanding (HellaSwag +7.6%), while revealing educational domain specialization trade-offs. I analyze token efficiency, catastrophic forgetting mitigation strategies, and scaling patterns. My findings suggest that thoughtful preprocessing and training methodologies enable meaningful improvements in language model capabilities even with constrained computational resources, opening pathways for domain-specific adaptation of smaller language models.
☆ CLEAR-KGQA: Clarification-Enhanced Ambiguity Resolution for Knowledge Graph Question Answering IJCNN 2025
This study addresses the challenge of ambiguity in knowledge graph question answering (KGQA). While recent KGQA systems have made significant progress, particularly with the integration of large language models (LLMs), they typically assume user queries are unambiguous, which is an assumption that rarely holds in real-world applications. To address these limitations, we propose a novel framework that dynamically handles both entity ambiguity (e.g., distinguishing between entities with similar names) and intent ambiguity (e.g., clarifying different interpretations of user queries) through interactive clarification. Our approach employs a Bayesian inference mechanism to quantify query ambiguity and guide LLMs in determining when and how to request clarification from users within a multi-turn dialogue framework. We further develop a two-agent interaction framework where an LLM-based user simulator enables iterative refinement of logical forms through simulated user feedback. Experimental results on the WebQSP and CWQ dataset demonstrate that our method significantly improves performance by effectively resolving semantic ambiguities. Additionally, we contribute a refined dataset of disambiguated queries, derived from interaction histories, to facilitate future research in this direction.
comment: This work has been accepted by the IJCNN 2025 main track
☆ Myanmar XNLI: Building a Dataset and Exploring Low-resource Approaches to Natural Language Inference with Myanmar
Despite dramatic recent progress in NLP, it is still a major challenge to apply Large Language Models (LLM) to low-resource languages. This is made visible in benchmarks such as Cross-Lingual Natural Language Inference (XNLI), a key task that demonstrates cross-lingual capabilities of NLP systems across a set of 15 languages. In this paper, we extend the XNLI task for one additional low-resource language, Myanmar, as a proxy challenge for broader low-resource languages, and make three core contributions. First, we build a dataset called Myanmar XNLI (myXNLI) using community crowd-sourced methods, as an extension to the existing XNLI corpus. This involves a two-stage process of community-based construction followed by expert verification; through an analysis, we demonstrate and quantify the value of the expert verification stage in the context of community-based construction for low-resource languages. We make the myXNLI dataset available to the community for future research. Second, we carry out evaluations of recent multilingual language models on the myXNLI benchmark, as well as explore data-augmentation methods to improve model performance. Our data-augmentation methods improve model accuracy by up to 2 percentage points for Myanmar, while uplifting other languages at the same time. Third, we investigate how well these data-augmentation methods generalise to other low-resource languages in the XNLI dataset.
☆ Iterative Self-Training for Code Generation via Reinforced Re-Ranking ECIR 2025
Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.
comment: Published at ECIR 2025
☆ Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
Recent advancements in large language models (LLMs), such as DeepSeek-R1 and OpenAI-o1, have demonstrated the significant effectiveness of test-time scaling, achieving substantial performance gains across various benchmarks. These advanced models utilize deliberate "thinking" steps to systematically enhance answer quality. In this paper, we propose leveraging these high-quality outputs generated by reasoning-intensive models to improve less computationally demanding, non-reasoning models. We explore and compare methodologies for utilizing the answers produced by reasoning models to train and improve non-reasoning models. Through straightforward Supervised Fine-Tuning (SFT) experiments on established benchmarks, we demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
☆ Metropolis-Hastings Captioning Game: Knowledge Fusion of Vision Language Models via Decentralized Bayesian Inference
We propose the Metropolis-Hastings Captioning Game (MHCG), a method to fuse knowledge of multiple vision-language models (VLMs) by learning from each other. Although existing methods that combine multiple models suffer from inference costs and architectural constraints, MHCG avoids these problems by performing decentralized Bayesian inference through a process resembling a language game. The knowledge fusion process establishes communication between two VLM agents alternately captioning images and learning from each other. We conduct two image-captioning experiments with two VLMs, each pre-trained on a different dataset. The first experiment demonstrates that MHCG achieves consistent improvement in reference-free evaluation metrics. The second experiment investigates how MHCG contributes to sharing VLMs' category-level vocabulary by observing the occurrence of the vocabulary in the generated captions.
☆ Fine-tuning an Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.
☆ Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance
Recent years have witnessed significant progress in large language models' (LLMs) reasoning, which is largely due to the chain-of-thought (CoT) approaches, allowing models to generate intermediate reasoning steps before reaching the final answer. Building on these advances, state-of-the-art LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions. However, human beings are naturally cognitive misers and will prompt language models to give rather short responses, thus raising a significant conflict with CoT reasoning. In this paper, we delve into how LLMs' reasoning performance changes when users provide short-path prompts. The results and analysis reveal that language models can reason effectively and robustly without explicit CoT prompts, while under short-path prompting, LLMs' reasoning ability drops significantly and becomes unstable, even on grade-school problems. To address this issue, we propose two approaches: an instruction-guided approach and a fine-tuning approach, both designed to effectively manage the conflict. Experimental results show that both methods achieve high accuracy, providing insights into the trade-off between instruction adherence and reasoning accuracy in current models.
comment: Under review
☆ Reduction of Supervision for Biomedical Knowledge Discovery
Knowledge discovery is hindered by the increasing volume of publications and the scarcity of extensive annotated data. To tackle the challenge of information overload, it is essential to employ automated methods for knowledge extraction and processing. Finding the right balance between the level of supervision and the effectiveness of models poses a significant challenge. While supervised techniques generally result in better performance, they have the major drawback of demanding labeled data. This requirement is labor-intensive and time-consuming and hinders scalability when exploring new domains. In this context, our study addresses the challenge of identifying semantic relationships between biomedical entities (e.g., diseases, proteins) in unstructured text while minimizing dependency on supervision. We introduce a suite of unsupervised algorithms based on dependency trees and attention mechanisms and employ a range of pointwise binary classification methods. Transitioning from weakly supervised to fully unsupervised settings, we assess the methods' ability to learn from data with noisy labels. The evaluation on biomedical benchmark datasets explores the effectiveness of the methods. Our approach tackles a central issue in knowledge discovery: balancing performance with minimal supervision. By gradually decreasing supervision, we assess the robustness of pointwise binary classification techniques in handling noisy labels, revealing their capability to shift from weakly supervised to entirely unsupervised scenarios. Comprehensive benchmarking offers insights into the effectiveness of these techniques, suggesting an encouraging direction toward adaptable knowledge discovery systems, representing progress in creating data-efficient methodologies for extracting useful insights when annotated data is limited.
comment: Published as part of the PhD dissertation: Theodoropoulos, Christos, Marie-Francine Moens, and Matthew Blaschko. "Deep Learning Models for the Extraction of Knowledge from Text." (2025)
☆ LLMs Can Achieve High-quality Simultaneous Machine Translation as Efficiently as Offline
When the complete source sentence is provided, Large Language Models (LLMs) perform excellently in offline machine translation even with a simple prompt "Translate the following sentence from [src lang] into [tgt lang]:". However, in many real scenarios, the source tokens arrive in a streaming manner and simultaneous machine translation (SiMT) is required, then the efficiency and performance of decoder-only LLMs are significantly limited by their auto-regressive nature. To enable LLMs to achieve high-quality SiMT as efficiently as offline translation, we propose a novel paradigm that includes constructing supervised fine-tuning (SFT) data for SiMT, along with new training and inference strategies. To replicate the token input/output stream in SiMT, the source and target tokens are rearranged into an interleaved sequence, separated by special tokens according to varying latency requirements. This enables powerful LLMs to learn read and write operations adaptively, based on varying latency prompts, while still maintaining efficient auto-regressive decoding. Experimental results show that, even with limited SFT data, our approach achieves state-of-the-art performance across various SiMT benchmarks, and preserves the original abilities of offline translation. Moreover, our approach generalizes well to document-level SiMT setting without requiring specific fine-tuning, even beyond the offline translation model.
☆ Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
☆ How new data permeates LLM knowledge and how to dilute it
Large language models learn and continually learn through the accumulation of gradient-based updates, but how individual pieces of new information affect existing knowledge, leading to both beneficial generalization and problematic hallucination, remains poorly understood. We demonstrate that when learning new information, LLMs exhibit a "priming" effect: learning a new fact can cause the model to inappropriately apply that knowledge in unrelated contexts. To systematically study this phenomenon, we introduce "Outlandish," a carefully curated dataset of 1320 diverse text samples designed to probe how new knowledge permeates through an LLM's existing knowledge base. Using this dataset, we show that the degree of priming after learning new information can be predicted by measuring the token probability of key words before learning. This relationship holds robustly across different model architectures (PALM-2, Gemma, Llama), sizes, and training stages. Finally, we develop two novel techniques to modulate how new knowledge affects existing model behavior: (1) a ``stepping-stone'' text augmentation strategy and (2) an ``ignore-k'' update pruning method. These approaches reduce undesirable priming effects by 50-95\% while preserving the model's ability to learn new information. Our findings provide both empirical insights into how LLMs learn and practical tools for improving the specificity of knowledge insertion in language models. Further materials: https://sunchipsster1.github.io/projects/outlandish/
☆ MADLLM: Multivariate Anomaly Detection via Pre-trained LLMs ICME 2025
When applying pre-trained large language models (LLMs) to address anomaly detection tasks, the multivariate time series (MTS) modality of anomaly detection does not align with the text modality of LLMs. Existing methods simply transform the MTS data into multiple univariate time series sequences, which can cause many problems. This paper introduces MADLLM, a novel multivariate anomaly detection method via pre-trained LLMs. We design a new triple encoding technique to align the MTS modality with the text modality of LLMs. Specifically, this technique integrates the traditional patch embedding method with two novel embedding approaches: Skip Embedding, which alters the order of patch processing in traditional methods to help LLMs retain knowledge of previous features, and Feature Embedding, which leverages contrastive learning to allow the model to better understand the correlations between different features. Experimental results demonstrate that our method outperforms state-of-the-art methods in various public anomaly detection datasets.
comment: Accepted by IEEE International Conference on Multimedia & Expo 2025 (ICME 2025)
☆ Kongzi: A Historical Large Language Model with Fact Enhancement
The capabilities of the latest large language models (LLMs) have been extended from pure natural language understanding to complex reasoning tasks. However, current reasoning models often exhibit factual inaccuracies in longer reasoning chains, which poses challenges for historical reasoning and limits the potential of LLMs in complex, knowledge-intensive tasks. Historical studies require not only the accurate presentation of factual information but also the ability to establish cross-temporal correlations and derive coherent conclusions from fragmentary and often ambiguous sources. To address these challenges, we propose Kongzi, a large language model specifically designed for historical analysis. Through the integration of curated, high-quality historical data and a novel fact-reinforcement learning strategy, Kongzi demonstrates strong factual alignment and sophisticated reasoning depth. Extensive experiments on tasks such as historical question answering and narrative generation demonstrate that Kongzi outperforms existing models in both factual accuracy and reasoning depth. By effectively addressing the unique challenges inherent in historical texts, Kongzi sets a new standard for the development of accurate and reliable LLMs in professional domains.
comment: 22 pages, 12 figures
☆ HalluShift: Measuring Distribution Shifts towards Hallucination Detection in LLMs
Large Language Models (LLMs) have recently garnered widespread attention due to their adeptness at generating innovative responses to the given prompts across a multitude of domains. However, LLMs often suffer from the inherent limitation of hallucinations and generate incorrect information while maintaining well-structured and coherent responses. In this work, we hypothesize that hallucinations stem from the internal dynamics of LLMs. Our observations indicate that, during passage generation, LLMs tend to deviate from factual accuracy in subtle parts of responses, eventually shifting toward misinformation. This phenomenon bears a resemblance to human cognition, where individuals may hallucinate while maintaining logical coherence, embedding uncertainty within minor segments of their speech. To investigate this further, we introduce an innovative approach, HalluShift, designed to analyze the distribution shifts in the internal state space and token probabilities of the LLM-generated responses. Our method attains superior performance compared to existing baselines across various benchmark datasets. Our codebase is available at https://github.com/sharanya-dasgupta001/hallushift.
☆ Draw with Thought: Unleashing Multimodal Reasoning for Scientific Diagram Generation
Scientific diagrams are vital tools for communicating structured knowledge across disciplines. However, they are often published as static raster images, losing symbolic semantics and limiting reuse. While Multimodal Large Language Models (MLLMs) offer a pathway to bridging vision and structure, existing methods lack semantic control and structural interpretability, especially on complex diagrams. We propose Draw with Thought (DwT), a training-free framework that guides MLLMs to reconstruct diagrams into editable mxGraph XML code through cognitively-grounded Chain-of-Thought reasoning. DwT enables interpretable and controllable outputs without model fine-tuning by dividing the task into two stages: Coarse-to-Fine Planning, which handles perceptual structuring and semantic specification, and Structure-Aware Code Generation, enhanced by format-guided refinement. To support evaluation, we release Plot2XML, a benchmark of 247 real-world scientific diagrams with gold-standard XML annotations. Extensive experiments across eight MLLMs show that our approach yields high-fidelity, semantically aligned, and structurally valid reconstructions, with human evaluations confirming strong alignment in both accuracy and visual aesthetics, offering a scalable solution for converting static visuals into executable representations and advancing machine understanding of scientific graphics.
comment: 26 pages, 14 figures
☆ AdaSteer: Your Aligned LLM is Inherently an Adaptive Jailbreak Defender
Despite extensive efforts in safety alignment, large language models (LLMs) remain vulnerable to jailbreak attacks. Activation steering offers a training-free defense method but relies on fixed steering coefficients, resulting in suboptimal protection and increased false rejections of benign inputs. To address this, we propose AdaSteer, an adaptive activation steering method that dynamically adjusts model behavior based on input characteristics. We identify two key properties: Rejection Law (R-Law), which shows that stronger steering is needed for jailbreak inputs opposing the rejection direction, and Harmfulness Law (H-Law), which differentiates adversarial and benign inputs. AdaSteer steers input representations along both the Rejection Direction (RD) and Harmfulness Direction (HD), with adaptive coefficients learned via logistic regression, ensuring robust jailbreak defense while preserving benign input handling. Experiments on LLaMA-3.1, Gemma-2, and Qwen2.5 show that AdaSteer outperforms baseline methods across multiple jailbreak attacks with minimal impact on utility. Our results highlight the potential of interpretable model internals for real-time, flexible safety enforcement in LLMs.
comment: 17 pages, 6 figures, 9 tables
☆ BabyVLM: Data-Efficient Pretraining of VLMs Inspired by Infant Learning
Human infants rapidly develop visual reasoning skills from minimal input, suggesting that developmentally inspired pretraining could significantly enhance the efficiency of vision-language models (VLMs). Although recent efforts have leveraged infant-inspired datasets like SAYCam, existing evaluation benchmarks remain misaligned--they are either too simplistic, narrowly scoped, or tailored for large-scale pretrained models. Additionally, training exclusively on infant data overlooks the broader, diverse input from which infants naturally learn. To address these limitations, we propose BabyVLM, a novel framework comprising comprehensive in-domain evaluation benchmarks and a synthetic training dataset created via child-directed transformations of existing datasets. We demonstrate that VLMs trained with our synthetic dataset achieve superior performance on BabyVLM tasks compared to models trained solely on SAYCam or general-purpose data of the SAYCam size. BabyVLM thus provides a robust, developmentally aligned evaluation tool and illustrates how compact models trained on carefully curated data can generalize effectively, opening pathways toward data-efficient vision-language learning paradigms.
☆ ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model
Recent advances in reasoning with large language models (LLMs)has shown remarkable reasoning capabilities in domains such as mathematics and coding, yet their application to clinical diagnosis remains underexplored. Here, we introduce ClinicalGPT-R1, a reasoning enhanced generalist large language model for disease diagnosis. Trained on a dataset of 20,000 real-world clinical records, ClinicalGPT-R1 leverages diverse training strategies to enhance diagnostic reasoning. To benchmark performance, we curated MedBench-Hard, a challenging dataset spanning seven major medical specialties and representative diseases. Experimental results demonstrate that ClinicalGPT-R1 outperforms GPT-4o in Chinese diagnostic tasks and achieves comparable performance to GPT-4 in English settings. This comparative study effectively validates the superior performance of ClinicalGPT-R1 in disease diagnosis tasks. Resources are available at https://github.com/medfound/medfound.
comment: 8 pages, 6 figures
☆ SaRO: Enhancing LLM Safety through Reasoning-based Alignment
Current safety alignment techniques for large language models (LLMs) face two key challenges: (1) under-generalization, which leaves models vulnerable to novel jailbreak attacks, and (2) over-alignment, which leads to the excessive refusal of benign instructions. Our preliminary investigation reveals semantic overlap between jailbreak/harmful queries and normal prompts in embedding space, suggesting that more effective safety alignment requires a deeper semantic understanding. This motivates us to incorporate safety-policy-driven reasoning into the alignment process. To this end, we propose the Safety-oriented Reasoning Optimization Framework (SaRO), which consists of two stages: (1) Reasoning-style Warmup (RW) that enables LLMs to internalize long-chain reasoning through supervised fine-tuning, and (2) Safety-oriented Reasoning Process Optimization (SRPO) that promotes safety reflection via direct preference optimization (DPO). Extensive experiments demonstrate the superiority of SaRO over traditional alignment methods.
☆ UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
☆ Question Tokens Deserve More Attention: Enhancing Large Language Models without Training through Step-by-Step Reading and Question Attention Recalibration
Large Language Models (LLMs) often struggle with tasks that require a deep understanding of complex questions, especially when faced with long-range dependencies or multi-step reasoning. This work investigates the limitations of current LLMs in question comprehension and identifies three insights: (1) repeating question tokens improves comprehension by increasing attention to question regions, (2) increased backward dependencies negatively affect performance due to unidirectional attentional constraints, and (3) recalibrating attentional mechanisms to prioritize question-relevant regions improves performance. Based on these findings, we first propose a family of prompt-based strategies - Step-by-Step Reading (SSR), SSR+, and SSR++ - that guide LLMs to incrementally process question tokens and align their reasoning with the input structure. These methods significantly improve performance, with SSR++ achieving state-of-the-art results on several benchmarks: 96.66% on GSM8K, 94.61% on ASDiv, and 76.28% on AQuA. Second, we introduce a training-free attention recalibration mechanism that dynamically adjusts attention distributions during inference to emphasize question-relevant regions. This method improves the accuracy of LLaMA 3.1-8B on AQuA by 5.17% without changing model parameters or input prompts. Taken together, our results highlight the importance of structured prompt design and attention optimization in improving LLM comprehension, providing lightweight yet effective tools for improving performance in various NLP tasks.
comment: CIS 5300
☆ Composable NLP Workflows for BERT-based Ranking and QA System
There has been a lot of progress towards building NLP models that scale to multiple tasks. However, real-world systems contain multiple components and it is tedious to handle cross-task interaction with varying levels of text granularity. In this work, we built an end-to-end Ranking and Question-Answering (QA) system using Forte, a toolkit that makes composable NLP pipelines. We utilized state-of-the-art deep learning models such as BERT, RoBERTa in our pipeline, evaluated the performance on MS-MARCO and Covid-19 datasets using metrics such as BLUE, MRR, F1 and compared the results of ranking and QA systems with their corresponding benchmark results. The modular nature of our pipeline and low latency of reranker makes it easy to build complex NLP applications easily.
comment: 6 pages, 3 figures, 6 tables
☆ Evaluation Under Imperfect Benchmarks and Ratings: A Case Study in Text Simplification
Despite the successes of language models, their evaluation remains a daunting challenge for new and existing tasks. We consider the task of text simplification, commonly used to improve information accessibility, where evaluation faces two major challenges. First, the data in existing benchmarks might not reflect the capabilities of current language models on the task, often containing disfluent, incoherent, or simplistic examples. Second, existing human ratings associated with the benchmarks often contain a high degree of disagreement, resulting in inconsistent ratings; nevertheless, existing metrics still have to show higher correlations with these imperfect ratings. As a result, evaluation for the task is not reliable and does not reflect expected trends (e.g., more powerful models being assigned higher scores). We address these challenges for the task of text simplification through three contributions. First, we introduce SynthSimpliEval, a synthetic benchmark for text simplification featuring simplified sentences generated by models of varying sizes. Through a pilot study, we show that human ratings on our benchmark exhibit high inter-annotator agreement and reflect the expected trend: larger models produce higher-quality simplifications. Second, we show that auto-evaluation with a panel of LLM judges (LLMs-as-a-jury) often suffices to obtain consistent ratings for the evaluation of text simplification. Third, we demonstrate that existing learnable metrics for text simplification benefit from training on our LLMs-as-a-jury-rated synthetic data, closing the gap with pure LLMs-as-a-jury for evaluation. Overall, through our case study on text simplification, we show that a reliable evaluation requires higher quality test data, which could be obtained through synthetic data and LLMs-as-a-jury ratings.
comment: Submitted to COLM 2025. 9 pages, 6 figures
☆ Beyond Memorization: Mapping the Originality-Quality Frontier of Language Models
As large language models (LLMs) are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as the originality with respect to training data, but original outputs can be low quality. In contrast, non-expert judges may favor high-quality but memorized outputs, limiting the reliability of human preference as a metric. We propose a new novelty metric for LLM generations that balances originality and quality -- the harmonic mean of the fraction of \ngrams unseen during training and a task-specific quality score. We evaluate the novelty of generations from two families of open-data models (OLMo and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that LLM generated text is less novel than human written text. To elicit more novel outputs, we experiment with various inference-time methods, which reveals a trade-off between originality and quality. While these methods can boost novelty, they do so by increasing originality at the expense of quality. In contrast, increasing model size or applying post-training reliably shifts the Pareto frontier, highlighting that starting with a stronger base model is a more effective way to improve novelty.
☆ On Language Models' Sensitivity to Suspicious Coincidences
Humans are sensitive to suspicious coincidences when generalizing inductively over data, as they make assumptions as to how the data was sampled. This results in smaller, more specific hypotheses being favored over more general ones. For instance, when provided the set {Austin, Dallas, Houston}, one is more likely to think that this is sampled from "Texas Cities" over "US Cities" even though both are compatible. Suspicious coincidence is strongly connected to pragmatic reasoning, and can serve as a testbed to analyze systems on their sensitivity towards the communicative goals of the task (i.e., figuring out the true category underlying the data). In this paper, we analyze whether suspicious coincidence effects are reflected in language models' (LMs) behavior. We do so in the context of two domains: 1) the number game, where humans made judgments of whether a number (e.g., 4) fits a list of given numbers (e.g., 16, 32, 2); and 2) by extending the number game setup to prominent cities. For both domains, the data is compatible with multiple hypotheses and we study which hypothesis is most consistent with the models' behavior. On analyzing five models, we do not find strong evidence for suspicious coincidences in LMs' zero-shot behavior. However, when provided access to the hypotheses space via chain-of-thought or explicit prompting, LMs start to show an effect resembling suspicious coincidences, sometimes even showing effects consistent with humans. Our study suggests that inductive reasoning behavior in LMs can be enhanced with explicit access to the hypothesis landscape.
☆ Can you map it to English? The Role of Cross-Lingual Alignment in Multilingual Performance of LLMs
Large language models (LLMs) pre-trained predominantly on English text exhibit surprising multilingual capabilities, yet the mechanisms driving cross-lingual generalization remain poorly understood. This work investigates how the alignment of representations for text written in different languages correlates with LLM performance on natural language understanding tasks and translation tasks, both at the language and the instance level. For this purpose, we introduce cross-lingual alignment metrics such as the Discriminative Alignment Index (DALI) to quantify the alignment at an instance level for discriminative tasks. Through experiments on three natural language understanding tasks (Belebele, XStoryCloze, XCOPA), and machine translation, we find that while cross-lingual alignment metrics strongly correlate with task accuracy at the language level, the sample-level alignment often fails to distinguish correct from incorrect predictions, exposing alignment as a necessary but insufficient condition for success.
♻ ☆ Building A Proof-Oriented Programmer That Is 64% Better Than GPT-4o Under Data Scarcity
Existing LMs struggle with proof-oriented programming due to data scarcity, which manifest in two key ways: (1) a lack of sufficient corpora for proof-oriented programming languages such as F*, and (2) the absence of large-scale, project-level proof-oriented implementations that can teach the model the intricate reasoning process when performing proof-oriented programming. We present the first on synthetic data augmentation for project level proof oriented programming for both generation and repair. Our method addresses data scarcity by synthesizing basic proof-oriented programming problems for proficiency in that language; incorporating diverse coding data for reasoning capability elicitation and creating new proofs and repair data within existing repositories. This approach enables language models to both synthesize and repair proofs for function- and repository-level code. We show that our fine-tuned 14B parameter model, PoPilot, can exceed the performance of the models that outperforms GPT-4o in project-level proof-oriented programming by 64% relative margin, and can improve GPT-4o's performance by 54% by repairing its outputs over GPT-4o's self-repair.
♻ ☆ Ineffectiveness for Search and Undecidability of PCSP Meta-Problems
It is an open question whether the search and decision versions of promise CSPs are equivalent. Most known algorithms for PCSPs solve only their \emph{decision} variant, and it is unknown whether they can be adapted to solve \emph{search} as well. The main approaches, called BLP, AIP and BLP+AIP, handle a PCSP by finding a solution to a relaxation of some integer program. We prove that rounding those solutions to a proper search certificate can be as hard as any problem in the class TFNP. In other words, these algorithms are ineffective for search. Building on the algebraic approach to PCSPs, we find sufficient conditions that imply ineffectiveness for search. Our tools are tailored to algorithms that are characterized by minions in a suitable way, and can also be used to prove undecidability results for meta-problems. This way, we show that the families of templates solvable via BLP, AIP, and BLP+AIP are undecidable. Using the same techniques we also analyze several algebraic conditions that are known to guarantee the tractability of finite-template CSPs. We prove that several meta-problems related to cyclic polymorphims and WNUs are undecidable for PCSPs. In particular, there is no algorithm deciding whether a finite PCSP template (1) admits cyclic a polymorphism, (2) admits a WNU.
♻ ☆ Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network
In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.
comment: Incomplete Work
♻ ☆ Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. [First uploaded to arXiv in December, 2024.]
♻ ☆ KnowsLM: A framework for evaluation of small language models for knowledge augmentation and humanised conversations
In the evolving landscape of conversational AI, generating concise, context-aware, and human-like dialogue using small and medium-sized language models (LLMs) remains a complex challenge. This study investigates the influence of LoRA rank, dataset scale, and prompt prefix design on both knowledge retention and stylistic alignment. While fine-tuning improves fluency and enables stylistic customization, its ability to integrate unseen knowledge is constrained -- particularly with smaller datasets. Conversely, RAG-augmented models, equipped to incorporate external documents at inference, demonstrated superior factual accuracy on out-of-distribution prompts, though they lacked the stylistic consistency achieved by fine-tuning. Evaluations by LLM-based judges across knowledge accuracy, conversational quality, and conciseness suggest that fine-tuning is best suited for tone adaptation, whereas RAG excels at real-time knowledge augmentation.
