MyArxiv
Computation and Language
☆ MetricX-25 and GemSpanEval: Google Translate Submissions to the WMT25 Evaluation Shared Task
In this paper, we present our submissions to the unified WMT25 Translation Evaluation Shared Task. For the Quality Score Prediction subtask, we create a new generation of MetricX with improvements in the input format and the training protocol, while for the Error Span Detection subtask we develop a new model, GemSpanEval, trained to predict error spans along with their severities and categories. Both systems are based on the state-of-the-art multilingual open-weights model Gemma 3, fine-tuned on publicly available WMT data. We demonstrate that MetricX-25, adapting Gemma 3 to an encoder-only architecture with a regression head on top, can be trained to effectively predict both MQM and ESA quality scores, and significantly outperforms its predecessor. Our decoder-only GemSpanEval model, on the other hand, we show to be competitive in error span detection with xCOMET, a strong encoder-only sequence-tagging baseline. With error span detection formulated as a generative task, we instruct the model to also output the context for each predicted error span, thus ensuring that error spans are identified unambiguously.
comment: Accepted to WMT25
☆ ComboBench: Can LLMs Manipulate Physical Devices to Play Virtual Reality Games?
Virtual Reality (VR) games require players to translate high-level semantic actions into precise device manipulations using controllers and head-mounted displays (HMDs). While humans intuitively perform this translation based on common sense and embodied understanding, whether Large Language Models (LLMs) can effectively replicate this ability remains underexplored. This paper introduces a benchmark, ComboBench, evaluating LLMs' capability to translate semantic actions into VR device manipulation sequences across 262 scenarios from four popular VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft. We evaluate seven LLMs, including GPT-3.5, GPT-4, GPT-4o, Gemini-1.5-Pro, LLaMA-3-8B, Mixtral-8x7B, and GLM-4-Flash, compared against annotated ground truth and human performance. Our results reveal that while top-performing models like Gemini-1.5-Pro demonstrate strong task decomposition capabilities, they still struggle with procedural reasoning and spatial understanding compared to humans. Performance varies significantly across games, suggesting sensitivity to interaction complexity. Few-shot examples substantially improve performance, indicating potential for targeted enhancement of LLMs' VR manipulation capabilities. We release all materials at https://sites.google.com/view/combobench.
☆ Agent Data Protocol: Unifying Datasets for Diverse, Effective Fine-tuning of LLM Agents
Public research results on large-scale supervised finetuning of AI agents remain relatively rare, since the collection of agent training data presents unique challenges. In this work, we argue that the bottleneck is not a lack of underlying data sources, but that a large variety of data is fragmented across heterogeneous formats, tools, and interfaces. To this end, we introduce the agent data protocol (ADP), a light-weight representation language that serves as an "interlingua" between agent datasets in diverse formats and unified agent training pipelines downstream. The design of ADP is expressive enough to capture a large variety of tasks, including API/tool use, browsing, coding, software engineering, and general agentic workflows, while remaining simple to parse and train on without engineering at a per-dataset level. In experiments, we unified a broad collection of 13 existing agent training datasets into ADP format, and converted the standardized ADP data into training-ready formats for multiple agent frameworks. We performed SFT on these data, and demonstrated an average performance gain of ~20% over corresponding base models, and delivers state-of-the-art or near-SOTA performance on standard coding, browsing, tool use, and research benchmarks, without domain-specific tuning. All code and data are released publicly, in the hope that ADP could help lower the barrier to standardized, scalable, and reproducible agent training.
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ ParallelMuse: Agentic Parallel Thinking for Deep Information Seeking
Parallel thinking expands exploration breadth, complementing the deep exploration of information-seeking (IS) agents to further enhance problem-solving capability. However, conventional parallel thinking faces two key challenges in this setting: inefficiency from repeatedly rolling out from scratch, and difficulty in integrating long-horizon reasoning trajectories during answer generation, as limited context capacity prevents full consideration of the reasoning process. To address these issues, we propose ParallelMuse, a two-stage paradigm designed for deep IS agents. The first stage, Functionality-Specified Partial Rollout, partitions generated sequences into functional regions and performs uncertainty-guided path reuse and branching to enhance exploration efficiency. The second stage, Compressed Reasoning Aggregation, exploits reasoning redundancy to losslessly compress information relevant to answer derivation and synthesize a coherent final answer. Experiments across multiple open-source agents and benchmarks demonstrate up to 62% performance improvement with a 10--30% reduction in exploratory token consumption.