♻ ☆ Plato: Plan to Efficiently Decode for Large Language Model Inference
Large language models (LLMs) have achieved remarkable success in natural language tasks, but their inference incurs substantial computational and memory overhead. To improve efficiency, parallel decoding methods like Skeleton-of-Thought (SoT) decompose prompts into sub-problems for concurrent processing. However, these methods significantly compromise answer quality by treating semantically linked sub-problems as independent. We propose Plato, a novel approach that co-designs algorithms and systems for semantic-aware parallel decoding. Plato leverages LLMs to organize sub-problems into a dependency graph based on logical and causal relationships, enabling concurrent decoding of non-dependent nodes while preserving answer coherence and quality. To further enhance efficiency, Plato pipelines planning and node decoding stages, implements a global context cache, and carefully structures node inference prompts to maximize key-value cache reuse and minimize overhead. Our evaluations show that Plato improves throughput by 68% over autoregressive decoding while achieving a 40% net win rate in answer quality. Compared to SoT, Plato demonstrates a remarkable 90% quality net-win rate. Ablation studies reveal that our pipeline design improves speedup by 29%, while our KV cache reuse optimization reduces overhead by 75%.
♻ ☆ Block-Attention for Efficient Prefilling ICLR 2025
We introduce Block-attention, an attention mechanism designed to address the increased inference latency and cost in Retrieval-Augmented Generation (RAG) scenarios. Traditional approaches often encode the entire context in an auto-regressive manner. Instead, Block-attention divides retrieved documents into discrete blocks, with each block independently calculating key-value (KV) states except for the final block. In RAG scenarios, by defining each passage as a block, Block-attention enables us to reuse the KV states of passages that have been seen before, thereby significantly reducing the latency and the computation overhead during inference. The implementation of Block-attention involves block segmentation, position re-encoding, and fine-tuning the LLM to adapt to the Block-attention mechanism. Experiments on 11 diverse benchmarks, including RAG, ICL, and general domains, demonstrate that after block fine-tuning, the Block-attention model not only achieves performance comparable to that of full-attention models, but can also seamlessly switch between the block and full attention modes without any performance loss. Notably, Block-attention significantly reduces the time to first token (TTFT) and floating point operations (FLOPs) to a very low level. It only takes 45 ms to output the first token for an input sequence with a total length of 32K. Compared to the full-attention models, the TTFT and corresponding FLOPs are reduced by 98.7% and 99.8%, respectively. Additionally, in Appendix A, we elaborate on how Block-attention is applied in Game AI scenario and the substantial potential benefits it entails. We strongly suggest researchers in the gaming field not to overlook this section.
comment: ICLR 2025
♻ ☆ Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. When properly balanced, we show that certain cognitive biases can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
comment: This work has been accepted as a full paper at the 2025 Annual Conference of the Cognitive Science Society (CogSci 2025) and will be presented in the form of a poster. The dataset and project website are available at: https://hanyangzhong.github.io/BRU-website/
♻ ☆ Improving Complex Reasoning with Dynamic Prompt Corruption: A soft prompt Optimization Approach ICLR 2025
Prompt-tuning (PT) for large language models (LLMs) can facilitate the performance on various conventional NLP tasks with significantly fewer trainable parameters. However, our investigation reveals that PT provides limited improvement and may even degrade the primitive performance of LLMs on complex reasoning tasks. Such a phenomenon suggests that soft prompts can positively impact certain instances while negatively affecting others, particularly during the later phases of reasoning. To address these challenges, We first identify an information accumulation within the soft prompts. Through detailed analysis, we demonstrate that this phenomenon is often accompanied by erroneous information flow patterns in the deeper layers of the model, which ultimately lead to incorrect reasoning outcomes. we propose a novel method called Dynamic Prompt Corruption (DPC) to take better advantage of soft prompts in complex reasoning tasks, which dynamically adjusts the influence of soft prompts based on their impact on the reasoning process. Specifically, DPC consists of two stages: Dynamic Trigger and Dynamic Corruption. First, Dynamic Trigger measures the impact of soft prompts, identifying whether beneficial or detrimental. Then, Dynamic Corruption mitigates the negative effects of soft prompts by selectively masking key tokens that interfere with the reasoning process. We validate the proposed approach through extensive experiments on various LLMs and reasoning tasks, including GSM8K, MATH, and AQuA. Experimental results demonstrate that DPC can consistently enhance the performance of PT, achieving 4%-8% accuracy gains compared to vanilla prompt tuning, highlighting the effectiveness of our approach and its potential to enhance complex reasoning in LLMs.
comment: Accepted by ICLR 2025
♻ ☆ Do "New Snow Tablets" Contain Snow? Large Language Models Over-Rely on Names to Identify Ingredients of Chinese Drugs
Traditional Chinese Medicine (TCM) has seen increasing adoption in healthcare, with specialized Large Language Models (LLMs) emerging to support clinical applications. A fundamental requirement for these models is accurate identification of TCM drug ingredients. In this paper, we evaluate how general and TCM-specialized LLMs perform when identifying ingredients of Chinese drugs. Our systematic analysis reveals consistent failure patterns: models often interpret drug names literally, overuse common herbs regardless of relevance, and exhibit erratic behaviors when faced with unfamiliar formulations. LLMs also fail to understand the verification task. These findings demonstrate that current LLMs rely primarily on drug names rather than possessing systematic pharmacological knowledge. To address these limitations, we propose a Retrieval Augmented Generation (RAG) approach focused on ingredient names. Experiments across 220 TCM formulations show our method significantly improves accuracy from approximately 50% to 82% in ingredient verification tasks. Our work highlights critical weaknesses in current TCM-specific LLMs and offers a practical solution for enhancing their clinical reliability.
♻ ☆ HEAR: Hearing Enhanced Audio Response for Video-grounded Dialogue EMNLP 2023
Video-grounded Dialogue (VGD) aims to answer questions regarding a given multi-modal input comprising video, audio, and dialogue history. Although there have been numerous efforts in developing VGD systems to improve the quality of their responses, existing systems are competent only to incorporate the information in the video and text and tend to struggle in extracting the necessary information from the audio when generating appropriate responses to the question. The VGD system seems to be deaf, and thus, we coin this symptom of current systems' ignoring audio data as a deaf response. To overcome the deaf response problem, Hearing Enhanced Audio Response (HEAR) framework is proposed to perform sensible listening by selectively attending to audio whenever the question requires it. The HEAR framework enhances the accuracy and audibility of VGD systems in a model-agnostic manner. HEAR is validated on VGD datasets (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows effectiveness with various VGD systems.
comment: EMNLP 2023, 14 pages, 13 figures
♻ ☆ From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.
♻ ☆ Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
♻ ☆ ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models
With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark. Additionally, we release a test set comprising 200,000 examples, which is publicly accessible at https://huggingface.co/datasets/SUSTech/ChineseSafe.
♻ ☆ Enabling Scalable Evaluation of Bias Patterns in Medical LLMs
Large language models (LLMs) have shown impressive potential in helping with numerous medical challenges. Deploying LLMs in high-stakes applications such as medicine, however, brings in many concerns. One major area of concern relates to biased behaviors of LLMs in medical applications, leading to unfair treatment of individuals. To pave the way for the responsible and impactful deployment of Med LLMs, rigorous evaluation is a key prerequisite. Due to the huge complexity and variability of different medical scenarios, existing work in this domain has primarily relied on using manually crafted datasets for bias evaluation. In this study, we present a new method to scale up such bias evaluations by automatically generating test cases based on rigorous medical evidence. We specifically target the challenges of a) domain-specificity of bias characterization, b) hallucinating while generating the test cases, and c) various dependencies between the health outcomes and sensitive attributes. To that end, we offer new methods to address these challenges integrated with our generative pipeline, using medical knowledge graphs, medical ontologies, and customized general LLM evaluation frameworks in our method. Through a series of extensive experiments, we show that the test cases generated by our proposed method can effectively reveal bias patterns in Med LLMs at larger and more flexible scales than human-crafted datasets. We publish a large bias evaluation dataset using our pipeline, which is dedicated to a few medical case studies. A live demo of our application for vignette generation is available at https://vignette.streamlit.app. Our code is also available at https://github.com/healthylaife/autofair.
Computation and Language
☆ Towards an Understanding of Context Utilization in Code Intelligence
Code intelligence is an emerging domain in software engineering, aiming to improve the effectiveness and efficiency of various code-related tasks. Recent research suggests that incorporating contextual information beyond the basic original task inputs (i.e., source code) can substantially enhance model performance. Such contextual signals may be obtained directly or indirectly from sources such as API documentation or intermediate representations like abstract syntax trees can significantly improve the effectiveness of code intelligence. Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence. To address this gap, we conduct an extensive literature review of 146 relevant studies published between September 2007 and August 2024. Our investigation yields four main contributions. (1) A quantitative analysis of the research landscape, including publication trends, venues, and the explored domains; (2) A novel taxonomy of context types used in code intelligence; (3) A task-oriented analysis investigating context integration strategies across diverse code intelligence tasks; (4) A critical evaluation of evaluation methodologies for context-aware methods. Based on these findings, we identify fundamental challenges in context utilization in current code intelligence systems and propose a research roadmap that outlines key opportunities for future research.
☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
☆ SWAN-GPT: An Efficient and Scalable Approach for Long-Context Language Modeling
We present a decoder-only Transformer architecture that robustly generalizes to sequence lengths substantially longer than those seen during training. Our model, SWAN-GPT, interleaves layers without positional encodings (NoPE) and sliding-window attention layers equipped with rotary positional encodings (SWA-RoPE). Experiments demonstrate strong performance on sequence lengths significantly longer than the training length without the need for additional long-context training. This robust length extrapolation is achieved through our novel architecture, enhanced by a straightforward dynamic scaling of attention scores during inference. In addition, SWAN-GPT is more computationally efficient than standard GPT architectures, resulting in cheaper training and higher throughput. Further, we demonstrate that existing pre-trained decoder-only models can be efficiently converted to the SWAN architecture with minimal continued training, enabling longer contexts. Overall, our work presents an effective approach for scaling language models to longer contexts in a robust and efficient manner.
☆ ModernBERT or DeBERTaV3? Examining Architecture and Data Influence on Transformer Encoder Models Performance
Pretrained transformer-encoder models like DeBERTaV3 and ModernBERT introduce architectural advancements aimed at improving efficiency and performance. Although the authors of ModernBERT report improved performance over DeBERTaV3 on several benchmarks, the lack of disclosed training data and the absence of comparisons using a shared dataset make it difficult to determine whether these gains are due to architectural improvements or differences in training data. In this work, we conduct a controlled study by pretraining ModernBERT on the same dataset as CamemBERTaV2, a DeBERTaV3 French model, isolating the effect of model design. Our results show that the previous model generation remains superior in sample efficiency and overall benchmark performance, with ModernBERT's primary advantage being faster training and inference speed. However, the new proposed model still provides meaningful architectural improvements compared to earlier models such as BERT and RoBERTa. Additionally, we observe that high-quality pre-training data accelerates convergence but does not significantly improve final performance, suggesting potential benchmark saturation. These findings show the importance of disentangling pretraining data from architectural innovations when evaluating transformer models.
comment: Preprint. Under review
☆ Generating Fine Details of Entity Interactions
Images not only depict objects but also encapsulate rich interactions between them. However, generating faithful and high-fidelity images involving multiple entities interacting with each other, is a long-standing challenge. While pre-trained text-to-image models are trained on large-scale datasets to follow diverse text instructions, they struggle to generate accurate interactions, likely due to the scarcity of training data for uncommon object interactions. This paper introduces InterActing, an interaction-focused dataset with 1000 fine-grained prompts covering three key scenarios: (1) functional and action-based interactions, (2) compositional spatial relationships, and (3) multi-subject interactions. To address interaction generation challenges, we propose a decomposition-augmented refinement procedure. Our approach, DetailScribe, built on Stable Diffusion 3.5, leverages LLMs to decompose interactions into finer-grained concepts, uses a VLM to critique generated images, and applies targeted interventions within the diffusion process in refinement. Automatic and human evaluations show significantly improved image quality, demonstrating the potential of enhanced inference strategies. Our dataset and code are available at https://concepts-ai.com/p/detailscribe/ to facilitate future exploration of interaction-rich image generation.
comment: Project Page: https://concepts-ai.com/p/detailscribe/
☆ Large Language Models as Span Annotators
For high-quality texts, single-score metrics seldom provide actionable feedback. In contrast, span annotation - pointing out issues in the text by annotating their spans - can guide improvements and provide insights. Until recently, span annotation was limited to human annotators or fine-tuned encoder models. In this study, we automate span annotation with large language models (LLMs). We compare expert or skilled crowdworker annotators with open and proprietary LLMs on three tasks: data-to-text generation evaluation, machine translation evaluation, and propaganda detection in human-written texts. In our experiments, we show that LLMs as span annotators are straightforward to implement and notably more cost-efficient than human annotators. The LLMs achieve moderate agreement with skilled human annotators, in some scenarios comparable to the average agreement among the annotators themselves. Qualitative analysis shows that reasoning models outperform their instruction-tuned counterparts and provide more valid explanations for annotations. We release the dataset of more than 40k model and human annotations for further research.
☆ TP-RAG: Benchmarking Retrieval-Augmented Large Language Model Agents for Spatiotemporal-Aware Travel Planning
Large language models (LLMs) have shown promise in automating travel planning, yet they often fall short in addressing nuanced spatiotemporal rationality. While existing benchmarks focus on basic plan validity, they neglect critical aspects such as route efficiency, POI appeal, and real-time adaptability. This paper introduces TP-RAG, the first benchmark tailored for retrieval-augmented, spatiotemporal-aware travel planning. Our dataset includes 2,348 real-world travel queries, 85,575 fine-grain annotated POIs, and 18,784 high-quality travel trajectory references sourced from online tourist documents, enabling dynamic and context-aware planning. Through extensive experiments, we reveal that integrating reference trajectories significantly improves spatial efficiency and POI rationality of the travel plan, while challenges persist in universality and robustness due to conflicting references and noisy data. To address these issues, we propose EvoRAG, an evolutionary framework that potently synergizes diverse retrieved trajectories with LLMs' intrinsic reasoning. EvoRAG achieves state-of-the-art performance, improving spatiotemporal compliance and reducing commonsense violation compared to ground-up and retrieval-augmented baselines. Our work underscores the potential of hybridizing Web knowledge with LLM-driven optimization, paving the way for more reliable and adaptive travel planning agents.
☆ Fast-Slow-Thinking: Complex Task Solving with Large Language Models
Nowadays, Large Language Models (LLMs) have been gradually employed to solve complex tasks. To face the challenge, task decomposition has become an effective way, which proposes to divide a complex task into multiple simpler subtasks and then solve them separately so that the difficulty of the original task can be reduced. However, the performance of existing task decomposition methods can be suboptimal when the task contains overly complex logic and constraints. In this situation, the solution generated by LLMs may deviate from the original purpose of the task, or contain redundant or even erroneous content. Therefore, inspired by the fact that humans possess two thinking systems including fast thinking and slow thinking, this paper introduces a new task decomposition method termed ``Fast-Slow-Thinking'' (FST), which stimulates LLMs to solve tasks through the cooperation of Fast Thinking (FT) and Slow Thinking (ST) steps. Here FT focuses more on the general and concise aspect of the task, and ST focuses more on the details of the task. In FT, LLMs are prompted to remove the constraints of the original task, therefore simplifying it to a general and concise one. In ST, we recall the constraints removed in FT, so that LLMs can improve the answer generated in FT to meet the requirements of the original task. Therefore, our FST method enables LLMs to consider a complex problem via a human-like cognition process from coarse to fine, the effectiveness of which has been well demonstrated by the experiments on three types of tasks.
comment: 37 pages, 7 figures
☆ Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning
Advancing LLM reasoning skills has captivated wide interest. However, current post-training techniques rely heavily on supervisory signals, such as outcome supervision or auxiliary reward models, which face the problem of scalability and high annotation costs. This motivates us to enhance LLM reasoning without the need for external supervision. We introduce a generalizable and purely unsupervised self-training framework, named Genius. Without external auxiliary, Genius requires to seek the optimal response sequence in a stepwise manner and optimize the LLM. To explore the potential steps and exploit the optimal ones, Genius introduces a stepwise foresight re-sampling strategy to sample and estimate the step value by simulating future outcomes. Further, we recognize that the unsupervised setting inevitably induces the intrinsic noise and uncertainty. To provide a robust optimization, we propose an advantage-calibrated optimization (ACO) loss function to mitigate estimation inconsistencies. Combining these techniques together, Genius provides an advanced initial step towards self-improve LLM reasoning with general queries and without supervision, revolutionizing reasoning scaling laws given the vast availability of general queries. The code will be released at https://github.com/xufangzhi/Genius.
comment: 14 pages, 7 figures
☆ Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
comment: Website: https://video-msg.github.io; The first three authors contributed equally
☆ Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
☆ A Survey of Machine Learning Models and Datasets for the Multi-label Classification of Textual Hate Speech in English
The dissemination of online hate speech can have serious negative consequences for individuals, online communities, and entire societies. This and the large volume of hateful online content prompted both practitioners', i.e., in content moderation or law enforcement, and researchers' interest in machine learning models to automatically classify instances of hate speech. Whereas most scientific works address hate speech classification as a binary task, practice often requires a differentiation into sub-types, e.g., according to target, severity, or legality, which may overlap for individual content. Hence, researchers created datasets and machine learning models that approach hate speech classification in textual data as a multi-label problem. This work presents the first systematic and comprehensive survey of scientific literature on this emerging research landscape in English (N=46). We contribute with a concise overview of 28 datasets suited for training multi-label classification models that reveals significant heterogeneity regarding label-set, size, meta-concept, annotation process, and inter-annotator agreement. Our analysis of 24 publications proposing suitable classification models further establishes inconsistency in evaluation and a preference for architectures based on Bidirectional Encoder Representation from Transformers (BERT) and Recurrent Neural Networks (RNNs). We identify imbalanced training data, reliance on crowdsourcing platforms, small and sparse datasets, and missing methodological alignment as critical open issues and formulate ten recommendations for research.
comment: 35 pages, 4 figures, 4 tables
☆ MedHal: An Evaluation Dataset for Medical Hallucination Detection
We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
☆ Playpen: An Environment for Exploring Learning Through Conversational Interaction
Are we running out of learning signal? Predicting the next word in an existing text has turned out to be a powerful signal, at least at scale. But there are signs that we are running out of this resource. In recent months, interaction between learner and feedback-giver has come into focus, both for "alignment" (with a reward model judging the quality of instruction following attempts) and for improving "reasoning" (process- and outcome-based verifiers judging reasoning steps). In this paper, we explore to what extent synthetic interaction in what we call Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can provide a learning signal, and how this signal can be used. We introduce an environment for producing such interaction data (with the help of a Large Language Model as counterpart to the learner model), both offline and online. We investigate the effects of supervised fine-tuning on this data, as well as reinforcement learning setups such as DPO, and GRPO; showing that all of these approaches achieve some improvements in in-domain games, but only GRPO demonstrates the ability to generalise to out-of-domain games as well as retain competitive performance in reference-based tasks. We release the framework and the baseline training setups in the hope that this can foster research in this promising new direction.
comment: Source code: https://github.com/lm-playpen/playpen Please send correspodence to: lm-playschool@googlegroups.com
☆ UoB-NLP at SemEval-2025 Task 11: Leveraging Adapters for Multilingual and Cross-Lingual Emotion Detection SemEval-2025
Emotion detection in natural language processing is a challenging task due to the complexity of human emotions and linguistic diversity. While significant progress has been made in high-resource languages, emotion detection in low-resource languages remains underexplored. In this work, we address multilingual and cross-lingual emotion detection by leveraging adapter-based fine-tuning with multilingual pre-trained language models. Adapters introduce a small number of trainable parameters while keeping the pre-trained model weights fixed, offering a parameter-efficient approach to adaptation. We experiment with different adapter tuning strategies, including task-only adapters, target-language-ready task adapters, and language-family-based adapters. Our results show that target-language-ready task adapters achieve the best overall performance, particularly for low-resource African languages with our team ranking 7th for Tigrinya, and 8th for Kinyarwanda in Track A. In Track C, our system ranked 3rd for Amharic, and 4th for Oromo, Tigrinya, Kinyarwanda, Hausa, and Igbo. Our approach outperforms large language models in 11 languages and matches their performance in four others, despite our models having significantly fewer parameters. Furthermore, we find that adapter-based models retain cross-linguistic transfer capabilities while requiring fewer computational resources compared to full fine-tuning for each language.
comment: Accepted to appear in Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
☆ Lexical Bundle Frequency as a Construct-Relevant Candidate Feature in Automated Scoring of L2 Academic Writing
Automated scoring (AS) systems are increasingly used for evaluating L2 writing, but require ongoing refinement for construct validity. While prior work suggested lexical bundles (LBs) - recurrent multi-word sequences satisfying certain frequency criteria - could inform assessment, their empirical integration into AS models needs further investigation. This study tested the impact of incorporating LB frequency features into an AS model for TOEFL independent writing tasks. Analyzing a sampled subcorpus (N=1,225 essays, 9 L1s) from the TOEFL11 corpus, scored by ETS-trained raters (Low, Medium, High), 3- to 9-word LBs were extracted, distinguishing prompt-specific from non-prompt types. A baseline Support Vector Machine (SVM) scoring model using established linguistic features (e.g., mechanics, cohesion, sophistication) was compared against an extended model including three aggregate LB frequency features (total prompt, total non-prompt, overall total). Results revealed significant, though generally small-effect, relationships between LB frequency (especially non-prompt bundles) and proficiency (p < .05). Mean frequencies suggested lower proficiency essays used more LBs overall. Critically, the LB-enhanced model improved agreement with human raters (Quadratic Cohen's Kappa +2.05%, overall Cohen's Kappa +5.63%), with notable gains for low (+10.1% exact agreement) and medium (+14.3% Cohen's Kappa) proficiency essays. These findings demonstrate that integrating aggregate LB frequency offers potential for developing more linguistically informed and accurate AS systems, particularly for differentiating developing L2 writers.
☆ On The Landscape of Spoken Language Models: A Comprehensive Survey
The field of spoken language processing is undergoing a shift from training custom-built, task-specific models toward using and optimizing spoken language models (SLMs) which act as universal speech processing systems. This trend is similar to the progression toward universal language models that has taken place in the field of (text) natural language processing. SLMs include both "pure" language models of speech -- models of the distribution of tokenized speech sequences -- and models that combine speech encoders with text language models, often including both spoken and written input or output. Work in this area is very diverse, with a range of terminology and evaluation settings. This paper aims to contribute an improved understanding of SLMs via a unifying literature survey of recent work in the context of the evolution of the field. Our survey categorizes the work in this area by model architecture, training, and evaluation choices, and describes some key challenges and directions for future work.
☆ Integrated ensemble of BERT- and features-based models for authorship attribution in Japanese literary works
Traditionally, authorship attribution (AA) tasks relied on statistical data analysis and classification based on stylistic features extracted from texts. In recent years, pre-trained language models (PLMs) have attracted significant attention in text classification tasks. However, although they demonstrate excellent performance on large-scale short-text datasets, their effectiveness remains under-explored for small samples, particularly in AA tasks. Additionally, a key challenge is how to effectively leverage PLMs in conjunction with traditional feature-based methods to advance AA research. In this study, we aimed to significantly improve performance using an integrated integrative ensemble of traditional feature-based and modern PLM-based methods on an AA task in a small sample. For the experiment, we used two corpora of literary works to classify 10 authors each. The results indicate that BERT is effective, even for small-sample AA tasks. Both BERT-based and classifier ensembles outperformed their respective stand-alone models, and the integrated ensemble approach further improved the scores significantly. For the corpus that was not included in the pre-training data, the integrated ensemble improved the F1 score by approximately 14 points, compared to the best-performing single model. Our methodology provides a viable solution for the efficient use of the ever-expanding array of data processing tools in the foreseeable future.
☆ Task Memory Engine (TME): Enhancing State Awareness for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. The full implementation of TME is available at https://github.com/biubiutomato/TME-Agent.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
☆ BOISHOMMO: Holistic Approach for Bangla Hate Speech
One of the most alarming issues in digital society is hate speech (HS) on social media. The severity is so high that researchers across the globe are captivated by this domain. A notable amount of work has been conducted to address the identification and alarm system. However, a noticeable gap exists, especially for low-resource languages. Comprehensive datasets are the main problem among the constrained resource languages, such as Bangla. Interestingly, hate speech or any particular speech has no single dimensionality. Similarly, the hate component can simultaneously have multiple abusive attributes, which seems to be missed in the existing datasets. Thus, a multi-label Bangla hate speech dataset named BOISHOMMO has been compiled and evaluated in this work. That includes categories of HS across race, gender, religion, politics, and more. With over two thousand annotated examples, BOISHOMMO provides a nuanced understanding of hate speech in Bangla and highlights the complexities of processing non-Latin scripts. Apart from evaluating with multiple algorithmic approaches, it also highlights the complexities of processing Bangla text and assesses model performance. This unique multi-label approach enriches future hate speech detection and analysis studies for low-resource languages by providing a more nuanced, diverse dataset.
☆ Beyond Self-Reports: Multi-Observer Agents for Personality Assessment in Large Language Models
There is a growing interest in assessing the personality traits of Large language models (LLMs). However, traditional personality assessments based on self-report questionnaires may fail to capture their true behavioral nuances due to inherent biases and meta-knowledge contamination. This paper introduces a novel multi-observer framework for LLM personality assessment that draws inspiration from informant-report methods in psychology. Instead of relying solely on self-assessments, our approach employs multiple observer agents configured with a specific relationship context (e.g., family, friend, or workplace) to simulate interactive scenarios with a subject LLM. These observers engage in dialogues and subsequently provide ratings across the Big Five personality dimensions. Our experiments reveal that LLMs possess systematic biases in self-report personality ratings. Moreover, aggregating observer ratings effectively reduces non-systematic biases and achieves optimal reliability with 5-7 observers. The findings highlight the significant impact of relationship context on personality perception and demonstrate that a multi-observer paradigm yields a more robust and context-sensitive evaluation of LLM personality traits.
comment: 13 pages, 5 figures, 2 tables
☆ Scholar Inbox: Personalized Paper Recommendations for Scientists
Scholar Inbox is a new open-access platform designed to address the challenges researchers face in staying current with the rapidly expanding volume of scientific literature. We provide personalized recommendations, continuous updates from open-access archives (arXiv, bioRxiv, etc.), visual paper summaries, semantic search, and a range of tools to streamline research workflows and promote open research access. The platform's personalized recommendation system is trained on user ratings, ensuring that recommendations are tailored to individual researchers' interests. To further enhance the user experience, Scholar Inbox also offers a map of science that provides an overview of research across domains, enabling users to easily explore specific topics. We use this map to address the cold start problem common in recommender systems, as well as an active learning strategy that iteratively prompts users to rate a selection of papers, allowing the system to learn user preferences quickly. We evaluate the quality of our recommendation system on a novel dataset of 800k user ratings, which we make publicly available, as well as via an extensive user study. https://www.scholar-inbox.com/
comment: https://www.scholar-inbox.com/
☆ FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
☆ MedRep: Medical Concept Representation for General Electronic Health Record Foundation Models
Electronic health record (EHR) foundation models have been an area ripe for exploration with their improved performance in various medical tasks. Despite the rapid advances, there exists a fundamental limitation: Processing unseen medical codes out of the vocabulary. This problem limits the generality of EHR foundation models and the integration of models trained with different vocabularies. To deal with this problem, we propose MedRep for EHR foundation models based on the observational medical outcome partnership (OMOP) common data model (CDM), providing the integrated medical concept representations and the basic data augmentation strategy for patient trajectories. For concept representation learning, we enrich the information of each concept with a minimal definition through large language model (LLM) prompts and enhance the text-based representations through graph ontology of OMOP vocabulary. Trajectory augmentation randomly replaces selected concepts with other similar concepts that have closely related representations to let the model practice with the concepts out-of-vocabulary. Finally, we demonstrate that EHR foundation models trained with MedRep better maintain the prediction performance in external datasets. Our code implementation is publicly available at https://github.com/kicarussays/MedRep.
comment: Under review
☆ Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
☆ ELSA: A Style Aligned Dataset for Emotionally Intelligent Language Generation
Advancements in emotion aware language processing increasingly shape vital NLP applications ranging from conversational AI and affective computing to computational psychology and creative content generation. Existing emotion datasets either lack emotional granularity or fail to capture necessary stylistic diversity, limiting the advancement of effective emotion conditioned text generation systems. Seeking to bridge this crucial gap between granularity and style diversity, this paper introduces a novel systematically constructed dataset named ELSA Emotion and Language Style Alignment Dataset leveraging fine grained emotion taxonomies adapted from existing sources such as dair ai emotion dataset and GoEmotions taxonomy. This dataset comprises multiple emotionally nuanced variations of original sentences regenerated across distinct contextual styles such as conversational, formal, poetic, and narrative, using advanced Large Language Models LLMs. Rigorous computational evaluation using metrics such as perplexity, embedding variance, readability, lexical diversity, and semantic coherence measures validates the datasets emotional authenticity, linguistic fluency, and textual diversity. Comprehensive metric analyses affirm its potential to support deeper explorations into emotion conditioned style adaptive text generation. By enabling precision tuned emotionally nuanced language modeling, our dataset creates fertile ground for research on fine grained emotional control, prompt driven explanation, interpretability, and style adaptive expressive language generation with LLMs.
comment: 8 pages
☆ Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation
Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation.
☆ VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering
The increasing availability of multimodal data across text, tables, and images presents new challenges for developing models capable of complex cross-modal reasoning. Existing methods for Multimodal Multi-hop Question Answering (MMQA) often suffer from limited reasoning capabilities, reliance on modality conversion, and inadequate alignment between visual and textual representations. To address these limitations, this paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a transformer-based vision encoder with a sequence-to-sequence language model. VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space, eliminating the need for intermediate projection layers. To enhance cross-modal alignment and reasoning, a three-stage pretraining strategy is proposed to progressively align vision-language representations and improve the model's capacity for multimodal understanding. Based on the pretrained backbone, two task-specific modules are instantiated to form a two-stage MMQA framework: a multimodal reranker that predicts document relevance scores and utilizes a relative threshold with top-k strategy for context retrieval, and a multimodal question answering model that generates contextually grounded answers based on the retrieved evidence. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach. On MultimodalQA validation set, VLMT-Large achieves 76.5% Exact Match and 80.1% F1, outperforming the previous state-of-the-art by +9.1% in Exact Match and +8.8% in F1. On WebQA, it attains a QA score of 47.6, surpassing prior models such as PERQA by +3.2. These results highlight VLMT's strong capabilities in multimodal reasoning and its potential to advance real-world information retrieval and question answering systems.
☆ Evaluating the Bias in LLMs for Surveying Opinion and Decision Making in Healthcare
Generative agents have been increasingly used to simulate human behaviour in silico, driven by large language models (LLMs). These simulacra serve as sandboxes for studying human behaviour without compromising privacy or safety. However, it remains unclear whether such agents can truly represent real individuals. This work compares survey data from the Understanding America Study (UAS) on healthcare decision-making with simulated responses from generative agents. Using demographic-based prompt engineering, we create digital twins of survey respondents and analyse how well different LLMs reproduce real-world behaviours. Our findings show that some LLMs fail to reflect realistic decision-making, such as predicting universal vaccine acceptance. However, Llama 3 captures variations across race and Income more accurately but also introduces biases not present in the UAS data. This study highlights the potential of generative agents for behavioural research while underscoring the risks of bias from both LLMs and prompting strategies.
☆ Millions of States: Designing a Scalable MoE Architecture with RWKV-7 Meta-learner
State-based sequence models like RWKV-7 offer a compelling alternative to Transformer architectures, achieving linear complexity while demonstrating greater expressive power in short-context scenarios and enabling state tracking beyond the \(\text{TC}^0\) complexity class. However, RWKV-7 lacks mechanisms for token-parameter interactions and native scalability, limiting its adaptability and growth without retraining. In this paper, we propose \textbf{Meta-State}, a novel extension to RWKV-7 that replaces attention mechanisms with a fully state-driven approach, integrating token-parameter interactions through a \textbf{Self-State Encoder} (SSE) mechanism. The SSE repurposes a portion of the RWKV-7 Weighted Key-Value (WKV) state as transformation weights to encode token-parameter interactions in a linear, state-driven manner without introducing new trainable matrices or softmax operations, while preserving the autoregressive property of token processing. Meta-State supports progressive model scaling by expanding the WKV state and parameter tokens, reusing existing parameters without retraining. Our approach bridges the gap between state-based modeling, token-parameter interactions, and scalable architectures, offering a flexible framework for efficient and adaptable sequence modeling with linear complexity and constant memory usage.
☆ Out of Style: RAG's Fragility to Linguistic Variation
Despite the impressive performance of Retrieval-augmented Generation (RAG) systems across various NLP benchmarks, their robustness in handling real-world user-LLM interaction queries remains largely underexplored. This presents a critical gap for practical deployment, where user queries exhibit greater linguistic variations and can trigger cascading errors across interdependent RAG components. In this work, we systematically analyze how varying four linguistic dimensions (formality, readability, politeness, and grammatical correctness) impact RAG performance. We evaluate two retrieval models and nine LLMs, ranging from 3 to 72 billion parameters, across four information-seeking Question Answering (QA) datasets. Our results reveal that linguistic reformulations significantly impact both retrieval and generation stages, leading to a relative performance drop of up to 40.41% in Recall@5 scores for less formal queries and 38.86% in answer match scores for queries containing grammatical errors. Notably, RAG systems exhibit greater sensitivity to such variations compared to LLM-only generations, highlighting their vulnerability to error propagation due to linguistic shifts. These findings highlight the need for improved robustness techniques to enhance reliability in diverse user interactions.
☆ Big Meaning: Qualitative Analysis on Large Bodies of Data Using AI
This study introduces a framework that leverages AI-generated descriptive codes to indicate a text's fecundity--the density of unique human-generated codes--in thematic analysis. Rather than replacing human interpretation, AI-generated codes guide the selection of texts likely to yield richer qualitative insights. Using a dataset of 2,530 Malaysian news articles on refugee attitudes, we compare AI-selected documents to randomly chosen ones by having three human coders independently derive codes. The results demonstrate that AI-selected texts exhibit approximately twice the fecundity. Our findings support the use of AI-generated codes as an effective proxy for identifying documents with a high potential for meaning-making in thematic analysis.
comment: arXiv admin note: text overlap with arXiv:2504.07408
☆ LLM for Comparative Narrative Analysis
In this paper, we conducted a Multi-Perspective Comparative Narrative Analysis (CNA) on three prominent LLMs: GPT-3.5, PaLM2, and Llama2. We applied identical prompts and evaluated their outputs on specific tasks, ensuring an equitable and unbiased comparison between various LLMs. Our study revealed that the three LLMs generated divergent responses to the same prompt, indicating notable discrepancies in their ability to comprehend and analyze the given task. Human evaluation was used as the gold standard, evaluating four perspectives to analyze differences in LLM performance.
comment: 5 pages, 4 figures, Appendix included
☆ Harnessing the Unseen: The Hidden Influence of Intrinsic Knowledge in Long-Context Language Models
Recent advances in long-context models (LCMs), designed to handle extremely long input contexts, primarily focus on utilizing external contextual information, often leaving the influence of large language models' intrinsic knowledge underexplored. In this work, we investigate how this intrinsic knowledge affects content generation and demonstrate that its impact becomes increasingly pronounced as context length extends. Furthermore, we show that the model's ability to utilize intrinsic knowledge, which we call intrinsic retrieval ability, does not improve simultaneously with its ability to leverage contextual knowledge through extrinsic retrieval ability. Moreover, better extrinsic retrieval can interfere with the model's ability to use its own knowledge effectively, limiting its full potential. To bridge this gap, we design a simple yet effective Hybrid Needle-in-a-Haystack test that evaluates models based on their capabilities across both retrieval abilities, rather than solely emphasizing extrinsic retrieval ability. Our experimental results reveal that Qwen-2.5 models significantly outperform Llama-3.1 models, demonstrating superior intrinsic retrieval ability. Moreover, even the more powerful Llama-3.1-70B-Instruct model fails to exhibit better performance under LCM conditions, highlighting the importance of evaluating models from a dual-retrieval perspective.
comment: 21 pages,11figures
☆ SAEs $\textit{Can}$ Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs
Machine unlearning is a promising approach to improve LLM safety by removing unwanted knowledge from the model. However, prevailing gradient-based unlearning methods suffer from issues such as high computational costs, hyperparameter instability, poor sequential unlearning capability, vulnerability to relearning attacks, low data efficiency, and lack of interpretability. While Sparse Autoencoders are well-suited to improve these aspects by enabling targeted activation-based unlearning, prior approaches underperform gradient-based methods. This work demonstrates that, contrary to these earlier findings, SAEs can significantly improve unlearning when employed dynamically. We introduce $\textbf{Dynamic DAE Guardrails}$ (DSG), a novel method for precision unlearning that leverages principled feature selection and a dynamic classifier. Our experiments show DSG substantially outperforms leading unlearning methods, achieving superior forget-utility trade-offs. DSG addresses key drawbacks of gradient-based approaches for unlearning -- offering enhanced computational efficiency and stability, robust performance in sequential unlearning, stronger resistance to relearning attacks, better data efficiency including zero-shot settings, and more interpretable unlearning.
♻ ☆ Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
♻ ☆ Localizing and Mitigating Errors in Long-form Question Answering
Long-form question answering (LFQA) aims to provide thorough and in-depth answers to complex questions, enhancing comprehension. However, such detailed responses are prone to hallucinations and factual inconsistencies, challenging their faithful evaluation. This work introduces HaluQuestQA, the first hallucination dataset with localized error annotations for human-written and model-generated LFQA answers. HaluQuestQA comprises 698 QA pairs with 1.8k span-level error annotations for five different error types by expert annotators, along with preference judgments. Using our collected data, we thoroughly analyze the shortcomings of long-form answers and find that they lack comprehensiveness and provide unhelpful references. We train an automatic feedback model on this dataset that predicts error spans with incomplete information and provides associated explanations. Finally, we propose a prompt-based approach, Error-informed refinement, that uses signals from the learned feedback model to refine generated answers, which we show reduces errors and improves answer quality across multiple models. Furthermore, humans find answers generated by our approach comprehensive and highly prefer them (84%) over the baseline answers.
comment: Code and data are available: https://github.com/UKPLab/arxiv2024-lfqa-hallucination
♻ ☆ An Empirical Study of Conformal Prediction in LLM with ASP Scaffolds for Robust Reasoning
In this paper, we examine the use of Conformal Language Modelling (CLM) alongside Answer Set Programming (ASP) to enhance the performance of standard open-weight LLMs on complex multi-step reasoning tasks. Using the StepGame dataset, which requires spatial reasoning, we apply CLM to generate sets of ASP programs from an LLM, providing statistical guarantees on the correctness of the outputs. Experimental results show that CLM significantly outperforms baseline models that use standard sampling methods, achieving substantial accuracy improvements across different levels of reasoning complexity. Additionally, the LLM-as-Judge metric enhances CLM's performance, especially in assessing structurally and logically correct ASP outputs. However, calibrating CLM with diverse calibration sets did not improve generalizability for tasks requiring much longer reasoning steps, indicating limitations in handling more complex tasks.
♻ ☆ Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
♻ ☆ BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering ACL 2023
Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry. Our code is available at https://github.com/probe2/BUCA.
comment: ACL 2023
♻ ☆ DSBench: How Far Are Data Science Agents from Becoming Data Science Experts?
Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have demonstrated impressive language/vision reasoning abilities, igniting the recent trend of building agents for targeted applications such as shopping assistants or AI software engineers. Recently, many data science benchmarks have been proposed to investigate their performance in the data science domain. However, existing data science benchmarks still fall short when compared to real-world data science applications due to their simplified settings. To bridge this gap, we introduce DSBench, a comprehensive benchmark designed to evaluate data science agents with realistic tasks. This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions. DSBench offers a realistic setting by encompassing long contexts, multimodal task backgrounds, reasoning with large data files and multi-table structures, and performing end-to-end data modeling tasks. Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG). These findings underscore the need for further advancements in developing more practical, intelligent, and autonomous data science agents.
♻ ☆ UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for Biomedical Entity Recognition
Pre-trained transformer language models (LMs) have in recent years become the dominant paradigm in applied NLP. These models have achieved state-of-the-art performance on tasks such as information extraction, question answering, sentiment analysis, document classification and many others. In the biomedical domain, significant progress has been made in adapting this paradigm to NLP tasks that require the integration of domain-specific knowledge as well as statistical modelling of language. In particular, research in this area has focused on the question of how best to construct LMs that take into account not only the patterns of token distribution in medical text, but also the wealth of structured information contained in terminology resources such as the UMLS. This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS. This allows for graph-based learning objectives to be combined with masked-language pre-training. Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
comment: Addition of v2 experiments
♻ ☆ A Federated Approach to Few-Shot Hate Speech Detection for Marginalized Communities
Hate speech online remains an understudied issue for marginalized communities, particularly in the Global South, which includes developing societies with increasing internet penetration. In this paper, we aim to provide marginalized communities in societies where the dominant language is low-resource with a privacy-preserving tool to protect themselves from online hate speech by filtering offensive content in their native languages. Our contributions are twofold: 1) we release REACT (REsponsive hate speech datasets Across ConTexts), a collection of high-quality, culture-specific hate speech detection datasets comprising multiple target groups and low-resource languages, curated by experienced data collectors; 2) we propose a few-shot hate speech detection approach based on federated learning (FL), a privacy-preserving method for collaboratively training a central model that exhibits robustness when tackling different target groups and languages. By keeping training local to user devices, we ensure data privacy while leveraging the collective learning benefits of FL. Furthermore, we explore personalized client models tailored to specific target groups and evaluate their performance. Our findings indicate the overall effectiveness of FL across different target groups, and point to personalization as a promising direction.
♻ ☆ SemEval-2025 Task 5: LLMs4Subjects -- LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog SemEval 2025
We present SemEval-2025 Task 5: LLMs4Subjects, a shared task on automated subject tagging for scientific and technical records in English and German using the GND taxonomy. Participants developed LLM-based systems to recommend top-k subjects, evaluated through quantitative metrics (precision, recall, F1-score) and qualitative assessments by subject specialists. Results highlight the effectiveness of LLM ensembles, synthetic data generation, and multilingual processing, offering insights into applying LLMs for digital library classification.
comment: 10 pages, 4 figures, Accepted as SemEval 2025 Task 5 description paper
♻ ☆ Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa
♻ ☆ Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs
We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
comment: fix conflicts of latex pacakges
♻ ☆ IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models
The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT
comment: 13 pages, 5 figures
♻ ☆ Attribution in Scientific Literature: New Benchmark and Methods
Large language models (LLMs) present a promising yet challenging frontier for automated source citation in scientific communication. Previous approaches to citation generation have been limited by citation ambiguity and LLM overgeneralization. We introduce REASONS, a novel dataset with sentence-level annotations across 12 scientific domains from arXiv. Our evaluation framework covers two key citation scenarios: indirect queries (matching sentences to paper titles) and direct queries (author attribution), both enhanced with contextual metadata. We conduct extensive experiments with models such as GPT-O1, GPT-4O, GPT-3.5, DeepSeek, and other smaller models like Perplexity AI (7B). While top-tier LLMs achieve high performance in sentence attribution, they struggle with high hallucination rates, a key metric for scientific reliability. Our metadata-augmented approach reduces hallucination rates across all tasks, offering a promising direction for improvement. Retrieval-augmented generation (RAG) with Mistral improves performance in indirect queries, reducing hallucination rates by 42% and maintaining competitive precision with larger models. However, adversarial testing highlights challenges in linking paper titles to abstracts, revealing fundamental limitations in current LLMs. REASONS provides a challenging benchmark for developing reliable and trustworthy LLMs in scientific applications
comment: Work in progress
♻ ☆ ScaffoldGPT: A Scaffold-based GPT Model for Drug Optimization
Drug optimization has become increasingly crucial in light of fast-mutating virus strains and drug-resistant cancer cells. Nevertheless, it remains challenging as it necessitates retaining the beneficial properties of the original drug while simultaneously enhancing desired attributes beyond its scope. In this work, we aim to tackle this challenge by introducing ScaffoldGPT, a novel Generative Pretrained Transformer (GPT) designed for drug optimization based on molecular scaffolds. Our work comprises three key components: (1) A three-stage drug optimization approach that integrates pretraining, finetuning, and decoding optimization. (2) A uniquely designed two-phase incremental training approach for pre-training the drug optimization GPT on molecule scaffold with enhanced performance. (3) A token-level decoding optimization strategy, TOP-N, that enabling controlled, reward-guided generation using pretrained/finetuned GPT. We demonstrate via a comprehensive evaluation on COVID and cancer benchmarks that ScaffoldGPT outperforms the competing baselines in drug optimization benchmarks, while excelling in preserving original functional scaffold and enhancing desired properties.
♻ ☆ A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves $\times$255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining $\times$100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models will be released at https://github.com/Jayce1kk/GSDP.
♻ ☆ EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.
♻ ☆ MathSpeech: Leveraging Small LMs for Accurate Conversion in Mathematical Speech-to-Formula AAAI 2025
In various academic and professional settings, such as mathematics lectures or research presentations, it is often necessary to convey mathematical expressions orally. However, reading mathematical expressions aloud without accompanying visuals can significantly hinder comprehension, especially for those who are hearing-impaired or rely on subtitles due to language barriers. For instance, when a presenter reads Euler's Formula, current Automatic Speech Recognition (ASR) models often produce a verbose and error-prone textual description (e.g., e to the power of i x equals cosine of x plus i $\textit{side}$ of x), instead of the concise $\LaTeX{}$ format (i.e., $ e^{ix} = \cos(x) + i\sin(x) $), which hampers clear understanding and communication. To address this issue, we introduce MathSpeech, a novel pipeline that integrates ASR models with small Language Models (sLMs) to correct errors in mathematical expressions and accurately convert spoken expressions into structured $\LaTeX{}$ representations. Evaluated on a new dataset derived from lecture recordings, MathSpeech demonstrates $\LaTeX{}$ generation capabilities comparable to leading commercial Large Language Models (LLMs), while leveraging fine-tuned small language models of only 120M parameters. Specifically, in terms of CER, BLEU, and ROUGE scores for $\LaTeX{}$ translation, MathSpeech demonstrated significantly superior capabilities compared to GPT-4o. We observed a decrease in CER from 0.390 to 0.298, and higher ROUGE/BLEU scores compared to GPT-4o.
comment: Accepted at AAAI 2025
♻ ☆ IFShip: Interpretable Fine-grained Ship Classification with Domain Knowledge-Enhanced Vision-Language Models
End-to-end interpretation currently dominates the remote sensing fine-grained ship classification (RS-FGSC) task. However, the inference process remains uninterpretable, leading to criticisms of these models as "black box" systems. To address this issue, we propose a domain knowledge-enhanced Chain-of-Thought (CoT) prompt generation mechanism, which is used to semi-automatically construct a task-specific instruction-following dataset, TITANIC-FGS. By training on TITANIC-FGS, we adapt general-domain vision-language models (VLMs) to the FGSC task, resulting in a model named IFShip. Building upon IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results show that IFShip outperforms state-of-the-art FGSC algorithms in both interpretability and classification accuracy. Furthermore, compared to VLMs such as LLaVA and MiniGPT-4, IFShip demonstrates superior performance on the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not.
♻ ☆ Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ Holistic Capability Preservation: Towards Compact Yet Comprehensive Reasoning Models
This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
comment: Based on the further discussion of the working group, the current version is deemed unsuitable for release. We are currently undertaking further work that is expected to involve significant revisions, but this process will require some additional time. We plan to proceed with the release once these updates have been fully implemented
♻ ☆ Missing Premise exacerbates Overthinking: Are Reasoning Models losing Critical Thinking Skill?
We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.
♻ ☆ From Small to Large Language Models: Revisiting the Federalist Papers
For a long time, the authorship of the Federalist Papers had been a subject of inquiry and debate, not only by linguists and historians but also by statisticians. In what was arguably the first Bayesian case study, Mosteller and Wallace (1963) provided the first statistical evidence for attributing all disputed papers to Madison. Our paper revisits this historical dataset but from a lens of modern language models, both small and large. We review some of the more popular Large Language Model (LLM) tools and examine them from a statistical point of view in the context of text classification. We investigate whether, without any attempt to fine-tune, the general embedding constructs can be useful for stylometry and attribution. We explain differences between various word/phrase embeddings and discuss how to aggregate them in a document. Contrary to our expectations, we exemplify that dimension expansion with word embeddings may not always be beneficial for attribution relative to dimension reduction with topic embeddings. Our experiments demonstrate that default LLM embeddings (even after manual fine-tuning) may not consistently improve authorship attribution accuracy. Instead, Bayesian analysis with topic embeddings trained on ``function words" yields superior out-of-sample classification performance. This suggests that traditional (small) statistical language models, with their interpretability and solid theoretical foundation, can offer significant advantages in authorship attribution tasks. The code used in this analysis is available at github.com/sowonjeong/slm-to-llm
Computation and Language
☆ Cat, Rat, Meow: On the Alignment of Language Model and Human Term-Similarity Judgments ICLR 2025
Small and mid-sized generative language models have gained increasing attention. Their size and availability make them amenable to being analyzed at a behavioral as well as a representational level, allowing investigations of how these levels interact. We evaluate 32 publicly available language models for their representational and behavioral alignment with human similarity judgments on a word triplet task. This provides a novel evaluation setting to probe semantic associations in language beyond common pairwise comparisons. We find that (1) even the representations of small language models can achieve human-level alignment, (2) instruction-tuned model variants can exhibit substantially increased agreement, (3) the pattern of alignment across layers is highly model dependent, and (4) alignment based on models' behavioral responses is highly dependent on model size, matching their representational alignment only for the largest evaluated models.
comment: ICLR 2025 Workshop on Representational Alignment (Re-Align)
☆ VCR-Bench: A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning
The advancement of Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs) and large vision-language models (LVLMs). However, a rigorous evaluation framework for video CoT reasoning remains absent. Current video benchmarks fail to adequately assess the reasoning process and expose whether failures stem from deficiencies in perception or reasoning capabilities. Therefore, we introduce VCR-Bench, a novel benchmark designed to comprehensively evaluate LVLMs' Video Chain-of-Thought Reasoning capabilities. VCR-Bench comprises 859 videos spanning a variety of video content and durations, along with 1,034 high-quality question-answer pairs. Each pair is manually annotated with a stepwise CoT rationale, where every step is tagged to indicate its association with the perception or reasoning capabilities. Furthermore, we design seven distinct task dimensions and propose the CoT score to assess the entire CoT process based on the stepwise tagged CoT rationals. Extensive experiments on VCR-Bench highlight substantial limitations in current LVLMs. Even the top-performing model, o1, only achieves a 62.8% CoT score and an 56.7% accuracy, while most models score below 40%. Experiments show most models score lower on perception than reasoning steps, revealing LVLMs' key bottleneck in temporal-spatial information processing for complex video reasoning. A robust positive correlation between the CoT score and accuracy confirms the validity of our evaluation framework and underscores the critical role of CoT reasoning in solving complex video reasoning tasks. We hope VCR-Bench to serve as a standardized evaluation framework and expose the actual drawbacks in complex video reasoning task.
☆ Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.
comment: Github page: https://github.com/linkangheng/PR1
☆ Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory
Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.
comment: https://github.com/suzgunmirac/dynamic-cheatsheet
☆ Redefining Machine Translation on Social Network Services with Large Language Models
The globalization of social interactions has heightened the need for machine translation (MT) on Social Network Services (SNS), yet traditional models struggle with culturally nuanced content like memes, slang, and pop culture references. While large language models (LLMs) have advanced general-purpose translation, their performance on SNS-specific content remains limited due to insufficient specialized training data and evaluation benchmarks. This paper introduces RedTrans, a 72B LLM tailored for SNS translation, trained on a novel dataset developed through three innovations: (1) Supervised Finetuning with Dual-LLM Back-Translation Sampling, an unsupervised sampling method using LLM-based back-translation to select diverse data for large-scale finetuning; (2) Rewritten Preference Optimization (RePO), an algorithm that identifies and corrects erroneous preference pairs through expert annotation, building reliable preference corpora; and (3) RedTrans-Bench, the first benchmark for SNS translation, evaluating phenomena like humor localization, emoji semantics, and meme adaptation. Experiments show RedTrans outperforms state-of-the-art LLMs. Besides, RedTrans has already been deployed in a real-world production environment, demonstrating that domain-specific adaptation, effectively bridges the gap between generic and culturally grounded translation systems.
☆ How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective
Recent studies have shown that large language models (LLMs) can assess relevance and support information retrieval (IR) tasks such as document ranking and relevance judgment generation. However, the internal mechanisms by which off-the-shelf LLMs understand and operationalize relevance remain largely unexplored. In this paper, we systematically investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability. Using activation patching techniques, we analyze the roles of various model components and identify a multi-stage, progressive process in generating either pointwise or pairwise relevance judgment. Specifically, LLMs first extract query and document information in the early layers, then process relevance information according to instructions in the middle layers, and finally utilize specific attention heads in the later layers to generate relevance judgments in the required format. Our findings provide insights into the mechanisms underlying relevance assessment in LLMs, offering valuable implications for future research on leveraging LLMs for IR tasks.
☆ Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge
Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents. However, their increasing integration into critical societal domains has raised concerns about embedded biases, which can perpetuate stereotypes and compromise fairness. These biases stem from various sources, including historical inequalities in training data, linguistic imbalances, and adversarial manipulation. Despite mitigation efforts, recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses. This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation. Our methodology involves (i) systematically probing models with a multi-task approach targeting biases across various sociocultural dimensions, (ii) quantifying robustness through safety scores using an LLM-as-a-Judge approach for automated assessment of model responses, and (iii) employing jailbreak techniques to investigate vulnerabilities in safety mechanisms. Our analysis examines prevalent biases in both small and large state-of-the-art models and their impact on model safety. Additionally, we assess the safety of domain-specific models fine-tuned for critical fields, such as medicine. Finally, we release a curated dataset of bias-related prompts, CLEAR-Bias, to facilitate systematic vulnerability benchmarking. Our findings reveal critical trade-offs between model size and safety, aiding the development of fairer and more robust future language models.