☆ AgentFold: Long-Horizon Web Agents with Proactive Context Management
LLM-based web agents show immense promise for information seeking, yet their effectiveness on long-horizon tasks is hindered by a fundamental trade-off in context management. Prevailing ReAct-based agents suffer from context saturation as they accumulate noisy, raw histories, while methods that fixedly summarize the full history at each step risk the irreversible loss of critical details. Addressing these, we introduce AgentFold, a novel agent paradigm centered on proactive context management, inspired by the human cognitive process of retrospective consolidation. AgentFold treats its context as a dynamic cognitive workspace to be actively sculpted, rather than a passive log to be filled. At each step, it learns to execute a `folding' operation, which manages its historical trajectory at multiple scales: it can perform granular condensations to preserve vital, fine-grained details, or deep consolidations to abstract away entire multi-step sub-tasks. The results on prominent benchmarks are striking: with simple supervised fine-tuning (without continual pre-training or RL), our AgentFold-30B-A3B agent achieves 36.2% on BrowseComp and 47.3% on BrowseComp-ZH. Notably, this performance not only surpasses or matches open-source models of a dramatically larger scale, such as the DeepSeek-V3.1-671B-A37B, but also surpasses leading proprietary agents like OpenAI's o4-mini.
comment: 26 pages, 9 figures
☆ WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking
Large Language Model (LLM)-based agents have emerged as a transformative approach for open-ended problem solving, with information seeking (IS) being a core capability that enables autonomous reasoning and decision-making. While prior research has largely focused on improving retrieval depth, we observe that current IS agents often suffer from low search efficiency, which in turn constrains overall performance. A key factor underlying this inefficiency is the sparsity of target entities in training tasks, which limits opportunities for agents to learn and generalize efficient search behaviors. To address these challenges, we propose WebLeaper, a framework for constructing high-coverage IS tasks and generating efficient solution trajectories. We formulate IS as a tree-structured reasoning problem, enabling a substantially larger set of target entities to be embedded within a constrained context. Leveraging curated Wikipedia tables, we propose three variants for synthesizing IS tasks, Basic, Union, and Reverse-Union, to systematically increase both IS efficiency and efficacy. Finally, we curate training trajectories by retaining only those that are simultaneously accurate and efficient, ensuring that the model is optimized for both correctness and search performance. Extensive experiments on both basic and comprehensive settings, conducted on five IS benchmarks, BrowserComp, GAIA, xbench-DeepSearch, WideSearch, and Seal-0, demonstrate that our method consistently achieves improvements in both effectiveness and efficiency over strong baselines.
☆ AgentFrontier: Expanding the Capability Frontier of LLM Agents with ZPD-Guided Data Synthesis
Training large language model agents on tasks at the frontier of their capabilities is key to unlocking advanced reasoning. We introduce a data synthesis approach inspired by the educational theory of the Zone of Proximal Development (ZPD), which defines this frontier as tasks an LLM cannot solve alone but can master with guidance. To operationalize this, we present the AgentFrontier Engine, an automated pipeline that synthesizes high-quality, multidisciplinary data situated precisely within the LLM's ZPD. This engine supports both continued pre-training with knowledge-intensive data and targeted post-training on complex reasoning tasks. From the same framework, we derive the ZPD Exam, a dynamic and automated benchmark designed to evaluate agent capabilities on these frontier tasks. We train AgentFrontier-30B-A3B model on our synthesized data, which achieves state-of-the-art results on demanding benchmarks like Humanity's Last Exam, even surpassing some leading proprietary agents. Our work demonstrates that a ZPD-guided approach to data synthesis offers a scalable and effective path toward building more capable LLM agents.
comment: https://tongyi-agent.github.io/blog/introducing-tongyi-deep-research/
☆ Repurposing Synthetic Data for Fine-grained Search Agent Supervision
LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.
☆ STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
comment: Homepage: https://internlm.github.io/StarBench/
☆ SPICE: Self-Play In Corpus Environments Improves Reasoning
Self-improving systems require environmental interaction for continuous adaptation. We introduce SPICE (Self-Play In Corpus Environments), a reinforcement learning framework where a single model acts in two roles: a Challenger that mines documents from a large corpus to generate diverse reasoning tasks, and a Reasoner that solves them. Through adversarial dynamics, the Challenger creates an automatic curriculum at the frontier of the Reasoner's capability, while corpus grounding provides the rich, near-inexhaustible external signal necessary for sustained improvement. Unlike existing ungrounded self-play methods that offer more limited benefits, SPICE achieves consistent gains across mathematical (+8.9%) and general reasoning (+9.8%) benchmarks on multiple model families. Our analysis reveals how document grounding is a key ingredient in SPICE to continuously generate its own increasingly challenging goals and achieve them, enabling sustained self-improvement.