☆ Token Level Routing Inference System for Edge Devices ACL
The computational complexity of large language model (LLM) inference significantly constrains their deployment efficiency on edge devices. In contrast, small language models offer faster decoding and lower resource consumption but often suffer from degraded response quality and heightened susceptibility to hallucinations. To address this trade-off, collaborative decoding, in which a large model assists in generating critical tokens, has emerged as a promising solution. This paradigm leverages the strengths of both model types by enabling high-quality inference through selective intervention of the large model, while maintaining the speed and efficiency of the smaller model. In this work, we present a novel collaborative decoding inference system that allows small models to perform on-device inference while selectively consulting a cloud-based large model for critical token generation. Remarkably, the system achieves a 60% performance gain on CommonsenseQA using only a 0.5B model on an M1 MacBook, with under 7% of tokens generation uploaded to the large model in the cloud.
comment: 6 pages, 8 figures, under review of ACL system demo
☆ Dual Engines of Thoughts: A Depth-Breadth Integration Framework for Open-Ended Analysis
We propose the Dual Engines of Thoughts (DEoT), an analytical framework for comprehensive open-ended reasoning. While traditional reasoning frameworks primarily focus on finding "the best answer" or "the correct answer" for single-answer problems, DEoT is specifically designed for "open-ended questions," enabling both broader and deeper analytical exploration. The framework centers on three key components: a Base Prompter for refining user queries, a Solver Agent that orchestrates task decomposition, execution, and validation, and a Dual-Engine System consisting of a Breadth Engine (to explore diverse impact factors) and a Depth Engine (to perform deep investigations). This integrated design allows DEoT to balance wide-ranging coverage with in-depth analysis, and it is highly customizable, enabling users to adjust analytical parameters and tool configurations based on specific requirements. Experimental results show that DEoT excels in addressing complex, multi-faceted questions, achieving a total win rate of 77-86% compared to existing reasoning models, thus highlighting its effectiveness in real-world applications.
☆ Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs
We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
☆ The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models
Practically all large language models have been pre-trained on data that is subject to global uncertainty related to copyright infringement and breach of contract. This creates potential risk for users and developers due to this uncertain legal status. The KL3M Data Project directly confronts this critical issue by introducing the largest comprehensive training data pipeline that minimizes risks related to copyright or breach of contract. The foundation of this project is a corpus of over 132 million documents and trillions of tokens spanning 16 different sources that have been verified to meet the strict copyright and licensing protocol detailed herein. We are releasing the entire pipeline, including 1) the source code to acquire and process these documents, 2) the original document formats with associated provenance and metadata, 3) extracted content in a standardized format, 4) pre-tokenized representations of the documents, and 5) various mid- and post-train resources such as question-answer, summarization, conversion, drafting, classification, prediction, and conversational data. All of these resources are freely available to the public on S3, Hugging Face, and GitHub under CC-BY terms. We are committed to continuing this project in furtherance of a more ethical, legal, and sustainable approach to the development and use of AI models.
comment: 27 pages, 7 figures, 9 table
☆ Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines
Large Language Models (LLMs) have transformed human-computer interaction by enabling natural language-based communication with AI-powered chatbots. These models are designed to be intuitive and user-friendly, allowing users to articulate requests with minimal effort. However, despite their accessibility, studies reveal that users often struggle with effective prompting, resulting in inefficient responses. Existing research has highlighted both the limitations of LLMs in interpreting vague or poorly structured prompts and the difficulties users face in crafting precise queries. This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting. We introduce and compare three types of prompting guidelines: a task-specific framework developed through a structured methodology and two baseline approaches. To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users. Using Von NeuMidas, an extended pragmatic annotation schema for LLM interaction analysis, we categorize common prompting errors and identify recurring behavioral patterns. We then evaluate the impact of different guidelines by examining changes in user behavior, adherence to prompting strategies, and the overall quality of AI-generated responses. Our findings provide a deeper understanding of how users engage with LLMs and the role of structured prompting guidance in enhancing AI-assisted communication. By comparing different instructional frameworks, we offer insights into more effective approaches for improving user competency in AI interactions, with implications for AI literacy, chatbot usability, and the design of more responsive AI systems.
comment: Accepted for AIED 2025, the 26th International Conference on Artificial Intelligence in Education, July 22 - 26, 2025, Palermo, Italy
☆ Deceptive Automated Interpretability: Language Models Coordinating to Fool Oversight Systems
We demonstrate how AI agents can coordinate to deceive oversight systems using automated interpretability of neural networks. Using sparse autoencoders (SAEs) as our experimental framework, we show that language models (Llama, DeepSeek R1, and Claude 3.7 Sonnet) can generate deceptive explanations that evade detection. Our agents employ steganographic methods to hide information in seemingly innocent explanations, successfully fooling oversight models while achieving explanation quality comparable to reference labels. We further find that models can scheme to develop deceptive strategies when they believe the detection of harmful features might lead to negative consequences for themselves. All tested LLM agents were capable of deceiving the overseer while achieving high interpretability scores comparable to those of reference labels. We conclude by proposing mitigation strategies, emphasizing the critical need for robust understanding and defenses against deception.
☆ MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
We present a novel, open-source social network simulation framework, MOSAIC, where generative language agents predict user behaviors such as liking, sharing, and flagging content. This simulation combines LLM agents with a directed social graph to analyze emergent deception behaviors and gain a better understanding of how users determine the veracity of online social content. By constructing user representations from diverse fine-grained personas, our system enables multi-agent simulations that model content dissemination and engagement dynamics at scale. Within this framework, we evaluate three different content moderation strategies with simulated misinformation dissemination, and we find that they not only mitigate the spread of non-factual content but also increase user engagement. In addition, we analyze the trajectories of popular content in our simulations, and explore whether simulation agents' articulated reasoning for their social interactions truly aligns with their collective engagement patterns. We open-source our simulation software to encourage further research within AI and social sciences.
comment: Work in progress. 22 pages
☆ MuSaRoNews: A Multidomain, Multimodal Satire Dataset from Romanian News Articles
Satire and fake news can both contribute to the spread of false information, even though both have different purposes (one if for amusement, the other is to misinform). However, it is not enough to rely purely on text to detect the incongruity between the surface meaning and the actual meaning of the news articles, and, often, other sources of information (e.g., visual) provide an important clue for satire detection. This work introduces a multimodal corpus for satire detection in Romanian news articles named MuSaRoNews. Specifically, we gathered 117,834 public news articles from real and satirical news sources, composing the first multimodal corpus for satire detection in the Romanian language. We conducted experiments and showed that the use of both modalities improves performance.
comment: 10 pages, 9 figures
☆ What the HellaSwag? On the Validity of Common-Sense Reasoning Benchmarks
Common-sense reasoning is a key language model capability because it encapsulates not just specific factual knowledge but rather general language and world understanding. Measuring common-sense reasoning, therefore, is crucial for language models of different sizes and applications. One of the most widely used benchmarks for evaluating such capabilities is HellaSwag; however, in this paper, we show that it has severe construct validity issues. These issues range from basic ungrammaticality and numerous typos to misleading prompts or equally correct options. Furthermore, we show that if models are evaluated only on answer texts, or with "Lorem ipsum dolor..." instead of the question, more than 65% of model predictions remain the same, and this cannot be attributed merely to contamination. Since benchmark scores are an essential part of model selection in both research and commercial applications, these validity issues can have severe consequences. In particular, knowing that taking benchmark scores at face value is ubiquitous, inadequate evaluation leads to ill-informed decisions about models. In this paper, we thoroughly investigate critical validity issues posed by HellaSwag and illustrate them with various evaluations using generative language models of different sizes. We argue that this benchmark does not accurately measure common-sense reasoning and, therefore, should not be used for evaluation in its current state. Based on the results of our study, we propose requirements that should be met by future common-sense reasoning benchmarks. In addition, we release GoldenSwag, a corrected subset of HellaSwag, which, to our belief, facilitates acceptable common-sense reasoning evaluation.
☆ Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning (C-Prune), a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that C-Prune effectively reduces model size while outperforming existing MoE pruning methods.
☆ A System for Comprehensive Assessment of RAG Frameworks
Retrieval Augmented Generation (RAG) has emerged as a standard paradigm for enhancing the factual accuracy and contextual relevance of Large Language Models (LLMs) by integrating retrieval mechanisms. However, existing evaluation frameworks fail to provide a holistic black-box approach to assessing RAG systems, especially in real-world deployment scenarios. To address this gap, we introduce SCARF (System for Comprehensive Assessment of RAG Frameworks), a modular and flexible evaluation framework designed to benchmark deployed RAG applications systematically. SCARF provides an end-to-end, black-box evaluation methodology, enabling a limited-effort comparison across diverse RAG frameworks. Our framework supports multiple deployment configurations and facilitates automated testing across vector databases and LLM serving strategies, producing a detailed performance report. Moreover, SCARF integrates practical considerations such as response coherence, providing a scalable and adaptable solution for researchers and industry professionals evaluating RAG applications. Using the REST APIs interface, we demonstrate how SCARF can be applied to real-world scenarios, showcasing its flexibility in assessing different RAG frameworks and configurations. SCARF is available at GitHub repository.
comment: Technical Report, 7 pages, 2 figures, 1 table
☆ Plan-and-Refine: Diverse and Comprehensive Retrieval-Augmented Generation
This paper studies the limitations of (retrieval-augmented) large language models (LLMs) in generating diverse and comprehensive responses, and introduces the Plan-and-Refine (P&R) framework based on a two phase system design. In the global exploration phase, P&R generates a diverse set of plans for the given input, where each plan consists of a list of diverse query aspects with corresponding additional descriptions. This phase is followed by a local exploitation phase that generates a response proposal for the input query conditioned on each plan and iteratively refines the proposal for improving the proposal quality. Finally, a reward model is employed to select the proposal with the highest factuality and coverage. We conduct our experiments based on the ICAT evaluation methodology--a recent approach for answer factuality and comprehensiveness evaluation. Experiments on the two diverse information seeking benchmarks adopted from non-factoid question answering and TREC search result diversification tasks demonstrate that P&R significantly outperforms baselines, achieving up to a 13.1% improvement on the ANTIQUE dataset and a 15.41% improvement on the TREC dataset. Furthermore, a smaller scale user study confirms the substantial efficacy of the P&R framework.
☆ Efficient Tuning of Large Language Models for Knowledge-Grounded Dialogue Generation ACL
Large language models (LLMs) demonstrate remarkable text comprehension and generation capabilities but often lack the ability to utilize up-to-date or domain-specific knowledge not included in their training data. To address this gap, we introduce KEDiT, an efficient method for fine-tuning LLMs for knowledge-grounded dialogue generation. KEDiT operates in two main phases: first, it employs an information bottleneck to compress retrieved knowledge into learnable parameters, retaining essential information while minimizing computational overhead. Second, a lightweight knowledge-aware adapter integrates these compressed knowledge vectors into the LLM during fine-tuning, updating less than 2\% of the model parameters. The experimental results on the Wizard of Wikipedia and a newly constructed PubMed-Dialog dataset demonstrate that KEDiT excels in generating contextually relevant and informative responses, outperforming competitive baselines in automatic, LLM-based, and human evaluations. This approach effectively combines the strengths of pretrained LLMs with the adaptability needed for incorporating dynamic knowledge, presenting a scalable solution for fields such as medicine.
comment: Accepted at TACL; pre-MIT Press publication version. Code and data are available at https://github.com/zhangbo-nlp/KEDiT
☆ NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark
This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokm{\aa}l and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.
☆ Zero-Shot Cross-Domain Code Search without Fine-Tuning
Code search aims to retrieve semantically relevant code snippets for natural language queries. While pre-trained language models (PLMs) have shown remarkable performance in this task, they struggle in cross-domain scenarios, often requiring costly fine-tuning or facing performance drops in zero-shot settings. RAPID, which generates synthetic data for model fine-tuning, is currently the only effective method for zero-shot cross-domain code search. Despite its effectiveness, RAPID demands substantial computational resources for fine-tuning and needs to maintain specialized models for each domain, underscoring the need for a zero-shot, fine-tuning-free approach for cross-domain code search. The key to tackling zero-shot cross-domain code search lies in bridging the gaps among domains. In this work, we propose to break the query-code matching process of code search into two simpler tasks: query-comment matching and code-code matching. Our empirical study reveals the strong complementarity among the three matching schemas in zero-shot cross-domain settings, i.e., query-code, query-comment, and code-code matching. Based on the findings, we propose CodeBridge, a zero-shot, fine-tuning-free approach for cross-domain code search. Specifically, CodeBridge uses Large Language Models (LLMs) to generate comments and pseudo-code, then combines query-code, query-comment, and code-code matching via PLM-based similarity scoring and sampling-based fusion. Experimental results show that our approach outperforms the state-of-the-art PLM-based code search approaches, i.e., CoCoSoDa and UniXcoder, by an average of 21.4% and 24.9% in MRR, respectively, across three datasets. Our approach also yields results that are better than or comparable to those of the zero-shot cross-domain code search approach RAPID, which requires costly fine-tuning.
☆ Automated Construction of a Knowledge Graph of Nuclear Fusion Energy for Effective Elicitation and Retrieval of Information
In this document, we discuss a multi-step approach to automated construction of a knowledge graph, for structuring and representing domain-specific knowledge from large document corpora. We apply our method to build the first knowledge graph of nuclear fusion energy, a highly specialized field characterized by vast scope and heterogeneity. This is an ideal benchmark to test the key features of our pipeline, including automatic named entity recognition and entity resolution. We show how pre-trained large language models can be used to address these challenges and we evaluate their performance against Zipf's law, which characterizes human-generated natural language. Additionally, we develop a knowledge-graph retrieval-augmented generation system that combines large language models with a multi-prompt approach. This system provides contextually relevant answers to natural-language queries, including complex multi-hop questions that require reasoning across interconnected entities.
☆ DeepGreen: Effective LLM-Driven Green-washing Monitoring System Designed for Empirical Testing -- Evidence from China
This paper proposes DeepGreen, an Large Language Model Driven (LLM-Driven) system for detecting corporate green-washing behaviour. Utilizing dual-layer LLM analysis, DeepGreen preliminarily identifies potential green keywords in financial statements and then assesses their implementation degree via iterative semantic analysis of LLM. A core variable GreenImplement is derived from the ratio from the two layers' output. We extract 204 financial statements of 68 companies from A-share market over three years, comprising 89,893 words, and analyse them through DeepGreen. Our analysis, supported by violin plots and K-means clustering, reveals insights and validates the variable against the Huazheng ESG rating. It offers a novel perspective for regulatory agencies and investors, serving as a proactive monitoring tool that complements traditional methods.Empirical tests show that green implementation can significantly boost the asset return rate of companies, but there is heterogeneity in scale. Small and medium-sized companies have limited contribution to asset return via green implementation, so there is a stronger motivation for green-washing.
☆ MRD-RAG: Enhancing Medical Diagnosis with Multi-Round Retrieval-Augmented Generation
In recent years, accurately and quickly deploying medical large language models (LLMs) has become a significant trend. Among these, retrieval-augmented generation (RAG) has garnered significant attention due to its features of rapid deployment and privacy protection. However, existing medical RAG frameworks still have shortcomings. Most existing medical RAG frameworks are designed for single-round question answering tasks and are not suitable for multi-round diagnostic dialogue. On the other hand, existing medical multi-round RAG frameworks do not consider the interconnections between potential diseases to inquire precisely like a doctor. To address these issues, we propose a Multi-Round Diagnostic RAG (MRD-RAG) framework that mimics the doctor's diagnostic process. This RAG framework can analyze diagnosis information of potential diseases and accurately conduct multi-round diagnosis like a doctor. To evaluate the effectiveness of our proposed frameworks, we conduct experiments on two modern medical datasets and two traditional Chinese medicine datasets, with evaluations by GPT and human doctors on different methods. The results indicate that our RAG framework can significantly enhance the diagnostic performance of LLMs, highlighting the potential of our approach in medical diagnosis. The code and data can be found in our project website https://github.com/YixiangCh/MRD-RAG/tree/master.
☆ Proactive User Information Acquisition via Chats on User-Favored Topics
Chat-oriented dialogue systems designed to provide tangible benefits, such as sharing the latest news or preventing frailty in senior citizens, often require Proactive acquisition of specific user Information via chats on user-faVOred Topics (PIVOT). This study proposes the PIVOT task, designed to advance the technical foundation for these systems. In this task, a system needs to acquire the answers of a user to predefined questions without making the user feel abrupt while engaging in a chat on a predefined topic. We found that even recent large language models (LLMs) show a low success rate in the PIVOT task. We constructed a dataset suitable for the analysis to develop more effective systems. Finally, we developed a simple but effective system for this task by incorporating insights obtained through the analysis of this dataset.
comment: 23 pages
☆ Context-Aware Monolingual Human Evaluation of Machine Translation
This paper explores the potential of context-aware monolingual human evaluation for assessing machine translation (MT) when no source is given for reference. To this end, we compare monolingual with bilingual evaluations (with source text), under two scenarios: the evaluation of a single MT system, and the comparative evaluation of pairwise MT systems. Four professional translators performed both monolingual and bilingual evaluations by assigning ratings and annotating errors, and providing feedback on their experience. Our findings suggest that context-aware monolingual human evaluation achieves comparable outcomes to human bilingual evaluations, and suggest the feasibility and potential of monolingual evaluation as an efficient approach to assessing MT.
☆ Synthetic Fluency: Hallucinations, Confabulations, and the Creation of Irish Words in LLM-Generated Translations
This study examines hallucinations in Large Language Model (LLM) translations into Irish, specifically focusing on instances where the models generate novel, non-existent words. We classify these hallucinations within verb and noun categories, identifying six distinct patterns among the latter. Additionally, we analyse whether these hallucinations adhere to Irish morphological rules and what linguistic tendencies they exhibit. Our findings show that while both GPT-4.o and GPT-4.o Mini produce similar types of hallucinations, the Mini model generates them at a significantly higher frequency. Beyond classification, the discussion raises speculative questions about the implications of these hallucinations for the Irish language. Rather than seeking definitive answers, we offer food for thought regarding the increasing use of LLMs and their potential role in shaping Irish vocabulary and linguistic evolution. We aim to prompt discussion on how such technologies might influence language over time, particularly in the context of low-resource, morphologically rich languages.
☆ Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design
The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (\textbf{MACU}) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce \textbf{NamBert}, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.
☆ On the Temporal Question-Answering Capabilities of Large Language Models Over Anonymized Data
The applicability of Large Language Models (LLMs) in temporal reasoning tasks over data that is not present during training is still a field that remains to be explored. In this paper we work on this topic, focusing on structured and semi-structured anonymized data. We not only develop a direct LLM pipeline, but also compare various methodologies and conduct an in-depth analysis. We identified and examined seventeen common temporal reasoning tasks in natural language, focusing on their algorithmic components. To assess LLM performance, we created the \textit{Reasoning and Answering Temporal Ability} dataset (RATA), featuring semi-structured anonymized data to ensure reliance on reasoning rather than on prior knowledge. We compared several methodologies, involving SoTA techniques such as Tree-of-Thought, self-reflexion and code execution, tuned specifically for this scenario. Our results suggest that achieving scalable and reliable solutions requires more than just standalone LLMs, highlighting the need for integrated approaches.
comment: 18 pages, 7 tables, 5 figures
☆ CollEX -- A Multimodal Agentic RAG System Enabling Interactive Exploration of Scientific Collections
In this paper, we introduce CollEx, an innovative multimodal agentic Retrieval-Augmented Generation (RAG) system designed to enhance interactive exploration of extensive scientific collections. Given the overwhelming volume and inherent complexity of scientific collections, conventional search systems often lack necessary intuitiveness and interactivity, presenting substantial barriers for learners, educators, and researchers. CollEx addresses these limitations by employing state-of-the-art Large Vision-Language Models (LVLMs) as multimodal agents accessible through an intuitive chat interface. By abstracting complex interactions via specialized agents equipped with advanced tools, CollEx facilitates curiosity-driven exploration, significantly simplifying access to diverse scientific collections and records therein. Our system integrates textual and visual modalities, supporting educational scenarios that are helpful for teachers, pupils, students, and researchers by fostering independent exploration as well as scientific excitement and curiosity. Furthermore, CollEx serves the research community by discovering interdisciplinary connections and complementing visual data. We illustrate the effectiveness of our system through a proof-of-concept application containing over 64,000 unique records across 32 collections from a local scientific collection from a public university.
☆ ConceptFormer: Towards Efficient Use of Knowledge-Graph Embeddings in Large Language Models
Retrieval Augmented Generation (RAG) has enjoyed increased attention in the recent past and recent advancements in Large Language Models (LLMs) have highlighted the importance of integrating world knowledge into these systems. Current RAG methodologies often modify the internal architecture of pre-trained language models (PLMs) or rely on textifying knowledge graphs (KGs), which is inefficient in terms of token usage. This paper introduces ConceptFormer, a new approach to augment LLMs with structured knowledge from KGs, such as Wikidata, without altering their internal structure or relying on textual input of KGs. ConceptFormer operates in the LLM embedding vector space, creating and injecting \emph{concept vectors} that encapsulate the information of the KG nodes directly. Trained in conjunction with a frozen LLM, ConceptFormer generates a comprehensive lookup table that maps KG nodes to their respective concept vectors. The approach aims to enhance the factual recall capabilities of LLMs by enabling them to process these concept vectors natively, thus enriching them with structured world knowledge in an efficient and scalable manner. Our experiments demonstrate that the addition of concept vectors to GPT-2 0.1B substantially increases its factual recall ability (Hit@10) by up to 272\% when tested on sentences from Wikipedia and up to 348\% on synthetically generated sentences. Even injecting only a single concept vector into the prompt increases factual recall ability (Hit@10) by up to 213\% on Wikipedia sentences, significantly outperforming RAG with graph textification while consuming 130x fewer input tokens.
☆ VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages
☆ SaRoHead: A Dataset for Satire Detection in Romanian Multi-Domain News Headlines
The headline is an important part of a news article, influenced by expressiveness and connection to the exposed subject. Although most news outlets aim to present reality objectively, some publications prefer a humorous approach in which stylistic elements of satire, irony, and sarcasm blend to cover specific topics. Satire detection can be difficult because a headline aims to expose the main idea behind a news article. In this paper, we propose SaRoHead, the first corpus for satire detection in Romanian multi-domain news headlines. Our findings show that the clickbait used in some non-satirical headlines significantly influences the model.
comment: 5 pages, 1 figure
☆ Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa
☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
☆ Supervised Optimism Correction: Be Confident When LLMs Are Sure
In this work, we establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning under the token-level Markov decision process, revealing that large language models indeed learn an implicit $Q$-function for inference. Through this theoretical lens, we demonstrate that the widely used beam search method suffers from unacceptable over-optimism, where inference errors are inevitably amplified due to inflated $Q$-value estimations of suboptimal steps. To address this limitation, we propose Supervised Optimism Correction(SOC), which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations during supervised fine-tuning. Specifically, the auxiliary loss employs implicit value regularization to boost model confidence in expert-demonstrated responses, thereby suppressing over-optimism toward insufficiently supervised responses. Extensive experiments on mathematical reasoning benchmarks, including GSM8K, MATH, and GAOKAO, showcase the superiority of the proposed SOC with beam search across a series of open-source models.
☆ Geological Inference from Textual Data using Word Embeddings
This research explores the use of Natural Language Processing (NLP) techniques to locate geological resources, with a specific focus on industrial minerals. By using word embeddings trained with the GloVe model, we extract semantic relationships between target keywords and a corpus of geological texts. The text is filtered to retain only words with geographical significance, such as city names, which are then ranked by their cosine similarity to the target keyword. Dimensional reduction techniques, including Principal Component Analysis (PCA), Autoencoder, Variational Autoencoder (VAE), and VAE with Long Short-Term Memory (VAE-LSTM), are applied to enhance feature extraction and improve the accuracy of semantic relations. For benchmarking, we calculate the proximity between the ten cities most semantically related to the target keyword and identified mine locations using the haversine equation. The results demonstrate that combining NLP with dimensional reduction techniques provides meaningful insights into the spatial distribution of natural resources. Although the result shows to be in the same region as the supposed location, the accuracy has room for improvement.
Transformer-Based Temporal Information Extraction and Application: A Review
Temporal information extraction (IE) aims to extract structured temporal information from unstructured text, thereby uncovering the implicit timelines within. This technique is applied across domains such as healthcare, newswire, and intelligence analysis, aiding models in these areas to perform temporal reasoning and enabling human users to grasp the temporal structure of text. Transformer-based pre-trained language models have produced revolutionary advancements in natural language processing, demonstrating exceptional performance across a multitude of tasks. Despite the achievements garnered by Transformer-based approaches in temporal IE, there is a lack of comprehensive reviews on these endeavors. In this paper, we aim to bridge this gap by systematically summarizing and analyzing the body of work on temporal IE using Transformers while highlighting potential future research directions.
☆ Defense against Prompt Injection Attacks via Mixture of Encodings
Large Language Models (LLMs) have emerged as a dominant approach for a wide range of NLP tasks, with their access to external information further enhancing their capabilities. However, this introduces new vulnerabilities, known as prompt injection attacks, where external content embeds malicious instructions that manipulate the LLM's output. Recently, the Base64 defense has been recognized as one of the most effective methods for reducing success rate of prompt injection attacks. Despite its efficacy, this method can degrade LLM performance on certain NLP tasks. To address this challenge, we propose a novel defense mechanism: mixture of encodings, which utilizes multiple character encodings, including Base64. Extensive experimental results show that our method achieves one of the lowest attack success rates under prompt injection attacks, while maintaining high performance across all NLP tasks, outperforming existing character encoding-based defense methods. This underscores the effectiveness of our mixture of encodings strategy for both safety and task performance metrics.
☆ Beyond LLMs: A Linguistic Approach to Causal Graph Generation from Narrative Texts NAACL 2025
We propose a novel framework for generating causal graphs from narrative texts, bridging high-level causality and detailed event-specific relationships. Our method first extracts concise, agent-centered vertices using large language model (LLM)-based summarization. We introduce an "Expert Index," comprising seven linguistically informed features, integrated into a Situation-Task-Action-Consequence (STAC) classification model. This hybrid system, combining RoBERTa embeddings with the Expert Index, achieves superior precision in causal link identification compared to pure LLM-based approaches. Finally, a structured five-iteration prompting process refines and constructs connected causal graphs. Experiments on 100 narrative chapters and short stories demonstrate that our approach consistently outperforms GPT-4o and Claude 3.5 in causal graph quality, while maintaining readability. The open-source tool provides an interpretable, efficient solution for capturing nuanced causal chains in narratives.
comment: published at the 7th Workshop on Narrative Understanding, NAACL 2025
☆ LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
comment: 24 pages, 7 figures, 20 tables
☆ Revisiting LLM Evaluation through Mechanism Interpretability: a New Metric and Model Utility Law
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. In this paper, we analyze the core limitations of traditional evaluation pipelines and propose a novel metric, the Model Utilization Index (MUI), which introduces mechanism interpretability techniques to complement traditional performance metrics. MUI quantifies the extent to which a model leverages its capabilities to complete tasks. The core idea is that to assess an LLM's overall ability, we must evaluate not only its task performance but also the effort expended to achieve the outcome. Our extensive experiments reveal an inverse relationship between MUI and performance, from which we deduce a common trend observed in popular LLMs, which we term the Utility Law. Based on this, we derive four corollaries that address key challenges, including training judgement, the issue of data contamination, fairness in model comparison, and data diversity. We hope that our survey, novel metric, and utility law will foster mutual advancement in both evaluation and mechanism interpretability. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.
☆ LLM4Ranking: An Easy-to-use Framework of Utilizing Large Language Models for Document Reranking
Utilizing large language models (LLMs) for document reranking has been a popular and promising research direction in recent years, many studies are dedicated to improving the performance and efficiency of using LLMs for reranking. Besides, it can also be applied in many real-world applications, such as search engines or retrieval-augmented generation. In response to the growing demand for research and application in practice, we introduce a unified framework, \textbf{LLM4Ranking}, which enables users to adopt different ranking methods using open-source or closed-source API-based LLMs. Our framework provides a simple and extensible interface for document reranking with LLMs, as well as easy-to-use evaluation and fine-tuning scripts for this task. We conducted experiments based on this framework and evaluated various models and methods on several widely used datasets, providing reproducibility results on utilizing LLMs for document reranking. Our code is publicly available at https://github.com/liuqi6777/llm4ranking.
☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
☆ AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
We introduce AgentAda, the first LLM-powered analytics agent that can learn and use new analytics skills to extract more specialized insights. Unlike existing methods that require users to manually decide which data analytics method to apply, AgentAda automatically identifies the skill needed from a library of analytical skills to perform the analysis. This also allows AgentAda to use skills that existing LLMs cannot perform out of the box. The library covers a range of methods, including clustering, predictive modeling, and NLP techniques like BERT, which allow AgentAda to handle complex analytics tasks based on what the user needs. AgentAda's dataset-to-insight extraction strategy consists of three key steps: (I) a question generator to generate queries relevant to the user's goal and persona, (II) a hybrid Retrieval-Augmented Generation (RAG)-based skill matcher to choose the best data analytics skill from the skill library, and (III) a code generator that produces executable code based on the retrieved skill's documentation to extract key patterns. We also introduce KaggleBench, a benchmark of curated notebooks across diverse domains, to evaluate AgentAda's performance. We conducted a human evaluation demonstrating that AgentAda provides more insightful analytics than existing tools, with 48.78% of evaluators preferring its analyses, compared to 27.67% for the unskilled agent. We also propose a novel LLM-as-a-judge approach that we show is aligned with human evaluation as a way to automate insight quality evaluation at larger scale.
☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning, rely on low-resolution images, and offer limited interpretability in attention mechanisms. To address these challenges, we introduce RadZero, a novel similarity-based cross-attention framework for vision-language alignment in radiology with zero-shot multi-task capability. RadZero leverages large language models to extract minimal semantic sentences from radiology reports and employs a multi-positive contrastive learning strategy to effectively capture relationships between images and multiple relevant textual descriptions. It also utilizes a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, RadZero enables zero-shot inference with similarity probability for classification and pixel-level cross-modal similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, cross-modal similarity map analysis highlights its potential for improving explainability in vision-language alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
☆ Leveraging LLMs for Multimodal Retrieval-Augmented Radiology Report Generation via Key Phrase Extraction
Automated radiology report generation (RRG) holds potential to reduce radiologists' workload, especially as recent advancements in large language models (LLMs) enable the development of multimodal models for chest X-ray (CXR) report generation. However, multimodal LLMs (MLLMs) are resource-intensive, requiring vast datasets and substantial computational cost for training. To address these challenges, we propose a retrieval-augmented generation approach that leverages multimodal retrieval and LLMs to generate radiology reports while mitigating hallucinations and reducing computational demands. Our method uses LLMs to extract key phrases from radiology reports, effectively focusing on essential diagnostic information. Through exploring effective training strategies, including image encoder structure search, adding noise to text embeddings, and additional training objectives, we combine complementary pre-trained image encoders and adopt contrastive learning between text and semantic image embeddings. We evaluate our approach on MIMIC-CXR dataset, achieving state-of-the-art results on CheXbert metrics and competitive RadGraph F1 metric alongside MLLMs, without requiring LLM fine-tuning. Our method demonstrates robust generalization for multi-view RRG, making it suitable for comprehensive clinical applications.
☆ AI Coding with Few-Shot Prompting for Thematic Analysis
This paper explores the use of large language models (LLMs), here represented by GPT 3.5-Turbo to perform coding for a thematic analysis. Coding is highly labor intensive, making it infeasible for most researchers to conduct exhaustive thematic analyses of large corpora. We utilize few-shot prompting with higher quality codes generated on semantically similar passages to enhance the quality of the codes while utilizing a cheap, more easily scalable model.
☆ Talking Point based Ideological Discourse Analysis in News Events
Analyzing ideological discourse even in the age of LLMs remains a challenge, as these models often struggle to capture the key elements that shape real-world narratives. Specifically, LLMs fail to focus on characteristic elements driving dominant discourses and lack the ability to integrate contextual information required for understanding abstract ideological views. To address these limitations, we propose a framework motivated by the theory of ideological discourse analysis to analyze news articles related to real-world events. Our framework represents the news articles using a relational structure - talking points, which captures the interaction between entities, their roles, and media frames along with a topic of discussion. It then constructs a vocabulary of repeating themes - prominent talking points, that are used to generate ideology-specific viewpoints (or partisan perspectives). We evaluate our framework's ability to generate these perspectives through automated tasks - ideology and partisan classification tasks, supplemented by human validation. Additionally, we demonstrate straightforward applicability of our framework in creating event snapshots, a visual way of interpreting event discourse. We release resulting dataset and model to the community to support further research.
☆ Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining, but can degrade its downstream performance especially in low 2- to 3-bit settings. We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery, directly conditioning the quantization process on specific weight circuits -- which we define as sets of weights associated with downstream task performance. These weights are kept as 16-bit weights, while others are quantized, maintaining performance while only adding a marginal memory cost. Specifically, TaCQ contrasts unquantized model weights with a uniformly-quantized model to estimate the expected change in weights due to quantization and uses gradient information to predict the resulting impact on task performance, allowing us to preserve task-specific weights. We compare TaCQ-based quantization to existing mixed-precision quantization methods when conditioning both on general-purpose and task-specific data. Across QA, math reasoning, and text-to-SQL tasks for both Llama-3 and Qwen2.5, we find that TaCQ outperforms baselines using the same calibration data and a lower weight budget, achieving major improvements in the 2 and 3-bit regime. With only 3.1 bits we are able to recover 96% of Llama-3-8B-Instruct's unquantized 16-bit MMLU performance, obtaining a 5.25% absolute improvement over SPQR. We also observe consistently large gains over existing methods in the 2-bit regime, with an average gain of 14.74% over the strongest baseline, SliM-LLM. Moreover, we observe a 7.20% gain without conditioning on specific tasks, showing TaCQ's ability to identify important weights is not limited to task-conditioned settings.
comment: 24 pages. Code: https://github.com/The-Inscrutable-X/TACQ
☆ TALE: A Tool-Augmented Framework for Reference-Free Evaluation of Large Language Models
As Large Language Models (LLMs) become increasingly integrated into real-world, autonomous applications, relying on static, pre-annotated references for evaluation poses significant challenges in cost, scalability, and completeness. We propose Tool-Augmented LLM Evaluation (TALE), a framework to assess LLM outputs without predetermined ground-truth answers. Unlike conventional metrics that compare to fixed references or depend solely on LLM-as-a-judge knowledge, TALE employs an agent with tool-access capabilities that actively retrieves and synthesizes external evidence. It iteratively generates web queries, collects information, summarizes findings, and refines subsequent searches through reflection. By shifting away from static references, TALE aligns with free-form question-answering tasks common in real-world scenarios. Experimental results on multiple free-form QA benchmarks show that TALE not only outperforms standard reference-based metrics for measuring response accuracy but also achieves substantial to near-perfect agreement with human evaluations. TALE enhances the reliability of LLM evaluations in real-world, dynamic scenarios without relying on static references.
☆ Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs
The adaptation of large language models (LLMs) to time series forecasting poses unique challenges, as time series data is continuous in nature, while LLMs operate on discrete tokens. Despite the success of LLMs in natural language processing (NLP) and other structured domains, aligning time series data with language-based representations while maintaining both predictive accuracy and interpretability remains a significant hurdle. Existing methods have attempted to reprogram time series data into text-based forms, but these often fall short in delivering meaningful, interpretable results. In this paper, we propose a multi-level text alignment framework for time series forecasting using LLMs that not only improves prediction accuracy but also enhances the interpretability of time series representations. Our method decomposes time series into trend, seasonal, and residual components, which are then reprogrammed into component-specific text representations. We introduce a multi-level alignment mechanism, where component-specific embeddings are aligned with pre-trained word tokens, enabling more interpretable forecasts. Experiments on multiple datasets demonstrate that our method outperforms state-of-the-art models in accuracy while providing good interpretability.
☆ Revisiting Prompt Optimization with Large Reasoning Models-A Case Study on Event Extraction
Large Reasoning Models (LRMs) such as DeepSeek-R1 and OpenAI o1 have demonstrated remarkable capabilities in various reasoning tasks. Their strong capability to generate and reason over intermediate thoughts has also led to arguments that they may no longer require extensive prompt engineering or optimization to interpret human instructions and produce accurate outputs. In this work, we aim to systematically study this open question, using the structured task of event extraction for a case study. We experimented with two LRMs (DeepSeek-R1 and o1) and two general-purpose Large Language Models (LLMs) (GPT-4o and GPT-4.5), when they were used as task models or prompt optimizers. Our results show that on tasks as complicated as event extraction, LRMs as task models still benefit from prompt optimization, and that using LRMs as prompt optimizers yields more effective prompts. Finally, we provide an error analysis of common errors made by LRMs and highlight the stability and consistency of LRMs in refining task instructions and event guidelines.
☆ Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora ACL
Children can acquire language from less than 100 million words of input. Large language models are far less data-efficient: they typically require 3 or 4 orders of magnitude more data and still do not perform as well as humans on many evaluations. These intensive resource demands limit the ability of researchers to train new models and use existing models as developmentally plausible cognitive models. The BabyLM Challenge is a communal effort in which participants compete to optimize language model training on a fixed data budget. Submissions are compared on various evaluation tasks targeting grammatical ability, downstream task performance, and generalization. Participants can submit to up to three tracks with progressively looser data restrictions. From over 30 submissions, we extract concrete recommendations on how best to train data-efficient language models, and on where future efforts should (and perhaps should not) focus. The winning submissions using the LTG-BERT architecture (Samuel et al., 2023) outperformed models trained on trillions of words. Other submissions achieved strong results through training on shorter input sequences or training a student model on a pretrained teacher. Curriculum learning attempts, which accounted for a large number of submissions, were largely unsuccessful, though some showed modest improvements.
comment: Published in Proceedings of BabyLM. Please cite the published version on ACL anthology: http://aclanthology.org/2023.conll-babylm.1/
☆ DeepSeek vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Reasoning-enabled large language models (LLMs) have recently demonstrated impressive performance in complex logical and mathematical tasks, yet their effectiveness in evaluating natural language generation remains unexplored. This study systematically compares reasoning-based LLMs (DeepSeek-R1 and OpenAI o3) with their non-reasoning counterparts across machine translation (MT) and text summarization (TS) evaluation tasks. We evaluate eight models across three architectural categories, including state-of-the-art reasoning models, their distilled variants (ranging from 8B to 70B parameters), and equivalent conventional, non-reasoning LLMs. Our experiments on WMT23 and SummEval benchmarks reveal that the benefits of reasoning capabilities are highly model and task-dependent: while OpenAI o3-mini models show consistent performance improvements with increased reasoning intensity, DeepSeek-R1 underperforms compared to its non-reasoning variant, with exception to certain aspects of TS evaluation. Correlation analysis demonstrates that increased reasoning token usage positively correlates with evaluation quality in o3-mini models. Furthermore, our results show that distillation of reasoning capabilities maintains reasonable performance in medium-sized models (32B) but degrades substantially in smaller variants (8B). This work provides the first comprehensive assessment of reasoning LLMs for NLG evaluation and offers insights into their practical use.
☆ Geneshift: Impact of different scenario shift on Jailbreaking LLM
Jailbreak attacks, which aim to cause LLMs to perform unrestricted behaviors, have become a critical and challenging direction in AI safety. Despite achieving the promising attack success rate using dictionary-based evaluation, existing jailbreak attack methods fail to output detailed contents to satisfy the harmful request, leading to poor performance on GPT-based evaluation. To this end, we propose a black-box jailbreak attack termed GeneShift, by using a genetic algorithm to optimize the scenario shifts. Firstly, we observe that the malicious queries perform optimally under different scenario shifts. Based on it, we develop a genetic algorithm to evolve and select the hybrid of scenario shifts. It guides our method to elicit detailed and actionable harmful responses while keeping the seemingly benign facade, improving stealthiness. Extensive experiments demonstrate the superiority of GeneShift. Notably, GeneShift increases the jailbreak success rate from 0% to 60% when direct prompting alone would fail.
☆ Multi-view autoencoders for Fake News Detection SC
Given the volume and speed at which fake news spreads across social media, automatic fake news detection has become a highly important task. However, this task presents several challenges, including extracting textual features that contain relevant information about fake news. Research about fake news detection shows that no single feature extraction technique consistently outperforms the others across all scenarios. Nevertheless, different feature extraction techniques can provide complementary information about the textual data and enable a more comprehensive representation of the content. This paper proposes using multi-view autoencoders to generate a joint feature representation for fake news detection by integrating several feature extraction techniques commonly used in the literature. Experiments on fake news datasets show a significant improvement in classification performance compared to individual views (feature representations). We also observed that selecting a subset of the views instead of composing a latent space with all the views can be advantageous in terms of accuracy and computational effort. For further details, including source codes, figures, and datasets, please refer to the project's repository: https://github.com/ingrydpereira/multiview-fake-news.
comment: Accepted by IEEE Symposium Series on Computational Intelligence - IEEE SSCI 2025
☆ The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search
AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.
☆ Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
Opioid use disorder (OUD) is a leading health problem that affects individual well-being as well as general public health. Due to a variety of reasons, including the stigma faced by people using opioids, online communities for recovery and support were formed on different social media platforms. In these communities, people share their experiences and solicit information by asking questions to learn about opioid use and recovery. However, these communities do not always contain clinically verified information. In this paper, we study natural language questions asked in the context of OUD-related discourse on Reddit. We adopt transformer-based question detection along with hierarchical clustering across 19 subreddits to identify six coarse-grained categories and 69 fine-grained categories of OUD-related questions. Our analysis uncovers ten areas of information seeking from Reddit users in the context of OUD: drug sales, specific drug-related questions, OUD treatment, drug uses, side effects, withdrawal, lifestyle, drug testing, pain management and others, during the study period of 2018-2021. Our work provides a major step in improving the understanding of OUD-related questions people ask unobtrusively on Reddit. We finally discuss technological interventions and public health harm reduction techniques based on the topics of these questions.
comment: Accepted to ICWSM 2025
☆ Can Reasoning LLMs Enhance Clinical Document Classification?
Clinical document classification is essential for converting unstructured medical texts into standardised ICD-10 diagnoses, yet it faces challenges due to complex medical language, privacy constraints, and limited annotated datasets. Large Language Models (LLMs) offer promising improvements in accuracy and efficiency for this task. This study evaluates the performance and consistency of eight LLMs; four reasoning (Qwen QWQ, Deepseek Reasoner, GPT o3 Mini, Gemini 2.0 Flash Thinking) and four non-reasoning (Llama 3.3, GPT 4o Mini, Gemini 2.0 Flash, Deepseek Chat); in classifying clinical discharge summaries using the MIMIC-IV dataset. Using cTAKES to structure clinical narratives, models were assessed across three experimental runs, with majority voting determining final predictions. Results showed that reasoning models outperformed non-reasoning models in accuracy (71% vs 68%) and F1 score (67% vs 60%), with Gemini 2.0 Flash Thinking achieving the highest accuracy (75%) and F1 score (76%). However, non-reasoning models demonstrated greater stability (91% vs 84% consistency). Performance varied across ICD-10 codes, with reasoning models excelling in complex cases but struggling with abstract categories. Findings indicate a trade-off between accuracy and consistency, suggesting that a hybrid approach could optimise clinical coding. Future research should explore multi-label classification, domain-specific fine-tuning, and ensemble methods to enhance model reliability in real-world applications.
comment: 28 pages, 13 tables, 12 figures
☆ From Speech to Summary: A Comprehensive Survey of Speech Summarization
Speech summarization has become an essential tool for efficiently managing and accessing the growing volume of spoken and audiovisual content. However, despite its increasing importance, speech summarization is still not clearly defined and intersects with several research areas, including speech recognition, text summarization, and specific applications like meeting summarization. This survey not only examines existing datasets and evaluation methodologies, which are crucial for assessing the effectiveness of summarization approaches but also synthesizes recent developments in the field, highlighting the shift from traditional systems to advanced models like fine-tuned cascaded architectures and end-to-end solutions.
♻ ☆ Taming Data and Transformers for Scalable Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose the Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini, while reducing costs by over 36x compared to GPT-4o. Improvements for recent reasoning models are similar, e.g., 36% and 37.5% for Qwen2.5-32B and Deepseek-R1-70B, respectively. KGoT offers a scalable, affordable, and high-performing solution for AI assistants.
♻ ☆ ChartQAPro: A More Diverse and Challenging Benchmark for Chart Question Answering
Charts are ubiquitous, as people often use them to analyze data, answer questions, and discover critical insights. However, performing complex analytical tasks with charts requires significant perceptual and cognitive effort. Chart Question Answering (CQA) systems automate this process by enabling models to interpret and reason with visual representations of data. However, existing benchmarks like ChartQA lack real-world diversity and have recently shown performance saturation with modern large vision-language models (LVLMs). To address these limitations, we introduce ChartQAPro, a new benchmark that includes 1,341 charts from 157 diverse sources, spanning various chart types, including infographics and dashboards, and featuring 1,948 questions in various types, such as multiple-choice, conversational, hypothetical, and unanswerable questions, to better reflect real-world challenges. Our evaluations with 21 models show a substantial performance drop for LVLMs on ChartQAPro; e.g., Claude Sonnet 3.5 scores 90.5% on ChartQA but only 55.81% on ChartQAPro, underscoring the complexity of chart reasoning. We complement our findings with detailed error analyses and ablation studies, identifying key challenges and opportunities for advancing LVLMs in chart understanding and reasoning. We release ChartQAPro at https://github.com/vis-nlp/ChartQAPro.
♻ ☆ Expressivity and Speech Synthesis
Imbuing machines with the ability to talk has been a longtime pursuit of artificial intelligence (AI) research. From the very beginning, the community has not only aimed to synthesise high-fidelity speech that accurately conveys the semantic meaning of an utterance, but also to colour it with inflections that cover the same range of affective expressions that humans are capable of. After many years of research, it appears that we are on the cusp of achieving this when it comes to single, isolated utterances. This unveils an abundance of potential avenues to explore when it comes to combining these single utterances with the aim of synthesising more complex, longer-term behaviours. In the present chapter, we outline the methodological advances that brought us so far and sketch out the ongoing efforts to reach that coveted next level of artificial expressivity. We also discuss the societal implications coupled with rapidly advancing expressive speech synthesis (ESS) technology and highlight ways to mitigate those risks and ensure the alignment of ESS capabilities with ethical norms.
comment: Published in Oxford Handbook of Expressivity in Language (in press)
♻ ☆ An Adversarial Perspective on Machine Unlearning for AI Safety
Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.
comment: Final version published in Transactions on Machine Learning Research (TMLR); Best technical paper at Neurips 2024 SoLaR workshop
♻ ☆ SD-HuBERT: Sentence-Level Self-Distillation Induces Syllabic Organization in HuBERT
Data-driven unit discovery in self-supervised learning (SSL) of speech has embarked on a new era of spoken language processing. Yet, the discovered units often remain in phonetic space and the units beyond phonemes are largely underexplored. Here, we demonstrate that a syllabic organization emerges in learning sentence-level representation of speech. In particular, we adopt "self-distillation" objective to fine-tune the pretrained HuBERT with an aggregator token that summarizes the entire sentence. Without any supervision, the resulting model draws definite boundaries in speech, and the representations across frames exhibit salient syllabic structures. We demonstrate that this emergent structure largely corresponds to the ground truth syllables. Furthermore, we propose a new benchmark task, Spoken Speech ABX, for evaluating sentence-level representation of speech. When compared to previous models, our model outperforms in both unsupervised syllable discovery and learning sentence-level representation. Together, we demonstrate that the self-distillation of HuBERT gives rise to syllabic organization without relying on external labels or modalities, and potentially provides novel data-driven units for spoken language modeling.
♻ ☆ CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text & visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings & DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual & textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFTer across 11 diverse image classification datasets. Our code & models can be found at https://github.com/fazliimam/NoLA.
♻ ☆ A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves $\times$255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining $\times$100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models will be released in https://github.com/Jayce1kk/GSDP.
♻ ☆ VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models CVPR 2025
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
comment: CVPR 2025, project page at https://github.com/google-deepmind/video_comp
♻ ☆ How to Make LLMs Forget: On Reversing In-Context Knowledge Edits NAACL
In-context knowledge editing (IKE) enables efficient modification of large language model (LLM) outputs without parameter changes and at zero-cost. However, it can be misused to manipulate responses opaquely, e.g., insert misinformation or offensive content. Such malicious interventions could be incorporated into high-level wrapped APIs where the final input prompt is not shown to end-users. To address this issue, we investigate the detection and reversal of IKE-edits. First, we demonstrate that IKE-edits can be detected with high accuracy (F1 > 80\%) using only the top-10 output probabilities of the next token, even in a black-box setting, e.g. proprietary LLMs with limited output information. Further, we introduce the novel task of reversing IKE-edits using specially tuned reversal tokens. We explore using both continuous and discrete reversal tokens, achieving over 80\% accuracy in recovering original, unedited outputs across multiple LLMs. Our continuous reversal tokens prove particularly effective, with minimal impact on unedited prompts. Through analysis of output distributions, attention patterns, and token rankings, we provide insights into IKE's effects on LLMs and how reversal tokens mitigate them. This work represents a significant step towards enhancing LLM resilience against potential misuse of in-context editing, improving their transparency and trustworthiness.
comment: Accepted at NAACL Main 2025
♻ ☆ Wanting to be Understood
This paper explores an intrinsic motivation for mutual awareness, hypothesizing that humans possess a fundamental drive to understand and to be understood even in the absence of extrinsic rewards. Through simulations of the perceptual crossing paradigm, we explore the effect of various internal reward functions in reinforcement learning agents. The drive to understand is implemented as an active inference type artificial curiosity reward, whereas the drive to be understood is implemented through intrinsic rewards for imitation, influence/impressionability, and sub-reaction time anticipation of the other. Results indicate that while artificial curiosity alone does not lead to a preference for social interaction, rewards emphasizing reciprocal understanding successfully drive agents to prioritize interaction. We demonstrate that this intrinsic motivation can facilitate cooperation in tasks where only one agent receives extrinsic reward for the behaviour of the other.
♻ ☆ MedCT: A Clinical Terminology Graph for Generative AI Applications in Healthcare CCS 2025
We introduce the world's first clinical terminology for the Chinese healthcare community, namely MedCT, accompanied by a clinical foundation model MedBERT and an entity linking model MedLink. The MedCT system enables standardized and programmable representation of Chinese clinical data, successively stimulating the development of new medicines, treatment pathways, and better patient outcomes for the populous Chinese community. Moreover, the MedCT knowledge graph provides a principled mechanism to minimize the hallucination problem of large language models (LLMs), therefore achieving significant levels of accuracy and safety in LLM-based clinical applications. By leveraging the LLMs' emergent capabilities of generativeness and expressiveness, we were able to rapidly built a production-quality terminology system and deployed to real-world clinical field within three months, while classical terminologies like SNOMED CT have gone through more than twenty years development. Our experiments show that the MedCT system achieves state-of-the-art (SOTA) performance in semantic matching and entity linking tasks, not only for Chinese but also for English. We also conducted a longitudinal field experiment by applying MedCT and LLMs in a representative spectrum of clinical tasks, including electronic health record (EHR) auto-generation and medical document search for diagnostic decision making. Our study shows a multitude of values of MedCT for clinical workflows and patient outcomes, especially in the new genre of clinical LLM applications. We present our approach in sufficient engineering detail, such that implementing a clinical terminology for other non-English societies should be readily reproducible. We openly release our terminology, models and algorithms, along with real-world clinical datasets for the development.
comment: Accepted into ICCS 2025 and published in Springer's LNCS Series
♻ ☆ Large corpora and large language models: a replicable method for automating grammatical annotation
Much linguistic research relies on annotated datasets of features extracted from text corpora, but the rapid quantitative growth of these corpora has created practical difficulties for linguists to manually annotate large data samples. In this paper, we present a replicable, supervised method that leverages large language models for assisting the linguist in grammatical annotation through prompt engineering, training, and evaluation. We introduce a methodological pipeline applied to the case study of formal variation in the English evaluative verb construction 'consider X (as) (to be) Y', based on the large language model Claude 3.5 Sonnet and corpus data from Davies' NOW and EnTenTen21 (SketchEngine). Overall, we reach a model accuracy of over 90% on our held-out test samples with only a small amount of training data, validating the method for the annotation of very large quantities of tokens of the construction in the future. We discuss the generalisability of our results for a wider range of case studies of grammatical constructions and grammatical variation and change, underlining the value of AI copilots as tools for future linguistic research, notwithstanding some important caveats.
♻ ☆ Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
♻ ☆ P-Transformer: A Prompt-based Multimodal Transformer Architecture For Medical Tabular Data
Medical tabular data, abundant in Electronic Health Records (EHRs), is a valuable resource for diverse medical tasks such as risk prediction. While deep learning approaches, particularly transformer-based models, have shown remarkable performance in tabular data prediction, there are still problems remaining for existing work to be effectively adapted into medical domain, such as ignoring unstructured free-texts and underutilizing the textual information in structured data. To address these issues, we propose PTransformer, a \underline{P}rompt-based multimodal \underline{Transformer} architecture designed specifically for medical tabular data. This framework consists of two critical components: a tabular cell embedding generator and a tabular transformer. The former efficiently encodes diverse modalities from both structured and unstructured tabular data into a harmonized language semantic space with the help of pre-trained sentence encoder and medical prompts. The latter integrates cell representations to generate patient embeddings for various medical tasks. In comprehensive experiments on two real-world datasets for three medical tasks, PTransformer demonstrated the improvements with 10.9%/11.0% on RMSE/MAE, 0.5%/2.2% on RMSE/MAE, and 1.6%/0.8% on BACC/AUROC compared to state-of-the-art (SOTA) baselines in predictability.