☆ Dissecting Role Cognition in Medical LLMs via Neuronal Ablation
Large language models (LLMs) have gained significant traction in medical decision support systems, particularly in the context of medical question answering and role-playing simulations. A common practice, Prompt-Based Role Playing (PBRP), instructs models to adopt different clinical roles (e.g., medical students, residents, attending physicians) to simulate varied professional behaviors. However, the impact of such role prompts on model reasoning capabilities remains unclear. This study introduces the RP-Neuron-Activated Evaluation Framework(RPNA) to evaluate whether role prompts induce distinct, role-specific cognitive processes in LLMs or merely modify linguistic style. We test this framework on three medical QA datasets, employing neuron ablation and representation analysis techniques to assess changes in reasoning pathways. Our results demonstrate that role prompts do not significantly enhance the medical reasoning abilities of LLMs. Instead, they primarily affect surface-level linguistic features, with no evidence of distinct reasoning pathways or cognitive differentiation across clinical roles. Despite superficial stylistic changes, the core decision-making mechanisms of LLMs remain uniform across roles, indicating that current PBRP methods fail to replicate the cognitive complexity found in real-world medical practice. This highlights the limitations of role-playing in medical AI and emphasizes the need for models that simulate genuine cognitive processes rather than linguistic imitation.We have released the related code in the following repository:https: //github.com/IAAR-Shanghai/RolePlay_LLMDoctor
comment: 15 pages, 9 figures
☆ InteractComp: Evaluating Search Agents With Ambiguous Queries
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.
☆ MQM Re-Annotation: A Technique for Collaborative Evaluation of Machine Translation
Human evaluation of machine translation is in an arms race with translation model quality: as our models get better, our evaluation methods need to be improved to ensure that quality gains are not lost in evaluation noise. To this end, we experiment with a two-stage version of the current state-of-the-art translation evaluation paradigm (MQM), which we call MQM re-annotation. In this setup, an MQM annotator reviews and edits a set of pre-existing MQM annotations, that may have come from themselves, another human annotator, or an automatic MQM annotation system. We demonstrate that rater behavior in re-annotation aligns with our goals, and that re-annotation results in higher-quality annotations, mostly due to finding errors that were missed during the first pass.
☆ Evolving Diagnostic Agents in a Virtual Clinical Environment
In this paper, we present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static case summaries, our method acquires diagnostic strategies through interactive exploration and outcome-based feedback. Our contributions are fourfold: (i) We present DiagGym, a diagnostics world model trained with electronic health records that emits examination outcomes conditioned on patient history and recommended examination, serving as a virtual clinical environment for realistic diagnosis training and evaluation; (ii) We train DiagAgent via end-to-end, multi-turn reinforcement learning to learn diagnostic policies that optimize both information yield and diagnostic accuracy; (iii) We introduce DiagBench, a diagnostic benchmark comprising 750 cases with physician-validated examination recommendations and 99 cases annotated with 973 physician-written rubrics on diagnosis process; (iv) we demonstrate superior performance across diverse diagnostic settings. DiagAgent significantly outperforms 10 state-of-the-art LLMs, including DeepSeek-v3 and GPT-4o, as well as two prompt-engineered agents. In single-turn settings, DiagAgent achieves 9.34% higher diagnostic accuracy and 44.03% improvement in examination recommendation hit ratio. In end-to-end settings, it delivers 15.12% increase in diagnostic accuracy and 23.09% boost in examination recommendation F1 score. In rubric-based evaluation, it surpasses the next-best model, Claude-sonnet-4, by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers dynamic and clinically meaningful diagnostic management abilities unattainable through passive training alone.