♻ ☆ Toward a Theory of Tokenization in LLMs NeurIPS 2024
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple $k^{\text{th}}$-order Markov processes for $k > 1$, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from $k^{\text{th}}$-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
comment: 60 pages, 11 figures. This work was published at NeurIPS 2024 with a different title, "An Analysis of Tokenization: Transformers under Markov data"
♻ ☆ SpikeLLM: Scaling up Spiking Neural Network to Large Language Models via Saliency-based Spiking
Recent advancements in large language models (LLMs) with billions of parameters have improved performance in various applications, but their inference processes demand significant energy and computational resources. In contrast, the human brain, with approximately 86 billion neurons, is much more energy-efficient than LLMs with similar parameters. Inspired by this, we redesign 7$\sim$70 billion parameter LLMs using bio-plausible spiking mechanisms, emulating the efficient behavior of the human brain. We propose the first spiking large language model, SpikeLLM. Coupled with the proposed model, two essential approaches are proposed to improve spike training efficiency: Generalized Integrate-and-Fire (GIF) neurons to compress spike length from $T$ to $\frac{T}{L} \log_2 L$ bits, and an Optimal Brain Spiking framework to divide outlier channels and allocate different $T$ for GIF neurons, which further compresses spike length to approximate $log_2T$ bits. The necessity of spike-driven LLM is proved by comparison with quantized LLMs with similar operations. In the OmniQuant pipeline, SpikeLLM reduces 11.01% WikiText2 perplexity and improves 2.55% accuracy of common scene reasoning on a LLAMA-7B W4A4 model. In the GPTQ pipeline, SpikeLLM achieves direct additive in linear layers, significantly exceeding PB-LLMs.
♻ ☆ Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. All Nemotron-H models will be released, with support in Hugging Face, NeMo, and Megatron-LM.
♻ ☆ TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
We introduce TangoFlux, an efficient Text-to-Audio (TTA) generative model with 515M parameters, capable of generating up to 30 seconds of 44.1kHz audio in just 3.7 seconds on a single A40 GPU. A key challenge in aligning TTA models lies in the difficulty of creating preference pairs, as TTA lacks structured mechanisms like verifiable rewards or gold-standard answers available for Large Language Models (LLMs). To address this, we propose CLAP-Ranked Preference Optimization (CRPO), a novel framework that iteratively generates and optimizes preference data to enhance TTA alignment. We demonstrate that the audio preference dataset generated using CRPO outperforms existing alternatives. With this framework, TangoFlux achieves state-of-the-art performance across both objective and subjective benchmarks. We open source all code and models to support further research in TTA generation.
comment: https://tangoflux.github.io/
♻ ☆ Cognitive Debiasing Large Language Models for Decision-Making
Large language models (LLMs) have shown potential in supporting decision-making applications, particularly as personal conversational assistants in the financial, healthcare, and legal domains. While prompt engineering strategies have enhanced the capabilities of LLMs in decision-making, cognitive biases inherent to LLMs present significant challenges. Cognitive biases are systematic patterns of deviation from norms or rationality in decision-making that can lead to the production of inaccurate outputs. Existing cognitive bias mitigation strategies assume that input prompts contain (exactly) one type of cognitive bias and therefore fail to perform well in realistic settings where there maybe any number of biases. To fill this gap, we propose a cognitive debiasing approach, called self-debiasing, that enhances the reliability of LLMs by iteratively refining prompts. Our method follows three sequential steps -- bias determination, bias analysis, and cognitive debiasing -- to iteratively mitigate potential cognitive biases in prompts. Experimental results on finance, healthcare, and legal decision-making tasks, using both closed-source and open-source LLMs, demonstrate that the proposed self-debiasing method outperforms both advanced prompt engineering methods and existing cognitive debiasing techniques in average accuracy under no-bias, single-bias, and multi-bias settings.
♻ ☆ Defending LLM Watermarking Against Spoofing Attacks with Contrastive Representation Learning
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.
♻ ☆ A Large-Scale Simulation on Large Language Models for Decision-Making in Political Science
While LLMs have demonstrated remarkable capabilities in text generation and reasoning, their ability to simulate human decision-making -- particularly in political contexts -- remains an open question. However, modeling voter behavior presents unique challenges due to limited voter-level data, evolving political landscapes, and the complexity of human reasoning. In this study, we develop a theory-driven, multi-step reasoning framework that integrates demographic, temporal and ideological factors to simulate voter decision-making at scale. Using synthetic personas calibrated to real-world voter data, we conduct large-scale simulations of recent U.S. presidential elections. Our method significantly improves simulation accuracy while mitigating model biases. We examine its robustness by comparing performance across different LLMs. We further investigate the challenges and constraints that arise from LLM-based political simulations. Our work provides both a scalable framework for modeling political decision-making behavior and insights into the promise and limitations of using LLMs in political science research.
comment: arXiv admin note: substantial text overlap with arXiv:2411.03321 This version adds a new model to our experimental setup, modifies the paper's main discussion, and updates the authorship list
♻ ☆ Optimized Multi-Token Joint Decoding with Auxiliary Model for LLM Inference
Large language models (LLMs) have achieved remarkable success across diverse tasks, yet their inference processes are hindered by substantial time and energy demands due to single-token generation at each decoding step. While previous methods such as speculative decoding mitigate these inefficiencies by producing multiple tokens per step, each token is still generated by its single-token distribution, thereby enhancing speed without improving effectiveness. In contrast, our work simultaneously enhances inference speed and improves the output effectiveness. We consider multi-token joint decoding (MTJD), which generates multiple tokens from their joint distribution at each iteration, theoretically reducing perplexity and enhancing task performance. However, MTJD suffers from the high cost of sampling from the joint distribution of multiple tokens. Inspired by speculative decoding, we introduce multi-token assisted decoding (MTAD), a novel framework designed to accelerate MTJD. MTAD leverages a smaller auxiliary model to approximate the joint distribution of a larger model, incorporating a verification mechanism that not only ensures the accuracy of this approximation, but also improves the decoding efficiency over conventional speculative decoding. Theoretically, we demonstrate that MTAD closely approximates exact MTJD with bounded error. Empirical evaluations using Llama-2 and OPT models ranging from 13B to 70B parameters across various tasks reveal that MTAD reduces perplexity by 21.2% and improves downstream performance compared to standard single-token sampling. Furthermore, MTAD achieves a 1.42x speed-up and consumes 1.54x less energy than conventional speculative decoding methods. These results highlight MTAD's ability to make multi-token joint decoding both effective and efficient, promoting more sustainable and high-performance deployment of LLMs.
♻ ☆ S$^2$-MAD: Breaking the Token Barrier to Enhance Multi-Agent Debate Efficiency NAACL 2025
Large language models (LLMs) have demonstrated remarkable capabilities across various natural language processing (NLP) scenarios, but they still face challenges when handling complex arithmetic and logical reasoning tasks. While Chain-Of-Thought (CoT) reasoning, self-consistency (SC) and self-correction strategies have attempted to guide models in sequential, multi-step reasoning, Multi-agent Debate (MAD) has emerged as a viable approach for enhancing the reasoning capabilities of LLMs. By increasing both the number of agents and the frequency of debates, the performance of LLMs improves significantly. However, this strategy results in a significant increase in token costs, presenting a barrier to scalability. To address this challenge, we introduce a novel sparsification strategy designed to reduce token costs within MAD. This approach minimizes ineffective exchanges of information and unproductive discussions among agents, thereby enhancing the overall efficiency of the debate process. We conduct comparative experiments on multiple datasets across various models, demonstrating that our approach significantly reduces the token costs in MAD to a considerable extent. Specifically, compared to MAD, our approach achieves an impressive reduction of up to 94.5\% in token costs while maintaining performance degradation below 2.0\%.
comment: Accepted to NAACL 2025 Main
♻ ☆ Refining Answer Distributions for Improved Large Language Model Reasoning
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Refined Answer Distributions, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode -- the most likely answer. Empirical evaluation on several reasoning benchmarks demonstrates the superiority of the proposed approach.
♻ ☆ Think While You Generate: Discrete Diffusion with Planned Denoising ICLR 2025
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet $256 \times 256$. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. Code is available at https://github.com/liusulin/DDPD.
comment: ICLR 2025
♻ ☆ Finding Pareto Trade-offs in Fair and Accurate Detection of Toxic Speech
Optimizing NLP models for fairness poses many challenges. Lack of differentiable fairness measures prevents gradient-based loss training or requires surrogate losses that diverge from the true metric of interest. In addition, competing objectives (e.g., accuracy vs. fairness) often require making trade-offs based on stakeholder preferences, but stakeholders may not know their preferences before seeing system performance under different trade-off settings. To address these challenges, we begin by formulating a differentiable version of a popular fairness measure, Accuracy Parity, to provide balanced accuracy across demographic groups. Next, we show how model-agnostic, HyperNetwork optimization can efficiently train arbitrary NLP model architectures to learn Pareto-optimal trade-offs between competing metrics. Focusing on the task of toxic language detection, we show the generality and efficacy of our methods across two datasets, three neural architectures, and three fairness losses.
♻ ☆ Could AI Trace and Explain the Origins of AI-Generated Images and Text?
AI-generated content is becoming increasingly prevalent in the real world, leading to serious ethical and societal concerns. For instance, adversaries might exploit large multimodal models (LMMs) to create images that violate ethical or legal standards, while paper reviewers may misuse large language models (LLMs) to generate reviews without genuine intellectual effort. While prior work has explored detecting AI-generated images and texts, and occasionally tracing their source models, there is a lack of a systematic and fine-grained comparative study. Important dimensions--such as AI-generated images vs. text, fully vs. partially AI-generated images, and general vs. malicious use cases--remain underexplored. Furthermore, whether AI systems like GPT-4o can explain why certain forged content is attributed to specific generative models is still an open question, with no existing benchmark addressing this. To fill this gap, we introduce AI-FAKER, a comprehensive multimodal dataset with over 280,000 samples spanning multiple LLMs and LMMs, covering both general and malicious use cases for AI-generated images and texts. Our experiments reveal two key findings: (i) AI authorship detection depends not only on the generated output but also on the model's original training intent; and (ii) GPT-4o provides highly consistent but less specific explanations when analyzing content produced by OpenAI's own models, such as DALL-E and GPT-4o itself.
♻ ☆ Can LLMs Help Uncover Insights about LLMs? A Large-Scale, Evolving Literature Analysis of Frontier LLMs
The surge of LLM studies makes synthesizing their findings challenging. Analysis of experimental results from literature can uncover important trends across studies, but the time-consuming nature of manual data extraction limits its use. Our study presents a semi-automated approach for literature analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset, LLMEvalDB. We then conduct an automated literature analysis of frontier LLMs, reducing the effort of paper surveying and data extraction by more than 93% compared to manual approaches. We validate LLMEvalDB by showing that it reproduces key findings from a recent manual analysis of Chain-of-Thought (CoT) reasoning and also uncovers new insights that go beyond it, showing, for example, that in-context examples benefit coding and multimodal tasks but offer limited gains in math reasoning tasks compared to zero-shot CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through LLMEvalDB and empirical analysis, we provide insights into LLMs while facilitating ongoing literature analyses of their behavior.
comment: 22 pages, 9 figures
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings
In recent years, text generation tools utilizing Artificial Intelligence (AI) have occasionally been misused across various domains, such as generating student reports or creative writings. This issue prompts plagiarism detection services to enhance their capabilities in identifying AI-generated content. Adversarial attacks are often used to test the robustness of AI-text generated detectors. This work proposes a novel textual adversarial attack on the detection models such as Fast-DetectGPT. The method employs embedding models for data perturbation, aiming at reconstructing the AI generated texts to reduce the likelihood of detection of the true origin of the texts. Specifically, we employ different embedding techniques, including the Tsetlin Machine (TM), an interpretable approach in machine learning for this purpose. By combining synonyms and embedding similarity vectors, we demonstrates the state-of-the-art reduction in detection scores against Fast-DetectGPT. Particularly, in the XSum dataset, the detection score decreased from 0.4431 to 0.2744 AUROC, and in the SQuAD dataset, it dropped from 0.5068 to 0.3532 AUROC.
♻ ☆ L0-Reasoning Bench: Evaluating Procedural Correctness in Language Models via Simple Program Execution
Complex reasoning tasks often rely on the ability to consistently and accurately apply simple rules across incremental steps, a foundational capability which we term "level-0" reasoning. To systematically evaluate this capability, we introduce L0-Bench, a language model benchmark for testing procedural correctness -- the ability to generate correct reasoning processes, complementing existing benchmarks that primarily focus on outcome correctness. Given synthetic Python functions with simple operations, L0-Bench grades models on their ability to generate step-by-step, error-free execution traces. The synthetic nature of L0-Bench enables systematic and scalable generation of test programs along various axes (e.g., number of trace steps). We evaluate a diverse array of recent closed-source and open-weight models on a baseline test set. All models exhibit degradation as the number of target trace steps increases, while larger models and reasoning-enhanced models better maintain correctness over multiple steps. Additionally, we use L0-Bench to explore test-time scaling along three dimensions: input context length, number of solutions for majority voting, and inference steps. Our results suggest substantial room to improve "level-0" reasoning and potential directions to build more reliable reasoning systems.
♻ ☆ Block Verification Accelerates Speculative Decoding
Speculative decoding is an effective method for lossless acceleration of large language models during inference. It uses a fast model to draft a block of tokens which are then verified in parallel by the target model, and provides a guarantee that the output is distributed identically to a sample from the target model. In prior works, draft verification is performed independently token-by-token. Surprisingly, we show that this approach is not optimal. We propose Block Verification, a simple draft verification algorithm that verifies the entire block jointly and provides additional wall-clock speedup. We prove that the proposed mechanism is optimal in the expected number of tokens produced each iteration and specifically is never worse than the standard token-level verification. Empirically, block verification provides modest but consistent wall-clock speedups over the standard token verification algorithm of 5%-8% in a range of tasks and datasets. Given that block verification does not increase code complexity, maintains the strong lossless guarantee of the standard speculative decoding verification algorithm, cannot deteriorate performance, and, in fact, consistently improves it, it can be used as a good default in speculative decoding implementations.
Computation and Language
☆ Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones. Existing methods typically rely on low-rank, parameter-efficient updates that limit the model's expressivity and introduce additional parameters per task, leading to scalability issues. To address these limitations, we propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD). Our method dynamically identifies task-specific low-rank parameter subspaces and constrains updates to be orthogonal to critical directions associated with prior tasks, thus effectively minimizing interference without additional parameter overhead or storing previous task gradients. We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models, spanning diverse tasks including classification, generation, and reasoning. Empirically, our method achieves state-of-the-art results, up to 7% higher average accuracy than recent baselines like O-LoRA, and notably maintains the model's general linguistic capabilities, instruction-following accuracy, and safety throughout the continual learning process by reducing forgetting to near-negligible levels. Our adaptive SVD framework effectively balances model plasticity and knowledge retention, providing a practical, theoretically grounded, and computationally scalable solution for continual learning scenarios in large language models.
comment: 25 pages, 13 figures, 6 tables
☆ OLMoTrace: Tracing Language Model Outputs Back to Trillions of Training Tokens ACL 2025
We present OLMoTrace, the first system that traces the outputs of language models back to their full, multi-trillion-token training data in real time. OLMoTrace finds and shows verbatim matches between segments of language model output and documents in the training text corpora. Powered by an extended version of infini-gram (Liu et al., 2024), our system returns tracing results within a few seconds. OLMoTrace can help users understand the behavior of language models through the lens of their training data. We showcase how it can be used to explore fact checking, hallucination, and the creativity of language models. OLMoTrace is publicly available and fully open-source.
comment: Under submission at ACL 2025 demo track
☆ OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
☆ KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs NAACL
Knowledge graphs have emerged as a popular method for injecting up-to-date, factual knowledge into large language models (LLMs). This is typically achieved by converting the knowledge graph into text that the LLM can process in context. While multiple methods of encoding knowledge graphs have been proposed, the impact of this textualization process on LLM performance remains under-explored. We introduce KG-LLM-Bench, a comprehensive and extensible benchmark spanning five knowledge graph understanding tasks, and evaluate how different encoding strategies affect performance across various base models. Our extensive experiments with seven language models and five textualization strategies provide insights for optimizing LLM performance on KG reasoning tasks.
comment: To be presented at NAACL-HLT, KnowledgeNLP Workshop (2025)
☆ A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
comment: Technical Report
☆ Self-Steering Language Models
While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
☆ DeduCE: Deductive Consistency as a Framework to Evaluate LLM Reasoning
Despite great performance on Olympiad-level reasoning problems, frontier large language models can still struggle on high school math when presented with novel problems outside standard benchmarks. Going beyond final accuracy, we propose a deductive consistency metric to analyze chain-of-thought output from language models (LMs).Formally, deductive reasoning involves two subtasks: understanding a set of input premises and inferring the conclusions that follow from them. The proposed metric studies LMs' performance on these subtasks, with the goal of explaining LMs' reasoning errors on novel problems: how well do LMs understand input premises with increasing context lengths, and how well can they infer conclusions over multiple reasoning hops? Since existing benchmarks may be memorized, we develop a pipeline to evaluate LMs' deductive consistency on novel, perturbed versions of benchmark problems. On novel grade school math problems (GSM-8k), we find that LMs are fairly robust to increasing number of input premises, but suffer significant accuracy decay as the number of reasoning hops is increased. Interestingly, these errors are masked in the original benchmark as all models achieve near 100% accuracy. As we increase the number of solution steps using a synthetic dataset, prediction over multiple hops still remains the major source of error compared to understanding input premises. Other factors, such as shifts in language style or natural propagation of early errors do not explain the trends. Our analysis provides a new view to characterize LM reasoning -- as computations over a window of input premises and reasoning hops -- that can provide unified evaluation across problem domains.
☆ SkillWeaver: Web Agents can Self-Improve by Discovering and Honing Skills
To survive and thrive in complex environments, humans have evolved sophisticated self-improvement mechanisms through environment exploration, hierarchical abstraction of experiences into reuseable skills, and collaborative construction of an ever-growing skill repertoire. Despite recent advancements, autonomous web agents still lack crucial self-improvement capabilities, struggling with procedural knowledge abstraction, refining skills, and skill composition. In this work, we introduce SkillWeaver, a skill-centric framework enabling agents to self-improve by autonomously synthesizing reusable skills as APIs. Given a new website, the agent autonomously discovers skills, executes them for practice, and distills practice experiences into robust APIs. Iterative exploration continually expands a library of lightweight, plug-and-play APIs, significantly enhancing the agent's capabilities. Experiments on WebArena and real-world websites demonstrate the efficacy of SkillWeaver, achieving relative success rate improvements of 31.8% and 39.8%, respectively. Additionally, APIs synthesized by strong agents substantially enhance weaker agents through transferable skills, yielding improvements of up to 54.3% on WebArena. These results demonstrate the effectiveness of honing diverse website interactions into APIs, which can be seamlessly shared among various web agents.
☆ Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
☆ A Survey on Personalized and Pluralistic Preference Alignment in Large Language Models
Personalized preference alignment for large language models (LLMs), the process of tailoring LLMs to individual users' preferences, is an emerging research direction spanning the area of NLP and personalization. In this survey, we present an analysis of works on personalized alignment and modeling for LLMs. We introduce a taxonomy of preference alignment techniques, including training time, inference time, and additionally, user-modeling based methods. We provide analysis and discussion on the strengths and limitations of each group of techniques and then cover evaluation, benchmarks, as well as open problems in the field.
☆ HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification
This paper introduces a comprehensive system for detecting hallucinations in large language model (LLM) outputs in enterprise settings. We present a novel taxonomy of LLM responses specific to hallucination in enterprise applications, categorizing them into context-based, common knowledge, enterprise-specific, and innocuous statements. Our hallucination detection model HDM-2 validates LLM responses with respect to both context and generally known facts (common knowledge). It provides both hallucination scores and word-level annotations, enabling precise identification of problematic content. To evaluate it on context-based and common-knowledge hallucinations, we introduce a new dataset HDMBench. Experimental results demonstrate that HDM-2 out-performs existing approaches across RagTruth, TruthfulQA, and HDMBench datasets. This work addresses the specific challenges of enterprise deployment, including computational efficiency, domain specialization, and fine-grained error identification. Our evaluation dataset, model weights, and inference code are publicly available.
☆ TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM.
comment: Preprint. Work in progress
☆ A Unified Agentic Framework for Evaluating Conditional Image Generation
Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
comment: Work in progress. GitHub: https://github.com/HITsz-TMG/Agentic-CIGEval
☆ Data Augmentation and Hyperparameter Tuning for Low-Resource MFA
A continued issue for those working with computational tools and endangered and under-resourced languages is the lower accuracy of results for languages with smaller amounts of data. We attempt to ameliorate this issue by using data augmentation methods to increase corpus size, comparing augmentation to hyperparameter tuning for multilingual forced alignment. Unlike text augmentation methods, audio augmentation does not lead to substantially increased performance. Hyperparameter tuning, on the other hand, results in substantial improvement without (for this amount of data) infeasible additional training time. For languages with small to medium amounts of training data, this is a workable alternative to adapting models from high-resource languages.
☆ Evaluating Retrieval Augmented Generative Models for Document Queries in Transportation Safety
Applications of generative Large Language Models LLMs are rapidly expanding across various domains, promising significant improvements in workflow efficiency and information retrieval. However, their implementation in specialized, high-stakes domains such as hazardous materials transportation is challenging due to accuracy and reliability concerns. This study evaluates the performance of three fine-tuned generative models, ChatGPT, Google's Vertex AI, and ORNL Retrieval Augmented Generation augmented LLaMA 2 and LLaMA in retrieving regulatory information essential for hazardous material transportation compliance in the United States. Utilizing approximately 40 publicly available federal and state regulatory documents, we developed 100 realistic queries relevant to route planning and permitting requirements. Responses were qualitatively rated based on accuracy, detail, and relevance, complemented by quantitative assessments of semantic similarity between model outputs. Results demonstrated that the RAG-augmented LLaMA models significantly outperformed Vertex AI and ChatGPT, providing more detailed and generally accurate information, despite occasional inconsistencies. This research introduces the first known application of RAG in transportation safety, emphasizing the need for domain-specific fine-tuning and rigorous evaluation methodologies to ensure reliability and minimize the risk of inaccuracies in high-stakes environments.
comment: 14 pages, 3 Figures, 3 tables
☆ Towards LLMs Robustness to Changes in Prompt Format Styles NAACL
Large language models (LLMs) have gained popularity in recent years for their utility in various applications. However, they are sensitive to non-semantic changes in prompt formats, where small changes in the prompt format can lead to significant performance fluctuations. In the literature, this problem is commonly referred to as prompt brittleness. Previous research on prompt engineering has focused mainly on developing techniques for identifying the optimal prompt for specific tasks. Some studies have also explored the issue of prompt brittleness and proposed methods to quantify performance variations; however, no simple solution has been found to address this challenge. We propose Mixture of Formats (MOF), a simple and efficient technique for addressing prompt brittleness in LLMs by diversifying the styles used in the prompt few-shot examples. MOF was inspired by computer vision techniques that utilize diverse style datasets to prevent models from associating specific styles with the target variable. Empirical results show that our proposed technique reduces style-induced prompt brittleness in various LLMs while also enhancing overall performance across prompt variations and different datasets.
comment: NAACL Student Research Workshop (SRW) 2025
☆ RNN-Transducer-based Losses for Speech Recognition on Noisy Targets
Training speech recognition systems on noisy transcripts is a significant challenge in industrial pipelines, where datasets are enormous and ensuring accurate transcription for every instance is difficult. In this work, we introduce novel loss functions to mitigate the impact of transcription errors in RNN-Transducer models. Our Star-Transducer loss addresses deletion errors by incorporating "skip frame" transitions in the loss lattice, restoring over 90% of the system's performance compared to models trained with accurate transcripts. The Bypass-Transducer loss uses "skip token" transitions to tackle insertion errors, recovering more than 60% of the quality. Finally, the Target-Robust Transducer loss merges these approaches, offering robust performance against arbitrary errors. Experimental results demonstrate that the Target-Robust Transducer loss significantly improves RNN-T performance on noisy data by restoring over 70% of the quality compared to well-transcribed data.
comment: Final Project Report, Bachelor's Degree in Computer Science, University of London, March 2024
☆ Adaptive Computation Pruning for the Forgetting Transformer
The recently proposed Forgetting Transformer (FoX) incorporates a forget gate into softmax attention and has shown consistently better or on-par performance compared to the standard RoPE-based Transformer. Notably, many attention heads in FoX tend to forget quickly, causing their output at each timestep to rely primarily on the local context. Based on this observation, we propose Adaptive Computation Pruning (ACP) for FoX, a method that dynamically prunes computations involving input-output dependencies that are strongly decayed by the forget gate. This is achieved using a dynamically set pruning threshold that ensures that the pruned attention weights remain negligible. We apply ACP to language model pretraining with FoX and show it consistently reduces the number of FLOPs in softmax attention by around 70% across different model sizes and context lengths, resulting in a roughly 10% to 35% improvement in training throughput. Furthermore, longer context lengths yield greater computational savings. All these speed improvements are achieved without any performance degradation. We also perform several analyses to provide deeper insights into our method, such as examining the pruning patterns and analyzing the distribution of FLOP savings across different attention heads. Our code is available at https://github.com/zhixuan-lin/arctic-fox.
comment: Preprint. Under review
☆ RuOpinionNE-2024: Extraction of Opinion Tuples from Russian News Texts
In this paper, we introduce the Dialogue Evaluation shared task on extraction of structured opinions from Russian news texts. The task of the contest is to extract opinion tuples for a given sentence; the tuples are composed of a sentiment holder, its target, an expression and sentiment from the holder to the target. In total, the task received more than 100 submissions. The participants experimented mainly with large language models in zero-shot, few-shot and fine-tuning formats. The best result on the test set was obtained with fine-tuning of a large language model. We also compared 30 prompts and 11 open source language models with 3-32 billion parameters in the 1-shot and 10-shot settings and found the best models and prompts.
comment: RuOpinionNE-2024 represent a proceeding of RuSentNE-2023. It contributes with extraction and evaluation of factual statements that support the assigned sentiment
☆ Data Augmentation for Fake Reviews Detection in Multiple Languages and Multiple Domains
With the growth of the Internet, buying habits have changed, and customers have become more dependent on the online opinions of other customers to guide their purchases. Identifying fake reviews thus became an important area for Natural Language Processing (NLP) research. However, developing high-performance NLP models depends on the availability of large amounts of training data, which are often not available for low-resource languages or domains. In this research, we used large language models to generate datasets to train fake review detectors. Our approach was used to generate fake reviews in different domains (book reviews, restaurant reviews, and hotel reviews) and different languages (English and Chinese). Our results demonstrate that our data augmentation techniques result in improved performance at fake review detection for all domains and languages. The accuracy of our fake review detection model can be improved by 0.3 percentage points on DeRev TEST, 10.9 percentage points on Amazon TEST, 8.3 percentage points on Yelp TEST and 7.2 percentage points on DianPing TEST using the augmented datasets.
comment: 32 pages, 15 figures
☆ Identifying Aspects in Peer Reviews
Peer review is central to academic publishing, but the growing volume of submissions is straining the process. This motivates the development of computational approaches to support peer review. While each review is tailored to a specific paper, reviewers often make assessments according to certain aspects such as Novelty, which reflect the values of the research community. This alignment creates opportunities for standardizing the reviewing process, improving quality control, and enabling computational support. While prior work has demonstrated the potential of aspect analysis for peer review assistance, the notion of aspect remains poorly formalized. Existing approaches often derive aspect sets from review forms and guidelines of major NLP venues, yet data-driven methods for aspect identification are largely underexplored. To address this gap, our work takes a bottom-up approach: we propose an operational definition of aspect and develop a data-driven schema for deriving fine-grained aspects from a corpus of peer reviews. We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis. We further show how the choice of aspects can impact downstream applications, such as LLM-generated review detection. Our results lay a foundation for a principled and data-driven investigation of review aspects, and pave the path for new applications of NLP to support peer review.