☆ Optimizing Retrieval for RAG via Reinforced Contrastive Learning
As retrieval-augmented generation (RAG) becomes increasingly widespread, the role of information retrieval (IR) is shifting from retrieving information for human users to retrieving contextual knowledge for artificial intelligence (AI) systems, where relevance becomes difficult to define or annotate beforehand. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through trialand-feedback Reinforced contrastive learning. Unlike prior approaches that rely on annotated or synthetic data for supervised fine-tuning, R3 enables the retriever to dynamically explore and optimize relevance within the RAG environment. During training, the retrieved results interact with the environment to produce contrastive signals that automatically guide the retriever's self-improvement. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
☆ Quantifying the Effects of Word Length, Frequency, and Predictability on Dyslexia
We ask where, and under what conditions, dyslexic reading costs arise in a large-scale naturalistic reading dataset. Using eye-tracking aligned to word-level features (word length, frequency, and predictability), we model how each feature influences dyslexic time costs. We find that all three features robustly change reading times in both typical and dyslexic readers, and that dyslexic readers show stronger sensitivities to each, especially predictability. Counterfactual manipulations of these features substantially narrow the dyslexic-control gap by about one third, with predictability showing the strongest effect, followed by length and frequency. These patterns align with dyslexia theories that posit heightened demands on linguistic working memory and phonological encoding, and they motivate further work on lexical complexity and parafoveal preview benefits to explain the remaining gap. In short, we quantify when extra dyslexic costs arise, how large they are, and offer actionable guidance for interventions and computational models for dyslexics.
☆ OpenReward: Learning to Reward Long-form Agentic Tasks via Reinforcement Learning
Reward models (RMs) have become essential for aligning large language models (LLMs), serving as scalable proxies for human evaluation in both training and inference. However, existing RMs struggle on knowledge-intensive and long-form tasks, where evaluating correctness requires grounding beyond the model's internal knowledge. This limitation hinders them from reliably discriminating subtle quality differences, especially when external evidence is necessary. To address this, we introduce OpenRM, a tool-augmented long-form reward model that systematically judges open-ended responses by invoking external tools to gather relevant evidence. We train OpenRM with Group Relative Policy Optimization (GRPO) on over 27K synthesized pairwise examples generated through a controllable data synthesis framework. The training objective jointly supervises intermediate tool usage and final outcome accuracy, incentivizing our reward model to learn effective evidence-based judgment strategies. Extensive experiments on three newly-collected datasets and two widely-used benchmarks demonstrate that OpenRM substantially outperforms existing reward modeling approaches. As a further step, we integrate OpenRM into both inference-time response selection and training-time data selection. This yields consistent gains in downstream LLM alignment tasks, highlighting the potential of tool-augmented reward models for scaling reliable long-form evaluation.
☆ "Mm, Wat?" Detecting Other-initiated Repair Requests in Dialogue
Maintaining mutual understanding is a key component in human-human conversation to avoid conversation breakdowns, in which repair, particularly Other-Initiated Repair (OIR, when one speaker signals trouble and prompts the other to resolve), plays a vital role. However, Conversational Agents (CAs) still fail to recognize user repair initiation, leading to breakdowns or disengagement. This work proposes a multimodal model to automatically detect repair initiation in Dutch dialogues by integrating linguistic and prosodic features grounded in Conversation Analysis. The results show that prosodic cues complement linguistic features and significantly improve the results of pretrained text and audio embeddings, offering insights into how different features interact. Future directions include incorporating visual cues, exploring multilingual and cross-context corpora to assess the robustness and generalizability.
comment: 9 pages
☆ Relative Scaling Laws for LLMs
Scaling laws describe how language models improve with additional data, parameters, and compute. While widely used, they are typically measured on aggregate test sets. Aggregate evaluations yield clean trends but average over heterogeneous subpopulations, obscuring performance disparities. We introduce relative scaling laws, which track how performance gaps between test distributions evolve with scale rather than focusing solely on absolute error. Using 255 decoder-only Transformers trained under matched-compute (IsoFLOP) budgets from $10^{18}$--$10^{20}$ FLOPs on standard pretraining datasets, we find diverse trajectories: academic domains on MMLU converge toward parity; regional English dialects shift depending on population size; and clusters of AI risk behaviours split, with capability- and influence-related risks increasing during pretraining while adversarial risks do not. These results show that although scaling improves overall performance, it is not a universal equalizer. To support further study, we release all model checkpoints from this work to enable practitioners to measure relative alongside traditional scaling laws, in order to better prioritize robustness challenges in light of the bitter lesson.
☆ Zero-Shot Cross-Lingual Transfer using Prefix-Based Adaptation
With the release of new large language models (LLMs) like Llama and Mistral, zero-shot cross-lingual transfer has become increasingly feasible due to their multilingual pretraining and strong generalization capabilities. However, adapting these decoder-only LLMs to new tasks across languages remains challenging. While parameter-efficient fine-tuning (PeFT) techniques like Low-Rank Adaptation (LoRA) are widely used, prefix-based techniques such as soft prompt tuning, prefix tuning, and Llama Adapter are less explored, especially for zero-shot transfer in decoder-only models. We present a comprehensive study of three prefix-based methods for zero-shot cross-lingual transfer from English to 35+ high- and low-resource languages. Our analysis further explores transfer across linguistic families and scripts, as well as the impact of scaling model sizes from 1B to 24B. With Llama 3.1 8B, prefix methods outperform LoRA-baselines by up to 6% on the Belebele benchmark. Similar improvements were observed with Mistral v0.3 7B as well. Despite using only 1.23M learning parameters with prefix tuning, we achieve consistent improvements across diverse benchmarks. These findings highlight the potential of prefix-based techniques as an effective and scalable alternative to LoRA, particularly in low-resource multilingual settings.