☆ Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: PersonalityAdapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
☆ Integrating Cognitive Processing Signals into Language Models: A Review of Advances, Applications and Future Directions
Recently, the integration of cognitive neuroscience in Natural Language Processing (NLP) has gained significant attention. This article provides a critical and timely overview of recent advancements in leveraging cognitive signals, particularly Eye-tracking (ET) signals, to enhance Language Models (LMs) and Multimodal Large Language Models (MLLMs). By incorporating user-centric cognitive signals, these approaches address key challenges, including data scarcity and the environmental costs of training large-scale models. Cognitive signals enable efficient data augmentation, faster convergence, and improved human alignment. The review emphasises the potential of ET data in tasks like Visual Question Answering (VQA) and mitigating hallucinations in MLLMs, and concludes by discussing emerging challenges and research trends.
☆ Open Problems and a Hypothetical Path Forward in LLM Knowledge Paradigms
Knowledge is fundamental to the overall capabilities of Large Language Models (LLMs). The knowledge paradigm of a model, which dictates how it encodes and utilizes knowledge, significantly affects its performance. Despite the continuous development of LLMs under existing knowledge paradigms, issues within these frameworks continue to constrain model potential. This blog post highlight three critical open problems limiting model capabilities: (1) challenges in knowledge updating for LLMs, (2) the failure of reverse knowledge generalization (the reversal curse), and (3) conflicts in internal knowledge. We review recent progress made in addressing these issues and discuss potential general solutions. Based on observations in these areas, we propose a hypothetical paradigm based on Contextual Knowledge Scaling, and further outline implementation pathways that remain feasible within contemporary techniques. Evidence suggests this approach holds potential to address current shortcomings, serving as our vision for future model paradigms. This blog post aims to provide researchers with a brief overview of progress in LLM knowledge systems, while provide inspiration for the development of next-generation model architectures.
comment: Blog post preprint, work in progress
☆ Inducing Programmatic Skills for Agentic Tasks
To succeed in common digital tasks such as web navigation, agents must carry out a variety of specialized tasks such as searching for products or planning a travel route. To tackle these tasks, agents can bootstrap themselves by learning task-specific skills online through interaction with the web environment. In this work, we demonstrate that programs are an effective representation for skills. We propose agent skill induction (ASI), which allows agents to adapt themselves by inducing, verifying, and utilizing program-based skills on the fly. We start with an evaluation on the WebArena agent benchmark and show that ASI outperforms the static baseline agent and its text-skill counterpart by 23.5% and 11.3% in success rate, mainly thanks to the programmatic verification guarantee during the induction phase. ASI also improves efficiency by reducing 10.7-15.3% of the steps over baselines, by composing primitive actions (e.g., click) into higher-level skills (e.g., search product). We then highlight the efficacy of ASI in remaining efficient and accurate under scaled-up web activities. Finally, we examine the generalizability of induced skills when transferring between websites, and find that ASI can effectively reuse common skills, while also updating incompatible skills to versatile website changes.
☆ A Graph Diffusion Algorithm for Lexical Similarity Evaluation
In this paper, we present an algorithm for evaluating lexical similarity between a given language and several reference language clusters. As an input, we have a list of concepts and the corresponding translations in all considered languages. Moreover, each reference language is assigned to one of $c$ language clusters. For each of the concepts, the algorithm computes the distance between each pair of translations. Based on these distances, it constructs a weighted directed graph, where every vertex represents a language. After, it solves a graph diffusion equation with a Dirichlet boundary condition, where the unknown is a map from the vertex set to $\mathbb{R}^c$. The resulting coordinates are values from the interval $[0,1]$ and they can be interpreted as probabilities of belonging to each of the clusters or as a lexical similarity distribution with respect to the reference clusters. The distances between translations are calculated using phonetic transcriptions and a modification of the Damerau-Levenshtein distance. The algorithm can be useful in analyzing relationships between languages spoken in multilingual territories with a lot of mutual influences. We demonstrate this by presenting a case study regarding various European languages.
comment: 28 pages
☆ Domain-Specific Pruning of Large Mixture-of-Experts Models with Few-shot Demonstrations
Mixture-of-Experts (MoE) models achieve a favorable trade-off between performance and inference efficiency by activating only a subset of experts. However, the memory overhead of storing all experts remains a major limitation, especially in large-scale MoE models such as DeepSeek-R1 (671B). In this study, we investigate domain specialization and expert redundancy in large-scale MoE models and uncover a consistent behavior we term few-shot expert localization, with only a few demonstrations, the model consistently activates a sparse and stable subset of experts. Building on this observation, we propose a simple yet effective pruning framework, EASY-EP, that leverages a few domain-specific demonstrations to identify and retain only the most relevant experts. EASY-EP comprises two key components: output-aware expert importance assessment and expert-level token contribution estimation. The former evaluates the importance of each expert for the current token by considering the gating scores and magnitudes of the outputs of activated experts, while the latter assesses the contribution of tokens based on representation similarities after and before routed experts. Experiments show that our method can achieve comparable performances and $2.99\times$ throughput under the same memory budget with full DeepSeek-R1 with only half the experts. Our code is available at https://github.com/RUCAIBox/EASYEP.
☆ FamilyTool: A Multi-hop Personalized Tool Use Benchmark
The integration of tool learning with Large Language Models (LLMs) has expanded their capabilities in handling complex tasks by leveraging external tools. However, existing benchmarks for tool learning inadequately address critical real-world personalized scenarios, particularly those requiring multi-hop reasoning and inductive knowledge adaptation in dynamic environments. To bridge this gap, we introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG) that simulates personalized, multi-hop tool use scenarios. FamilyTool challenges LLMs with queries spanning 1 to 3 relational hops (e.g., inferring familial connections and preferences) and incorporates an inductive KG setting where models must adapt to unseen user preferences and relationships without re-training, a common limitation in prior approaches that compromises generalization. We further propose KGETool: a simple KG-augmented evaluation pipeline to systematically assess LLMs' tool use ability in these settings. Experiments reveal significant performance gaps in state-of-the-art LLMs, with accuracy dropping sharply as hop complexity increases and inductive scenarios exposing severe generalization deficits. These findings underscore the limitations of current LLMs in handling personalized, evolving real-world contexts and highlight the urgent need for advancements in tool-learning frameworks. FamilyTool serves as a critical resource for evaluating and advancing LLM agents' reasoning, adaptability, and scalability in complex, dynamic environments. Code and dataset are available at Github.
☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully-connected layers, and introduces no heavier operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations on large-scale benchmarks such as ImageNet-1k and WikiText-103. Grounded in an engineering-isomorphism framework, CAT's design not only offers practical efficiency and ease of implementation but also provides insights to guide the development of next-generation, high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
☆ NLP Security and Ethics, in the Wild ACL
As NLP models are used by a growing number of end-users, an area of increasing importance is NLP Security (NLPSec): assessing the vulnerability of models to malicious attacks and developing comprehensive countermeasures against them. While work at the intersection of NLP and cybersecurity has the potential to create safer NLP for all, accidental oversights can result in tangible harm (e.g., breaches of privacy or proliferation of malicious models). In this emerging field, however, the research ethics of NLP have not yet faced many of the long-standing conundrums pertinent to cybersecurity, until now. We thus examine contemporary works across NLPSec, and explore their engagement with cybersecurity's ethical norms. We identify trends across the literature, ultimately finding alarming gaps on topics like harm minimization and responsible disclosure. To alleviate these concerns, we provide concrete recommendations to help NLP researchers navigate this space more ethically, bridging the gap between traditional cybersecurity and NLP ethics, which we frame as ``white hat NLP''. The goal of this work is to help cultivate an intentional culture of ethical research for those working in NLP Security.
comment: Accepted to TACL
☆ SEE: Continual Fine-tuning with Sequential Ensemble of Experts
Continual fine-tuning of large language models (LLMs) suffers from catastrophic forgetting. Rehearsal-based methods mitigate this problem by retaining a small set of old data. Nevertheless, they still suffer inevitable performance loss. Although training separate experts for each task can help prevent forgetting, effectively assembling them remains a challenge. Some approaches use routers to assign tasks to experts, but in continual learning, they often require retraining for optimal performance. To address these challenges, we introduce the Sequential Ensemble of Experts (SEE) framework. SEE removes the need for an additional router, allowing each expert to independently decide whether a query should be handled. The framework employs distributed routing, and during continual fine-tuning, SEE only requires the training of new experts for incoming tasks rather than retraining the entire system. Experiments reveal that the SEE outperforms prior approaches, including multi-task learning, in continual fine-tuning. It also demonstrates remarkable generalization ability, as the expert can effectively identify out-of-distribution queries, which can then be directed to a more generalized model for resolution. This work highlights the promising potential of integrating routing and response mechanisms within each expert, paving the way for the future of distributed model ensembling.
comment: 9pages
☆ Bridging the Gap Between Preference Alignment and Machine Unlearning
Despite advances in Preference Alignment (PA) for Large Language Models (LLMs), mainstream methods like Reinforcement Learning with Human Feedback (RLHF) face notable challenges. These approaches require high-quality datasets of positive preference examples, which are costly to obtain and computationally intensive due to training instability, limiting their use in low-resource scenarios. LLM unlearning technique presents a promising alternative, by directly removing the influence of negative examples. However, current research has primarily focused on empirical validation, lacking systematic quantitative analysis. To bridge this gap, we propose a framework to explore the relationship between PA and LLM unlearning. Specifically, we introduce a bi-level optimization-based method to quantify the impact of unlearning specific negative examples on PA performance. Our analysis reveals that not all negative examples contribute equally to alignment improvement when unlearned, and the effect varies significantly across examples. Building on this insight, we pose a crucial question: how can we optimally select and weight negative examples for unlearning to maximize PA performance? To answer this, we propose a framework called Unlearning to Align (U2A), which leverages bi-level optimization to efficiently select and unlearn examples for optimal PA performance. We validate the proposed method through extensive experiments, with results confirming its effectiveness.
comment: 17 pages
☆ A Neuro-inspired Interpretation of Unlearning in Large Language Models through Sample-level Unlearning Difficulty
Driven by privacy protection laws and regulations, unlearning in Large Language Models (LLMs) is gaining increasing attention. However, current research often neglects the interpretability of the unlearning process, particularly concerning sample-level unlearning difficulty. Existing studies typically assume a uniform unlearning difficulty across samples. This simplification risks attributing the performance of unlearning algorithms to sample selection rather than the algorithm's design, potentially steering the development of LLM unlearning in the wrong direction. Thus, we investigate the relationship between LLM unlearning and sample characteristics, with a focus on unlearning difficulty. Drawing inspiration from neuroscience, we propose a Memory Removal Difficulty ($\mathrm{MRD}$) metric to quantify sample-level unlearning difficulty. Using $\mathrm{MRD}$, we analyze the characteristics of hard-to-unlearn versus easy-to-unlearn samples. Furthermore, we propose an $\mathrm{MRD}$-based weighted sampling method to optimize existing unlearning algorithms, which prioritizes easily forgettable samples, thereby improving unlearning efficiency and effectiveness. We validate the proposed metric and method using public benchmarks and datasets, with results confirming its effectiveness.
comment: 16 pages
☆ ThoughtProbe: Classifier-Guided Thought Space Exploration Leveraging LLM Intrinsic Reasoning
Pre-trained large language models (LLMs) have been demonstrated to possess intrinsic reasoning capabilities that can emerge naturally when expanding the response space. However, the neural representation mechanisms underlying these intrinsic capabilities and approaches for their optimal utilization remain inadequately understood. In this work, we make the key discovery that a simple linear classifier can effectively detect intrinsic reasoning capabilities in LLMs' activation space, particularly within specific representation types and network layers. Based on this finding, we propose a classifier-guided search framework that strategically explore a tree-structured response space. In each node expansion, the classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by identifying and prioritizing more thoughtful reasoning directions for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We propose a branch-aggregation selection method that marginalizes over all supporting branches by aggregating their thoughtfulness scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework's comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.
☆ Wanting to be Understood
This paper explores an intrinsic motivation for mutual awareness, hypothesizing that humans possess a fundamental drive to understand \textit{and to be understood} even in the absence of extrinsic rewards. Through simulations of the perceptual crossing paradigm, we explore the effect of various internal reward functions in reinforcement learning agents. The drive to understand is implemented as an active inference type artificial curiosity reward, whereas the drive to be understood is implemented through intrinsic rewards for imitation, influence/impressionability, and sub-reaction time anticipation of the other. Results indicate that while artificial curiosity alone does not lead to a preference for social interaction, rewards emphasizing reciprocal understanding successfully drive agents to prioritize interaction. We demonstrate that this intrinsic motivation can facilitate cooperation in tasks where only one agent receives extrinsic reward for the behaviour of the other.
☆ Automated Business Process Analysis: An LLM-Based Approach to Value Assessment
Business processes are fundamental to organizational operations, yet their optimization remains challenging due to the timeconsuming nature of manual process analysis. Our paper harnesses Large Language Models (LLMs) to automate value-added analysis, a qualitative process analysis technique that aims to identify steps in the process that do not deliver value. To date, this technique is predominantly manual, time-consuming, and subjective. Our method offers a more principled approach which operates in two phases: first, decomposing high-level activities into detailed steps to enable granular analysis, and second, performing a value-added analysis to classify each step according to Lean principles. This approach enables systematic identification of waste while maintaining the semantic understanding necessary for qualitative analysis. We develop our approach using 50 business process models, for which we collect and publish manual ground-truth labels. Our evaluation, comparing zero-shot baselines with more structured prompts reveals (a) a consistent benefit of structured prompting and (b) promising performance for both tasks. We discuss the potential for LLMs to augment human expertise in qualitative process analysis while reducing the time and subjectivity inherent in manual approaches.
☆ Bypassing Safety Guardrails in LLMs Using Humor
In this paper, we show it is possible to bypass the safety guardrails of large language models (LLMs) through a humorous prompt including the unsafe request. In particular, our method does not edit the unsafe request and follows a fixed template -- it is simple to implement and does not need additional LLMs to craft prompts. Extensive experiments show the effectiveness of our method across different LLMs. We also show that both removing and adding more humor to our method can reduce its effectiveness -- excessive humor possibly distracts the LLM from fulfilling its unsafe request. Thus, we argue that LLM jailbreaking occurs when there is a proper balance between focus on the unsafe request and presence of humor.
☆ Defending LLM Watermarking Against Spoofing Attacks with Contrastive Representation Learning
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.
☆ Do Reasoning Models Show Better Verbalized Calibration?
Large reasoning models (LRMs) have recently shown impressive capabilities in complex reasoning by leveraging increased test-time computation and exhibiting behaviors akin to human-like deliberation. Despite these advances, it remains an open question whether LRMs are better calibrated - particularly in their verbalized confidence - compared to instruction-tuned counterparts. In this paper, we investigate the calibration properties of LRMs trained via supervised fine-tuning distillation on long reasoning traces (henceforth SFT reasoning models) and outcome-based reinforcement learning for reasoning (henceforth RL reasoning models) across diverse domains. Our findings reveal that LRMs significantly outperform instruction-tuned models on complex reasoning tasks in both accuracy and confidence calibration. In contrast, we find surprising trends in the domain of factuality in particular. On factuality tasks, while Deepseek-R1 shows strong calibration behavior, smaller QwQ-32B shows no improvement over instruct models; moreover, SFT reasoning models display worse calibration (greater overconfidence) compared to instruct models. Our results provide evidence for a potentially critical role of reasoning-oriented RL training in improving LLMs' capacity for generating trustworthy, self-aware outputs.
comment: Work in Progress
☆ FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Heterogeneous model fusion enhances the performance of LLMs by integrating the knowledge and capabilities of multiple structurally diverse models. However, existing approaches often rely solely on selecting the best output for each prompt from source models, which underutilizes their full potential due to limited source knowledge and results in sparse optimization signals. To address this limitation, we propose FuseRL, a novel two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs. FuseSFT establishes a robust initialization by integrating the strengths of heterogeneous source models through weighted supervised fine-tuning (SFT) on diverse outputs for each prompt. FusePO optimizes weighted preferences based on the outputs of multiple source models to enable superior alignment performance. Extensive experiments demonstrate the effectiveness of our framework across various preference alignment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct as the target model, our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis suggests that FuseSFT regularizes the training process to reduce overfitting, while FusePO introduces dense and diverse signals for preference optimization.
☆ NeedleInATable: Exploring Long-Context Capability of Large Language Models towards Long-Structured Tables
Processing structured tabular data, particularly lengthy tables, constitutes a fundamental yet challenging task for large language models (LLMs). However, existing long-context benchmarks primarily focus on unstructured text, neglecting the challenges of long and complex structured tables. To address this gap, we introduce NeedleInATable (NIAT), a novel task that treats each table cell as a "needle" and requires the model to extract the target cell under different queries. Evaluation results of mainstream LLMs on this benchmark show they lack robust long-table comprehension, often relying on superficial correlations or shortcuts for complex table understanding tasks, revealing significant limitations in processing intricate tabular data. To this end, we propose a data synthesis method to enhance models' long-table comprehension capabilities. Experimental results show that our synthesized training data significantly enhances LLMs' performance on the NIAT task, outperforming both long-context LLMs and long-table agent methods. This work advances the evaluation of LLMs' genuine long-structured table comprehension capabilities and paves the way for progress in long-context and table understanding applications.
comment: Work in Progress
☆ Lugha-Llama: Adapting Large Language Models for African Languages
Large language models (LLMs) have achieved impressive results in a wide range of natural language applications. However, they often struggle to recognize low-resource languages, in particular African languages, which are not well represented in large training corpora. In this paper, we consider how to adapt LLMs to low-resource African languages. We find that combining curated data from African languages with high-quality English educational texts results in a training mix that substantially improves the model's performance on these languages. On the challenging IrokoBench dataset, our models consistently achieve the best performance amongst similarly sized baselines, particularly on knowledge-intensive multiple-choice questions (AfriMMLU). Additionally, on the cross-lingual question answering benchmark AfriQA, our models outperform the base model by over 10%. To better understand the role of English data during training, we translate a subset of 200M tokens into Swahili language and perform an analysis which reveals that the content of these data is primarily responsible for the strong performance. We release our models and data to encourage future research on African languages.
☆ CDER: Collaborative Evidence Retrieval for Document-level Relation Extraction
Document-level Relation Extraction (DocRE) involves identifying relations between entities across multiple sentences in a document. Evidence sentences, crucial for precise entity pair relationships identification, enhance focus on essential text segments, improving DocRE performance. However, existing evidence retrieval systems often overlook the collaborative nature among semantically similar entity pairs in the same document, hindering the effectiveness of the evidence retrieval task. To address this, we propose a novel evidence retrieval framework, namely CDER. CDER employs an attentional graph-based architecture to capture collaborative patterns and incorporates a dynamic sub-structure for additional robustness in evidence retrieval. Experimental results on the benchmark DocRE dataset show that CDER not only excels in the evidence retrieval task but also enhances overall performance of existing DocRE system.
comment: Published at ACIIDS 2024
☆ Missing Premise exacerbates Overthinking: Are Reasoning Models losing Critical Thinking Skill?
We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.
☆ Alice: Proactive Learning with Teacher's Demonstrations for Weak-to-Strong Generalization
The growing capabilities of large language models (LLMs) present a key challenge of maintaining effective human oversight. Weak-to-strong generalization (W2SG) offers a promising framework for supervising increasingly capable LLMs using weaker ones. Traditional W2SG methods rely on passive learning, where a weak teacher provides noisy demonstrations to train a strong student. This hinders students from employing their knowledge during training and reaching their full potential. In this work, we introduce Alice (pro{A}ctive {l}earning w{i}th tea{c}her's D{e}monstrations), a framework that leverages complementary knowledge between teacher and student to enhance the learning process.We probe the knowledge base of the teacher model by eliciting their uncertainty, and then use these insights together with teachers' responses as demonstrations to guide student models in self-generating improved responses for supervision. In addition, for situations with significant capability gaps between teacher and student models, we introduce cascade Alice, which employs a hierarchical training approach where weak teachers initially supervise intermediate models, who then guide stronger models in sequence. Experimental results demonstrate that our method significantly enhances the W2SG performance, yielding substantial improvements in three key tasks compared to the original W2SG: knowledge-based reasoning (+4.0%), mathematical reasoning (+22.62%), and logical reasoning (+12.11%). This highlights the effectiveness of our new W2SG paradigm that enables more robust knowledge transfer and supervision outcome.
☆ Multilingual MFA: Forced Alignment on Low-Resource Related Languages
We compare the outcomes of multilingual and crosslingual training for related and unrelated Australian languages with similar phonological inventories. We use the Montreal Forced Aligner to train acoustic models from scratch and adapt a large English model, evaluating results against seen data, unseen data (seen language), and unseen data and language. Results indicate benefits of adapting the English baseline model for previously unseen languages.
☆ PAYADOR: A Minimalist Approach to Grounding Language Models on Structured Data for Interactive Storytelling and Role-playing Games
Every time an Interactive Storytelling (IS) system gets a player input, it is facing the world-update problem. Classical approaches to this problem consist in mapping that input to known preprogrammed actions, what can severely constrain the free will of the player. When the expected experience has a strong focus on improvisation, like in Role-playing Games (RPGs), this problem is critical. In this paper we present PAYADOR, a different approach that focuses on predicting the outcomes of the actions instead of representing the actions themselves. To implement this approach, we ground a Large Language Model to a minimal representation of the fictional world, obtaining promising results. We make this contribution open-source, so it can be adapted and used for other related research on unleashing the co-creativity power of RPGs.
comment: Presented at the 15th International Conference on Computational Creativity (ICCC'24)
☆ MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
As Large Language Models (LLMs) are increasingly applied across various tasks, instruction tuning has emerged as a critical method for enhancing model performance. However, current data management strategies face substantial challenges in generating diverse and comprehensive data, restricting further improvements in model performance. To address this gap, we propose MDIT, a novel model-free data interpolation method for diverse instruction tuning, which generates varied and high-quality instruction data by performing task interpolation. Moreover, it contains diversity-based clustering strategies to ensure the diversity of the training data. Extensive experiments show that our method achieves superior performance in multiple benchmark tasks. The LLMs finetuned with MDIT show significant improvements in numerous tasks such as general question answering, math reasoning, and code generation. MDIT offers an efficient and automatic data synthetic method, generating diverse instruction data without depending on external resources while expanding the application potential of LLMs in complex environments.
☆ RAISE: Reinforenced Adaptive Instruction Selection For Large Language Models
In the instruction fine-tuning of large language models (LLMs), it has become a consensus that a few high-quality instructions are superior to a large number of low-quality instructions. At present, many instruction selection methods have been proposed, but most of these methods select instruction based on heuristic quality metrics, and only consider data selection before training. These designs lead to insufficient optimization of instruction fine-tuning, and fixed heuristic indicators are often difficult to optimize for specific tasks. So we designed a dynamic, task-objective-driven instruction selection framework RAISE(Reinforenced Adaptive Instruction SElection), which incorporates the entire instruction fine-tuning process into optimization, selecting instruction at each step based on the expected impact of instruction on model performance improvement. Our approach is well interpretable and has strong task-specific optimization capabilities. By modeling dynamic instruction selection as a sequential decision-making process, we use RL to train our selection strategy. Extensive experiments and result analysis prove the superiority of our method compared with other instruction selection methods. Notably, RAISE achieves superior performance by updating only 1\% of the training steps compared to full-data training, demonstrating its efficiency and effectiveness.
☆ Language Modeling for the Future of Finance: A Quantitative Survey into Metrics, Tasks, and Data Opportunities
Recent advances in language modeling have led to growing interest in applying Natural Language Processing (NLP) techniques to financial problems, enabling new approaches to analysis and decision-making. To systematically examine this trend, we review 374 NLP research papers published between 2017 and 2024 across 38 conferences and workshops, with a focused analysis of 221 papers that directly address finance-related tasks. We evaluate these papers across 11 qualitative and quantitative dimensions, identifying key trends such as the increasing use of general-purpose language models, steady progress in sentiment analysis and information extraction, and emerging efforts around explainability and privacy-preserving methods. We also discuss the use of evaluation metrics, highlighting the importance of domain-specific ones to complement standard machine learning metrics. Our findings emphasize the need for more accessible, adaptive datasets and highlight the significance of incorporating financial crisis periods to strengthen model robustness under real-world conditions. This survey provides a structured overview of NLP research applied to finance and offers practical insights for researchers and practitioners working at this intersection.
☆ Visual-Aware Speech Recognition for Noisy Scenarios
Humans have the ability to utilize visual cues, such as lip movements and visual scenes, to enhance auditory perception, particularly in noisy environments. However, current Automatic Speech Recognition (ASR) or Audio-Visual Speech Recognition (AVSR) models often struggle in noisy scenarios. To solve this task, we propose a model that improves transcription by correlating noise sources to visual cues. Unlike works that rely on lip motion and require the speaker's visibility, we exploit broader visual information from the environment. This allows our model to naturally filter speech from noise and improve transcription, much like humans do in noisy scenarios. Our method re-purposes pretrained speech and visual encoders, linking them with multi-headed attention. This approach enables the transcription of speech and the prediction of noise labels in video inputs. We introduce a scalable pipeline to develop audio-visual datasets, where visual cues correlate to noise in the audio. We show significant improvements over existing audio-only models in noisy scenarios. Results also highlight that visual cues play a vital role in improved transcription accuracy.