comment: 12 Pages
☆ Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs NeurIPS 2025
The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.
comment: Accepted to NeurIPS 2025 Workshop on Efficient Reasoning
☆ Diffusion LLM with Native Variable Generation Lengths: Let [EOS] Lead the Way
Diffusion-based large language models (dLLMs) have exhibited substantial potential for parallel text generation, which may enable more efficient generation compared to autoregressive models. However, current dLLMs suffer from fixed generation lengths, which indicates the generation lengths of dLLMs have to be determined before decoding as a hyper-parameter, leading to issues in efficiency and flexibility. To solve these problems, in this work, we propose to train a diffusion LLM with native variable generation lengths, abbreviated as dLLM-Var. Concretely, we aim to train a model to accurately predict the [EOS] token in the generated text, which makes a dLLM be able to natively infer in a block diffusion manner, while still maintaining the ability of global bi-directional (full) attention and high parallelism. Experiments on standard benchmarks demonstrate that our method achieves a 30.1x speedup over traditional dLLM inference paradigms and a 2.4x speedup relative to autoregressive models such as Qwen and Llama. Our method achieves higher accuracy and faster inference, elevating dLLMs beyond mere academic novelty and supporting their practical use in real-world applications. Codes and models have been released.
☆ ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.
comment: Ongoing Work
☆ ReplicationBench: Can AI Agents Replicate Astrophysics Research Papers?
Frontier AI agents show increasing promise as scientific research assistants, and may eventually be useful for extended, open-ended research workflows. However, in order to use agents for novel research, we must first assess the underlying faithfulness and correctness of their work. To evaluate agents as research assistants, we introduce ReplicationBench, an evaluation framework that tests whether agents can replicate entire research papers drawn from the astrophysics literature. Astrophysics, where research relies heavily on archival data and computational study while requiring little real-world experimentation, is a particularly useful testbed for AI agents in scientific research. We split each paper into tasks which require agents to replicate the paper's core contributions, including the experimental setup, derivations, data analysis, and codebase. Each task is co-developed with the original paper authors and targets a key scientific result, enabling objective evaluation of both faithfulness (adherence to original methods) and correctness (technical accuracy of results). ReplicationBench is extremely challenging for current frontier language models: even the best-performing language models score under 20%. We analyze ReplicationBench trajectories in collaboration with domain experts and find a rich, diverse set of failure modes for agents in scientific research. ReplicationBench establishes the first benchmark of paper-scale, expert-validated astrophysics research tasks, reveals insights about agent performance generalizable to other domains of data-driven science, and provides a scalable framework for measuring AI agents' reliability in scientific research.
☆ BEST-RQ-Based Self-Supervised Learning for Whisper Domain Adaptation ICASSP 2026
Automatic Speech Recognition (ASR) systems, despite large multilingual training, struggle in out-of-domain and low-resource scenarios where labeled data is scarce. We propose BEARD (BEST-RQ Encoder Adaptation with Re-training and Distillation), a novel framework designed to adapt Whisper's encoder using unlabeled data. Unlike traditional self-supervised learning methods, BEARD uniquely combines a BEST-RQ objective with knowledge distillation from a frozen teacher encoder, ensuring the encoder's complementarity with the pre-trained decoder. Our experiments focus on the ATCO2 corpus from the challenging Air Traffic Control (ATC) communications domain, characterized by non-native speech, noise, and specialized phraseology. Using about 5,000 hours of untranscribed speech for BEARD and 2 hours of transcribed speech for fine-tuning, the proposed approach significantly outperforms previous baseline and fine-tuned model, achieving a relative improvement of 12% compared to the fine-tuned model. To the best of our knowledge, this is the first work to use a self-supervised learning objective for domain adaptation of Whisper.