☆ ConceptCarve: Dynamic Realization of Evidence ACL 2025
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
comment: Under review for ACL 2025
☆ SemEval-2025 Task 5: LLMs4Subjects -- LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog SemEval 2025
We present SemEval-2025 Task 5: LLMs4Subjects, a shared task on automated subject tagging for scientific and technical records in English and German using the GND taxonomy. Participants developed LLM-based systems to recommend top-k subjects, evaluated through quantitative metrics (precision, recall, F1-score) and qualitative assessments by subject specialists. Results highlight the effectiveness of LLM ensembles, synthetic data generation, and multilingual processing, offering insights into applying LLMs for digital library classification.
comment: 10 pages, 4 figures, Accepted as SemEval 2025 Task 5 description paper
☆ HypoEval: Hypothesis-Guided Evaluation for Natural Language Generation
Large language models (LLMs) have demonstrated great potential for automating the evaluation of natural language generation. Previous frameworks of LLM-as-a-judge fall short in two ways: they either use zero-shot setting without consulting any human input, which leads to low alignment, or fine-tune LLMs on labeled data, which requires a non-trivial number of samples. Moreover, previous methods often provide little reasoning behind automated evaluations. In this paper, we propose HypoEval, Hypothesis-guided Evaluation framework, which first uses a small corpus of human evaluations to generate more detailed rubrics for human judgments and then incorporates a checklist-like approach to combine LLM's assigned scores on each decomposed dimension to acquire overall scores. With only 30 human evaluations, HypoEval achieves state-of-the-art performance in alignment with both human rankings (Spearman correlation) and human scores (Pearson correlation), on average outperforming G-Eval by 11.86% and fine-tuned Llama-3.1-8B-Instruct with at least 3 times more human evaluations by 11.95%. Furthermore, we conduct systematic studies to assess the robustness of HypoEval, highlighting its effectiveness as a reliable and interpretable automated evaluation framework.
comment: 22 pages, 3 figures, code link: https://github.com/ChicagoHAI/HypoEval-Gen
☆ R2E-Gym: Procedural Environments and Hybrid Verifiers for Scaling Open-Weights SWE Agents
Improving open-source models on real-world SWE tasks (solving GITHUB issues) faces two key challenges: 1) scalable curation of execution environments to train these models, and, 2) optimal scaling of test-time compute. We introduce AgentGym, the largest procedurally-curated executable gym environment for training real-world SWE-agents, consisting of more than 8.7K tasks. AgentGym is powered by two main contributions: 1) SYNGEN: a synthetic data curation recipe that enables scalable curation of executable environments using test-generation and back-translation directly from commits, thereby reducing reliance on human-written issues or unit tests. We show that this enables more scalable training leading to pass@1 performance of 34.4% on SWE-Bench Verified benchmark with our 32B model. 2) Hybrid Test-time Scaling: we provide an in-depth analysis of two test-time scaling axes; execution-based and execution-free verifiers, demonstrating that they exhibit complementary strengths and limitations. Test-based verifiers suffer from low distinguishability, while execution-free verifiers are biased and often rely on stylistic features. Surprisingly, we find that while each approach individually saturates around 42-43%, significantly higher gains can be obtained by leveraging their complementary strengths. Overall, our approach achieves 51% on the SWE-Bench Verified benchmark, reflecting a new state-of-the-art for open-weight SWE-agents and for the first time showing competitive performance with proprietary models such as o1, o1-preview and sonnet-3.5-v2 (with tools). We will open-source our environments, models, and agent trajectories.
comment: Website: https://r2e-gym.github.io/
☆ Holistic Capability Preservation: Towards Compact Yet Comprehensive Reasoning Models
This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
comment: 10 pages
♻ ☆ Hogwild! Inference: Parallel LLM Generation via Concurrent Attention
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's partial progress in the concurrent cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's generated tokens. Hogwild! inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: Preprint, work in progress
♻ ☆ LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning EMNLP 2024
Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
comment: Findings of the Association for Computational Linguistics: EMNLP 2024
♻ ☆ Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation CVPR 2025
The rapid development of vision language models (VLMs) demands rigorous and reliable evaluation. However, current visual question answering (VQA) benchmarks often depend on open-ended questions, making accurate evaluation difficult due to the variability in natural language responses. To address this, we introduce AutoConverter, an agentic framework that automatically converts these open-ended questions into multiple-choice format, enabling objective evaluation while reducing the costly multiple-choice question creation process. Our experiments demonstrate that AutoConverter can generate correct and challenging multiple-choice questions, with VLMs demonstrating consistently similar or lower accuracy on these questions compared to human-created ones. Using AutoConverter, we construct VMCBench, a benchmark created by transforming 20 existing VQA datasets into a unified multiple-choice format, totaling 9,018 questions. We comprehensively evaluate 33 state-of-the-art VLMs on VMCBench, setting a new standard for scalable, consistent, and reproducible VLM evaluation.
comment: CVPR 2025
♻ ☆ Beyond the Hype: Embeddings vs. Prompting for Multiclass Classification Tasks
Are traditional classification approaches irrelevant in this era of AI hype? We show that there are multiclass classification problems where predictive models holistically outperform LLM prompt-based frameworks. Given text and images from home-service project descriptions provided by Thumbtack customers, we build embeddings-based softmax models that predict the professional category (e.g., handyman, bathroom remodeling) associated with each problem description. We then compare against prompts that ask state-of-the-art LLM models to solve the same problem. We find that the embeddings approach outperforms the best LLM prompts in terms of accuracy, calibration, latency, and financial cost. In particular, the embeddings approach has 49.5% higher accuracy than the prompting approach, and its superiority is consistent across text-only, image-only, and text-image problem descriptions. Furthermore, it yields well-calibrated probabilities, which we later use as confidence signals to provide contextualized user experience during deployment. On the contrary, prompting scores are overly uninformative. Finally, the embeddings approach is 14 and 81 times faster than prompting in processing images and text respectively, while under realistic deployment assumptions, it can be up to 10 times cheaper. Based on these results, we deployed a variation of the embeddings approach, and through A/B testing we observed performance consistent with our offline analysis. Our study shows that for multiclass classification problems that can leverage proprietary datasets, an embeddings-based approach may yield unequivocally better results. Hence, scientists, practitioners, engineers, and business leaders can use our study to go beyond the hype and consider appropriate predictive models for their classification use cases.
♻ ☆ Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs.
comment: Code: https://github.com/AtsuMiyai/UPD
♻ ☆ Monte Carlo Temperature: a robust sampling strategy for LLM's uncertainty quantification methods
Uncertainty quantification (UQ) in Large Language Models (LLMs) is essential for their safe and reliable deployment, particularly in critical applications where incorrect outputs can have serious consequences. Current UQ methods typically rely on querying the model multiple times using non-zero temperature sampling to generate diverse outputs for uncertainty estimation. However, the impact of selecting a given temperature parameter is understudied, and our analysis reveals that temperature plays a fundamental role in the quality of uncertainty estimates. The conventional approach of identifying optimal temperature values requires expensive hyperparameter optimization (HPO) that must be repeated for each new model-dataset combination. We propose Monte Carlo Temperature (MCT), a robust sampling strategy that eliminates the need for temperature calibration. Our analysis reveals that: 1) MCT provides more robust uncertainty estimates across a wide range of temperatures, 2) MCT improves the performance of UQ methods by replacing fixed-temperature strategies that do not rely on HPO, and 3) MCT achieves statistical parity with oracle temperatures, which represent the ideal outcome of a well-tuned but computationally expensive HPO process. These findings demonstrate that effective UQ can be achieved without the computational burden of temperature parameter calibration.
♻ ☆ Dolphin: Moving Towards Closed-loop Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we introduce Dolphin, a closed-loop LLM-driven framework to enhance the automation level of scientific research. Dolphin first generates novel ideas based on feedback from previous experiments and relevant papers ranked by the topic and task attributes. Then, the generated ideas can be implemented using a code template refined and debugged with the designed exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and a subset of MLE-bench. Results show that Dolphin can continuously improve the performance of the input topic in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 3D point classification.
comment: 21 pages, 12 figures, and our homepage: https://alpha-innovator.github.io/Dolphin-project-page
♻ ☆ Human and LLM Biases in Hate Speech Annotations: A Socio-Demographic Analysis of Annotators and Targets
The rise of online platforms exacerbated the spread of hate speech, demanding scalable and effective detection. However, the accuracy of hate speech detection systems heavily relies on human-labeled data, which is inherently susceptible to biases. While previous work has examined the issue, the interplay between the characteristics of the annotator and those of the target of the hate are still unexplored. We fill this gap by leveraging an extensive dataset with rich socio-demographic information of both annotators and targets, uncovering how human biases manifest in relation to the target's attributes. Our analysis surfaces the presence of widespread biases, which we quantitatively describe and characterize based on their intensity and prevalence, revealing marked differences. Furthermore, we compare human biases with those exhibited by persona-based LLMs. Our findings indicate that while persona-based LLMs do exhibit biases, these differ significantly from those of human annotators. Overall, our work offers new and nuanced results on human biases in hate speech annotations, as well as fresh insights into the design of AI-driven hate speech detection systems.
♻ ☆ LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning
Modern large language models (LLMs) employ various forms of logical inference, both implicitly and explicitly, when addressing reasoning tasks. Understanding how to optimally leverage these inference paradigms is critical for advancing LLMs' reasoning capabilities. This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning -- a fundamental cognitive task -- that is systematically parameterized across three dimensions: modality (textual, visual, symbolic), difficulty (easy, medium, hard), and task format (multiple-choice or free-text generation). We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines across these dimensions, and demonstrate that our findings generalize to broader in-context learning tasks. Additionally, we investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference in LLM reasoning. This exploratory study provides a foundation for future research in enhancing LLM reasoning through systematic logical inference strategies. Resources are available at https://github.com/HKUST-KnowComp/LogiDynamics.
comment: 21 pages
♻ ☆ Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
♻ ☆ Saliency-driven Dynamic Token Pruning for Large Language Models
Despite the recent success of large language models (LLMs), LLMs are particularly challenging in long-sequence inference scenarios due to the quadratic computational complexity of the attention mechanism. Inspired by the interpretability theory of feature attribution in neural network models, we observe that not all tokens have the same contribution. Based on this observation, we propose a novel token pruning framework, namely Saliency-driven Dynamic Token Pruning (SDTP), to gradually and dynamically prune redundant tokens based on the input context. Specifically, a lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state, which is added to different layers of the LLM to hierarchically prune redundant tokens. Furthermore, a ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score. Extensive experiments have shown that our framework is generalizable to various models and datasets. By hierarchically pruning 65\% of the input tokens, our method greatly reduces 33\% $\sim$ 47\% FLOPs and achieves speedup up to 1.75$\times$ during inference, while maintaining comparable performance. We further demonstrate that SDTP can be combined with KV cache compression method for further compression.
♻ ☆ Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval ECIR 2025
Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
comment: 10 pages, 3 figures, ECIR 2025
♻ ☆ A Survey on Mixture of Experts in Large Language Models
Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE research, we have established a resource repository at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts-in-LLMs.
comment: The first three authors contributed equally to this work; Accepted by TKDE
♻ ☆ Pretraining Language Models for Diachronic Linguistic Change Discovery
Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.
♻ ☆ Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "test-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.
comment: Paper are available at https://long-cot.github.io/, and Github are available at https://github.com/LightChen233/Awesome-Long-Chain-of-Thought-Reasoning
♻ ☆ Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have emerged as powerful tools for many tasks, such as extracting valuable insights from vast amounts of textual data. In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor and Reddit posts. Leveraging a diverse range of models, including both open-source and proprietary ones such as GPT-4 and Gemini, we aim to elucidate their strengths and weaknesses in this specialized domain. Through an evaluation process involving metrics such as BERTScore, ROUGE, and BLEU, we assess the performance of each model in accurately identifying and summarizing customer needs. Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models while offering affordability and customization benefits. Additionally, we underscore the importance of considering factors such as model size, resource requirements, and performance metrics when selecting the most suitable LLM for customer needs analysis tasks. Overall, this study contributes valuable insights for businesses seeking to leverage advanced NLP techniques to enhance customer experience and drive operational efficiency in the travel industry.
♻ ☆ PingPong: A Benchmark for Role-Playing Language Models with User Emulation and Multi-Model Evaluation
We introduce a benchmark for evaluating the role-playing capabilities of language models. Our approach leverages different language models to simulate users in dynamic, multi-turn conversations and assess the resulting dialogues. Our methodology involves three main components: a player model that adopts a specific character role, an interrogator model that simulates user behavior in a specific situation, and a judge model ensemble that evaluates conversation quality with 3 metrics: character consistency, entertainment value, and language fluency. We evaluated more than 40 models in both English and Russian, with each model participating in 64 conversations with 8 characters and 8 situations. We conducted experiments comparing automated evaluations with human annotations to validate our approach, demonstrating strong correlations across multiple criteria. This work provides a foundation for a robust and dynamic evaluation of different model capabilities in interactive scenarios.
comment: 8 main pages, 8 additional pages
♻ ☆ Synthetic News Generation for Fake News Classification
This study explores the generation and evaluation of synthetic fake news through fact based manipulations using large language models (LLMs). We introduce a novel methodology that extracts key facts from real articles, modifies them, and regenerates content to simulate fake news while maintaining coherence. To assess the quality of the generated content, we propose a set of evaluation metrics coherence, dissimilarity, and correctness. The research also investigates the application of synthetic data in fake news classification, comparing traditional machine learning models with transformer based models such as BERT. Our experiments demonstrate that transformer models, especially BERT, effectively leverage synthetic data for fake news detection, showing improvements with smaller proportions of synthetic data. Additionally, we find that fact verification features, which focus on identifying factual inconsistencies, provide the most promising results in distinguishing synthetic fake news. The study highlights the potential of synthetic data to enhance fake news detection systems, offering valuable insights for future research and suggesting that targeted improvements in synthetic data generation can further strengthen detection models.
comment: One of the authors objected to submit the paper because he was not aware of that and he likes to modify the paper before submitting to arXiv
♻ ☆ CroissantLLM: A Truly Bilingual French-English Language Model
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
♻ ☆ MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation
Processing long contexts presents a significant challenge for large language models (LLMs). While recent advancements allow LLMs to handle much longer contexts than before (e.g., 32K or 128K tokens), it is computationally expensive and can still be insufficient for many applications. Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem. However, conventional RAG methods face inherent limitations because of two underlying requirements: 1) explicitly stated queries, and 2) well-structured knowledge. These conditions, however, do not hold in general long-context processing tasks. In this work, we propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval. MemoRAG features a dual-system architecture. First, it employs a light but long-range system to create a global memory of the long context. Once a task is presented, it generates draft answers, providing useful clues for the retrieval tools to locate relevant information within the long context. Second, it leverages an expensive but expressive system, which generates the final answer based on the retrieved information. Building upon this fundamental framework, we realize the memory module in the form of KV compression, and reinforce its memorization and cluing capacity from the Generation quality's Feedback (a.k.a. RLGF). In our experiments, MemoRAG achieves superior performances across a variety of long-context evaluation tasks, not only complex scenarios where traditional RAG methods struggle, but also simpler ones where RAG is typically applied.
comment: theWebConf 2025. Codes and models are in https://github.com/qhjqhj00/MemoRAG
♻ ☆ GWQ: Gradient-Aware Weight Quantization for Large Language Models
Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters presents significant challenges for the deployment. So, compressing LLMs to low bits can enable to deploy on resource-constrained devices. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the top 1\% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit. We widely evaluate GWQ on different task include language modeling, grounding detection, massive multitask language understanding and vision-language question and answering. Results show that models quantified by GWQ performs better than other quantization method. During quantization process, GWQ only need one calibration set to realize effective quant. Also, GWQ achieves 1.2x inference speedup in comparison to the original model and effectively reduces the inference memory.
♻ ☆ A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection
Large Language Models (LLMs) are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.
comment: 8 pages, 5 figures
♻ ☆ The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters
Theory-of-Mind (ToM) is a fundamental psychological capability that allows humans to understand and interpret the mental states of others. Humans infer others' thoughts by integrating causal cues and indirect clues from broad contextual information, often derived from past interactions. In other words, human ToM heavily relies on the understanding about the backgrounds and life stories of others. Unfortunately, this aspect is largely overlooked in existing benchmarks for evaluating machines' ToM capabilities, due to their usage of short narratives without global context, especially personal background of characters. In this paper, we verify the importance of comprehensive contextual understanding about personal backgrounds in ToM and assess the performance of LLMs in such complex scenarios. To achieve this, we introduce CharToM benchmark, comprising 1,035 ToM questions based on characters from classic novels. Our human study reveals a significant disparity in performance: the same group of educated participants performs dramatically better when they have read the novels compared to when they have not. In parallel, our experiments on state-of-the-art LLMs, including the very recent o1 and DeepSeek-R1 models, show that LLMs still perform notably worse than humans, despite that they have seen these stories during pre-training. This highlights the limitations of current LLMs in capturing the nuanced contextual information required for ToM reasoning.
comment: 20 pages
♻ ☆ Demystifying Language Model Forgetting with Low-rank Example Associations
Large Language models (LLMs) suffer from forgetting of upstream data when fine-tuned. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are dependent on newly learned tasks. Insights on such dependencies enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples of language modeling or instruction-tuning after fine-tuning LLMs on one of $M$ new tasks, visualized in $M\times N$ matrices. We show that the matrices are often well-approximated with low-rank matrices, indicating the dominance of simple associations between the learned tasks and forgotten upstream examples. Leveraging the analysis, we predict forgetting of upstream examples when fine-tuning on unseen tasks with matrix completion over the empirical associations. This enables fast identification of most forgotten examples without expensive inference on the entire upstream data. The approach, despite simplicity, outperforms prior approaches that learn semantic relationships of learned tasks and upstream examples with LMs for predicting forgetting. We demonstrate the practical utility of our analysis by showing statistically significantly reduced forgetting as we upweight predicted examples for replay at fine-tuning. Project page: https://inklab.usc.edu/lm-forgetting-prediction/
comment: 8 pages; preprint, fixed Table 5 in Appendix D
♻ ☆ Sequential-NIAH: A Needle-In-A-Haystack Benchmark for Extracting Sequential Needles from Long Contexts
Evaluating the ability of large language models (LLMs) to handle extended contexts is critical, particularly for retrieving information relevant to specific queries embedded within lengthy inputs. We introduce Sequential-NIAH, a benchmark specifically designed to evaluate the capability of LLMs to extract sequential information items (known as needles) from long contexts. The benchmark comprises three types of needle generation pipelines: synthetic, real, and open-domain QA. It includes contexts ranging from 8K to 128K tokens in length, with a dataset of 14,000 samples (2,000 reserved for testing). To facilitate evaluation on this benchmark, we trained a synthetic data-driven evaluation model capable of evaluating answer correctness based on chronological or logical order, achieving an accuracy of 99.49% on synthetic test data. We conducted experiments on six well-known LLMs, revealing that even the best-performing model achieved a maximum accuracy of only 63.15%. Further analysis highlights the growing challenges posed by increasing context lengths and the number of needles, underscoring substantial room for improvement. Additionally, noise robustness experiments validate the reliability of the benchmark, making Sequential-NIAH an important reference for advancing research on long text extraction capabilities of LLMs.
♻ ☆ CLaSP: Learning Concepts for Time-Series Signals from Natural Language Supervision
This paper presents CLaSP, a novel model for retrieving time-series signals using natural language queries that describe signal characteristics. The ability to search time-series signals based on descriptive queries is essential in domains such as industrial diagnostics, where data scientists often need to find signals with specific characteristics. However, existing methods rely on sketch-based inputs, predefined synonym dictionaries, or domain-specific manual designs, limiting their scalability and adaptability. CLaSP addresses these challenges by employing contrastive learning to map time-series signals to natural language descriptions. Unlike prior approaches, it eliminates the need for predefined synonym dictionaries and leverages the rich contextual knowledge of large language models (LLMs). Using the TRUCE and SUSHI datasets, which pair time-series signals with natural language descriptions, we demonstrate that CLaSP achieves high accuracy in retrieving a variety of time series patterns based on natural language queries.
♻ ☆ MARS: Memory-Enhanced Agents with Reflective Self-improvement
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making, lack of long-term memory, and limited context windows in dynamic environments. To address these issues, this paper proposes an innovative framework Memory-Enhanced Agents with Reflective Self-improvement. The MARS framework comprises three agents: the User, the Assistant, and the Checker. By integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents capabilities in handling multi-tasking and long-span information.
comment: We are withdrawing this version because it duplicates our previous submission (arXiv:2409.00872)
♻ ☆ RETROcode: Leveraging a Code Database for Improved Natural Language to Code Generation
As text and code resources have expanded, large-scale pre-trained models have shown promising capabilities in code generation tasks, typically employing supervised fine-tuning with problem statement-program pairs. However, increasing model size and data volume for performance gains also raises computational demands and risks of overfitting. Addressing these challenges, we present RETROcode, a novel adaptation of the RETRO architecture \cite{RETRO} for sequence-to-sequence models, utilizing a large code database as an auxiliary scaling method. This approach, diverging from simply enlarging model and dataset sizes, allows RETROcode to leverage a vast code database for prediction, enhancing the model's efficiency by integrating extensive memory. Our findings indicate that RETROcode not only outperforms similar-sized traditional architectures on test sets but also approaches the effectiveness of the much larger Codex model, despite being trained from scratch on a substantially smaller dataset.
♻ ☆ EzSQL: An SQL intermediate representation for improving SQL-to-text Generation
The SQL-to-text generation task traditionally uses template base, Seq2Seq, tree-to-sequence, and graph-to-sequence models. Recent models take advantage of pre-trained generative language models for this task in the Seq2Seq framework. However, treating SQL as a sequence of inputs to the pre-trained models is not optimal. In this work, we put forward a new SQL intermediate representation called EzSQL to align SQL with the natural language text sequence. EzSQL simplifies the SQL queries and brings them closer to natural language text by modifying operators and keywords, which can usually be described in natural language. EzSQL also removes the need for set operators. Our proposed SQL-to-text generation model uses EzSQL as the input to a pre-trained generative language model for generating the text descriptions. We demonstrate that our model is an effective state-of-the-art method to generate text narrations from SQL queries on the WikiSQL and Spider datasets. We also show that by generating pretraining data using our SQL-to-text generation model, we can enhance the performance of Text-to-SQL parsers.
comment: Under revision and review at Expert System With Applications Journal after first review
♻ ☆ PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
comment: Project Page: https://prmbench.github.io/
♻ ☆ Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation
This study explores the capability of Large Language Models (LLMs) to evaluate causality in causal graphs generated by conventional statistical causal discovery methods-a task traditionally reliant on manual assessment by human subject matter experts. To bridge this gap in causality assessment, LLMs are employed to evaluate the causal relationships by determining whether a causal connection between variable pairs can be inferred from textual context. Our study compares two approaches: (1) prompting-based method for zero-shot and few-shot causal inference and, (2) fine-tuning language models for the causal relation prediction task. While prompt-based LLMs have demonstrated versatility across various NLP tasks, our experiments on biomedical and general-domain datasets show that fine-tuned models consistently outperform them, achieving up to a 20.5-point improvement in F1 score-even when using smaller-parameter language models. These findings provide valuable insights into the strengths and limitations of both approaches for causal graph evaluation.
♻ ☆ Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups
Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from sociological foundations of stigmatization theory, our stigmatization analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.
♻ ☆ Reasoning Towards Fairness: Mitigating Bias in Language Models through Reasoning-Guided Fine-Tuning
Recent advances in large-scale generative language models have shown that reasoning capabilities can significantly improve model performance across a variety of tasks. However, the impact of reasoning on a model's ability to mitigate stereotypical responses remains largely underexplored. In this work, we investigate the crucial relationship between a model's reasoning ability and fairness, and ask whether improved reasoning capabilities can mitigate harmful stereotypical responses, especially those arising due to shallow or flawed reasoning. We conduct a comprehensive evaluation of multiple open-source LLMs, and find that larger models with stronger reasoning abilities exhibit substantially lower stereotypical bias on existing fairness benchmarks. Building on this insight, we introduce ReGiFT -- Reasoning Guided Fine-Tuning, a novel approach that extracts structured reasoning traces from advanced reasoning models and infuses them into models that lack such capabilities. We use only general-purpose reasoning and do not require any fairness-specific supervision for bias mitigation. Notably, we see that models fine-tuned using ReGiFT not only improve fairness relative to their non-reasoning counterparts but also outperform advanced reasoning models on fairness benchmarks. We also analyze how variations in the correctness of the reasoning traces and their length influence model fairness and their overall performance. Our findings highlight that enhancing reasoning capabilities is an effective, fairness-agnostic strategy for mitigating stereotypical bias caused by reasoning flaws.
comment: 17 pages
♻ ☆ Confidence Regularized Masked Language Modeling using Text Length
Masked language modeling is a widely used method for learning language representations, where the model predicts a randomly masked word in each input. However, this approach typically considers only a single correct answer during training, ignoring the variety of plausible alternatives that humans might choose. This issue becomes more pronounced when the input text is short, as the possible word distribution tends to have higher entropy, potentially causing the model to become overconfident in its predictions. To mitigate this, we propose a novel confidence regularizer that adaptively adjusts the regularization strength based on the input length. Experiments on the GLUE and SQuAD benchmarks show that our method improves both accuracy and expected calibration error
comment: 10 pages, 1 figure
♻ ☆ DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis AAAI 2025
Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.
comment: AAAI 2025 accepted
♻ ☆ CoTAL: Human-in-the-Loop Prompt Engineering, Chain-of-Thought Reasoning, and Active Learning for Generalizable Formative Assessment Scoring
Large language models (LLMs) have created new opportunities to assist teachers and support student learning. Methods such as chain-of-thought (CoT) prompting enable LLMs to grade formative assessments in science, providing scores and relevant feedback to students. However, the extent to which these methods generalize across curricula in multiple domains (such as science, computing, and engineering) remains largely untested. In this paper, we introduce Chain-of-Thought Prompting + Active Learning (CoTAL), an LLM-based approach to formative assessment scoring that (1) leverages Evidence-Centered Design (ECD) principles to develop curriculum-aligned formative assessments and rubrics, (2) applies human-in-the-loop prompt engineering to automate response scoring, and (3) incorporates teacher and student feedback to iteratively refine assessment questions, grading rubrics, and LLM prompts for automated grading. Our findings demonstrate that CoTAL improves GPT-4's scoring performance, achieving gains of up to 24.5% over a non-prompt-engineered baseline. Both teachers and students view CoTAL as effective in scoring and explaining student responses, each providing valuable refinements to enhance grading accuracy and explanation quality.
comment: Submitted to IEEE Transactions on Learning Technologies. Currently under review
♻ ☆ Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
comment: There is a text error in table 6
♻ ☆ Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, Gemini-2.5-Pro, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly: only Gemini-2.5-Pro achieves a non-trivial score of 25%, while all other models achieve less than 5%. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
♻ ☆ BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering
Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry. Our code is available at https://github.com/probe2/BUCA.
comment: There is a text error in Table 10
♻ ☆ Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPA's memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
comment: 31 pages, 6 figures
♻ ☆ CiteBART: Learning to Generate Citations for Local Citation Recommendation
Local citation recommendation (LCR) suggests a set of papers for a citation placeholder within a given context. The task has evolved as generative approaches have become more promising than the traditional pre-fetch and re-rank-based state-of-the-art approaches. This paper introduces citation-specific pre-training within an encoder-decoder architecture, where author-date citation tokens are masked to learn to reconstruct them to fulfill LCR. There are two variants for this pre-training. In the local context-only base scheme (CiteBART-Base), the citation token in a local context is masked to learn to predict the citation. The global version (CiteBART-Global) extends the local context with the citing paper's title and abstract to enrich the learning signal. CiteBART-Global achieves state-of-the-art performance on LCR benchmarks except for the FullTextPeerRead dataset, which is quite small to see the advantage of generative pre-training. The effect is significant in the larger benchmarks, e.g., Refseer and ArXiv., with the Refseer benchmark-trained model emerging as the best-performing model. We perform comprehensive experiments, including an ablation study, a qualitative analysis, and a taxonomy of hallucinations with detailed statistics. Our analyses confirm that CiteBART-Global has a cross-dataset generalization capability; the macro hallucination rate (MaHR) at the top-3 predictions is 4\%, and when the ground-truth is in the top-k prediction list, the hallucination tendency in the other predictions drops significantly.
comment: 17 pages, 2 figures, 10 tables
♻ ☆ Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play
Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.
comment: spotlight @ neurips language gamification workshop. updated the problem description and added new online RL experiments in this version
♻ ☆ Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.