comment: Submitted to ICASSP 2026
☆ Open Korean Historical Corpus: A Millennia-Scale Diachronic Collection of Public Domain Texts
The history of the Korean language is characterized by a discrepancy between its spoken and written forms and a pivotal shift from Chinese characters to the Hangul alphabet. However, this linguistic evolution has remained largely unexplored in NLP due to a lack of accessible historical corpora. To address this gap, we introduce the Open Korean Historical Corpus, a large-scale, openly licensed dataset spanning 1,300 years and 6 languages, as well as under-represented writing systems like Korean-style Sinitic (Idu) and Hanja-Hangul mixed script. This corpus contains 18 million documents and 5 billion tokens from 19 sources, ranging from the 7th century to 2025. We leverage this resource to quantitatively analyze major linguistic shifts: (1) Idu usage peaked in the 1860s before declining sharply; (2) the transition from Hanja to Hangul was a rapid transformation starting around 1890; and (3) North Korea's lexical divergence causes modern tokenizers to produce up to 51 times higher out-of-vocabulary rates. This work provides a foundational resource for quantitative diachronic analysis by capturing the history of the Korean language. Moreover, it can serve as a pre-training corpus for large language models, potentially improving their understanding of Sino-Korean vocabulary in modern Hangul as well as archaic writing systems.
comment: Dataset and code available at https://github.com/seyoungsong/OKHC
☆ Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written
Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton
☆ Levée d'ambiguïtés par grammaires locales
Many words are ambiguous in terms of their part of speech (POS). However, when a word appears in a text, this ambiguity is generally much reduced. Disambiguating POS involves using context to reduce the number of POS associated with words, and is one of the main challenges of lexical tagging. The problem of labeling words by POS frequently arises in natural language processing, for example for spelling correction, grammar or style checking, expression recognition, text-to-speech conversion, text corpus analysis, etc. Lexical tagging systems are thus useful as an initial component of many natural language processing systems. A number of recent lexical tagging systems produce multiple solutions when the text is lexically ambiguous or the uniquely correct solution cannot be found. These contributions aim to guarantee a zero silence rate: the correct tag(s) for a word must never be discarded. This objective is unrealistic for systems that tag each word uniquely. This article concerns a lexical disambiguation method adapted to the objective of a zero silence rate and implemented in Silberztein's INTEX system (1993). We present here a formal description of this method. We show that to verify a local disambiguation grammar in this framework, it is not sufficient to consider the transducer paths separately: one needs to verify their interactions. Similarly, if a combination of multiple transducers is used, the result cannot be predicted by considering them in isolation. Furthermore, when examining the initial labeling of a text as produced by INTEX, ideas for disambiguation rules come spontaneously, but grammatical intuitions may turn out to be inaccurate, often due to an unforeseen construction or ambiguity. If a zero silence rate is targeted, local grammars must be carefully tested. This is where a detailed specification of what a grammar will do once applied to texts would be necessary.
comment: in French language
☆ Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.
☆ CritiCal: Can Critique Help LLM Uncertainty or Confidence Calibration?
Accurate confidence calibration in Large Language Models (LLMs) is critical for safe use in high-stakes domains, where clear verbalized confidence enhances user trust. Traditional methods that mimic reference confidence expressions often fail to capture the reasoning needed for accurate confidence assessment. We propose natural language critiques as a solution, ideally suited for confidence calibration, as precise gold confidence labels are hard to obtain and often require multiple generations. This paper studies how natural language critiques can enhance verbalized confidence, addressing: (1) What to critique: uncertainty (question-focused) or confidence (answer-specific)? Analysis shows confidence suits multiple-choice tasks, while uncertainty excels in open-ended scenarios. (2) How to critique: self-critique or critique calibration training? We propose Self-Critique, enabling LLMs to critique and optimize their confidence beyond mere accuracy, and CritiCal, a novel Critique Calibration training method that leverages natural language critiques to improve confidence calibration, moving beyond direct numerical optimization. Experiments show that CritiCal significantly outperforms Self-Critique and other competitive baselines, even surpassing its teacher model, GPT-4o, in complex reasoning tasks. CritiCal also shows robust generalization in out-of-distribution settings, advancing LLM's reliability.
☆ A word association network methodology for evaluating implicit biases in LLMs compared to humans
As Large language models (LLMs) become increasingly integrated into our lives, their inherent social biases remain a pressing concern. Detecting and evaluating these biases can be challenging because they are often implicit rather than explicit in nature, so developing evaluation methods that assess the implicit knowledge representations of LLMs is essential. We present a novel word association network methodology for evaluating implicit biases in LLMs based on simulating semantic priming within LLM-generated word association networks. Our prompt-based approach taps into the implicit relational structures encoded in LLMs, providing both quantitative and qualitative assessments of bias. Unlike most prompt-based evaluation methods, our method enables direct comparisons between various LLMs and humans, providing a valuable point of reference and offering new insights into the alignment of LLMs with human cognition. To demonstrate the utility of our methodology, we apply it to both humans and several widely used LLMs to investigate social biases related to gender, religion, ethnicity, sexual orientation, and political party. Our results reveal both convergences and divergences between LLM and human biases, providing new perspectives on the potential risks of using LLMs. Our methodology contributes to a systematic, scalable, and generalizable framework for evaluating and comparing biases across multiple LLMs and humans, advancing the goal of transparent and socially responsible language technologies.
comment: 24 pages, 13 figures, 3 tables
☆ Talk2Ref: A Dataset for Reference Prediction from Scientific Talks
Scientific talks are a growing medium for disseminating research, and automatically identifying relevant literature that grounds or enriches a talk would be highly valuable for researchers and students alike. We introduce Reference Prediction from Talks (RPT), a new task that maps long, and unstructured scientific presentations to relevant papers. To support research on RPT, we present Talk2Ref, the first large-scale dataset of its kind, containing 6,279 talks and 43,429 cited papers (26 per talk on average), where relevance is approximated by the papers cited in the talk's corresponding source publication. We establish strong baselines by evaluating state-of-the-art text embedding models in zero-shot retrieval scenarios, and propose a dual-encoder architecture trained on Talk2Ref. We further explore strategies for handling long transcripts, as well as training for domain adaptation. Our results show that fine-tuning on Talk2Ref significantly improves citation prediction performance, demonstrating both the challenges of the task and the effectiveness of our dataset for learning semantic representations from spoken scientific content. The dataset and trained models are released under an open license to foster future research on integrating spoken scientific communication into citation recommendation systems.
☆ Mitigating Hallucination in Large Language Models (LLMs): An Application-Oriented Survey on RAG, Reasoning, and Agentic Systems
Hallucination remains one of the key obstacles to the reliable deployment of large language models (LLMs), particularly in real-world applications. Among various mitigation strategies, Retrieval-Augmented Generation (RAG) and reasoning enhancement have emerged as two of the most effective and widely adopted approaches, marking a shift from merely suppressing hallucinations to balancing creativity and reliability. However, their synergistic potential and underlying mechanisms for hallucination mitigation have not yet been systematically examined. This survey adopts an application-oriented perspective of capability enhancement to analyze how RAG, reasoning enhancement, and their integration in Agentic Systems mitigate hallucinations. We propose a taxonomy distinguishing knowledge-based and logic-based hallucinations, systematically examine how RAG and reasoning address each, and present a unified framework supported by real-world applications, evaluations, and benchmarks.
comment: 25 pages, 7 figures, 3 tables
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ Charting the European LLM Benchmarking Landscape: A New Taxonomy and a Set of Best Practices LREC 2026
While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.
comment: 12 pages, 1 figure. Submitted to the LREC 2026 conference
☆ SPARTA: Evaluating Reasoning Segmentation Robustness through Black-Box Adversarial Paraphrasing in Text Autoencoder Latent Space
Multimodal large language models (MLLMs) have shown impressive capabilities in vision-language tasks such as reasoning segmentation, where models generate segmentation masks based on textual queries. While prior work has primarily focused on perturbing image inputs, semantically equivalent textual paraphrases-crucial in real-world applications where users express the same intent in varied ways-remain underexplored. To address this gap, we introduce a novel adversarial paraphrasing task: generating grammatically correct paraphrases that preserve the original query meaning while degrading segmentation performance. To evaluate the quality of adversarial paraphrases, we develop a comprehensive automatic evaluation protocol validated with human studies. Furthermore, we introduce SPARTA-a black-box, sentence-level optimization method that operates in the low-dimensional semantic latent space of a text autoencoder, guided by reinforcement learning. SPARTA achieves significantly higher success rates, outperforming prior methods by up to 2x on both the ReasonSeg and LLMSeg-40k datasets. We use SPARTA and competitive baselines to assess the robustness of advanced reasoning segmentation models. We reveal that they remain vulnerable to adversarial paraphrasing-even under strict semantic and grammatical constraints. All code and data will be released publicly upon acceptance.
☆ Law in Silico: Simulating Legal Society with LLM-Based Agents
Since real-world legal experiments are often costly or infeasible, simulating legal societies with Artificial Intelligence (AI) systems provides an effective alternative for verifying and developing legal theory, as well as supporting legal administration. Large Language Models (LLMs), with their world knowledge and role-playing capabilities, are strong candidates to serve as the foundation for legal society simulation. However, the application of LLMs to simulate legal systems remains underexplored. In this work, we introduce Law in Silico, an LLM-based agent framework for simulating legal scenarios with individual decision-making and institutional mechanisms of legislation, adjudication, and enforcement. Our experiments, which compare simulated crime rates with real-world data, demonstrate that LLM-based agents can largely reproduce macro-level crime trends and provide insights that align with real-world observations. At the same time, micro-level simulations reveal that a well-functioning, transparent, and adaptive legal system offers better protection of the rights of vulnerable individuals.
☆ Can LLMs Write Faithfully? An Agent-Based Evaluation of LLM-generated Islamic Content NeurIPS 2025
Large language models are increasingly used for Islamic guidance, but risk misquoting texts, misapplying jurisprudence, or producing culturally inconsistent responses. We pilot an evaluation of GPT-4o, Ansari AI, and Fanar on prompts from authentic Islamic blogs. Our dual-agent framework uses a quantitative agent for citation verification and six-dimensional scoring (e.g., Structure, Islamic Consistency, Citations) and a qualitative agent for five-dimensional side-by-side comparison (e.g., Tone, Depth, Originality). GPT-4o scored highest in Islamic Accuracy (3.93) and Citation (3.38), Ansari AI followed (3.68, 3.32), and Fanar lagged (2.76, 1.82). Despite relatively strong performance, models still fall short in reliably producing accurate Islamic content and citations -- a paramount requirement in faith-sensitive writing. GPT-4o had the highest mean quantitative score (3.90/5), while Ansari AI led qualitative pairwise wins (116/200). Fanar, though trailing, introduces innovations for Islamic and Arabic contexts. This study underscores the need for community-driven benchmarks centering Muslim perspectives, offering an early step toward more reliable AI in Islamic knowledge and other high-stakes domains such as medicine, law, and journalism.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: 5th Muslims in Machine Learning (MusIML) Workshop
☆ LuxIT: A Luxembourgish Instruction Tuning Dataset from Monolingual Seed Data
The effectiveness of instruction-tuned Large Language Models (LLMs) is often limited in low-resource linguistic settings due to a lack of high-quality training data. We introduce LuxIT, a novel, monolingual instruction tuning dataset for Luxembourgish developed to mitigate this challenge. We synthesize the dataset from a corpus of native Luxembourgish texts, utilizing DeepSeek-R1-0528, chosen for its shown proficiency in Luxembourgish. Following generation, we apply a quality assurance process, employing an LLM-as-a-judge approach. To investigate the practical utility of the dataset, we fine-tune several smaller-scale LLMs on LuxIT. Subsequent benchmarking against their base models on Luxembourgish language proficiency examinations, however, yields mixed results, with performance varying significantly across different models. LuxIT represents a critical contribution to Luxembourgish natural language processing and offers a replicable monolingual methodology, though our findings highlight the need for further research to optimize its application.
☆ SynthWorlds: Controlled Parallel Worlds for Disentangling Reasoning and Knowledge in Language Models
Evaluating the reasoning ability of language models (LMs) is complicated by their extensive parametric world knowledge, where benchmark performance often reflects factual recall rather than genuine reasoning. Existing datasets and approaches (e.g., temporal filtering, paraphrasing, adversarial substitution) cannot cleanly separate the two. We present SynthWorlds, a framework that disentangles task reasoning complexity from factual knowledge. In SynthWorlds, we construct parallel corpora representing two worlds with identical interconnected structure: a real-mapped world, where models may exploit parametric knowledge, and a synthetic-mapped world, where such knowledge is meaningless. On top of these corpora, we design two mirrored tasks as case studies: multi-hop question answering and page navigation, which maintain equal reasoning difficulty across worlds. Experiments in parametric-only (e.g., closed-book QA) and knowledge-augmented (e.g., retrieval-augmented) LM settings reveal a persistent knowledge advantage gap, defined as the performance boost models gain from memorized parametric world knowledge. Knowledge acquisition and integration mechanisms reduce but do not eliminate this gap, highlighting opportunities for system improvements. Fully automatic and scalable, SynthWorlds provides a controlled environment for evaluating LMs in ways that were previously challenging, enabling precise and testable comparisons of reasoning and memorization.
☆ Comprehensive and Efficient Distillation for Lightweight Sentiment Analysis Models EMNLP 2025
Recent efforts leverage knowledge distillation techniques to develop lightweight and practical sentiment analysis models. These methods are grounded in human-written instructions and large-scale user texts. Despite the promising results, two key challenges remain: (1) manually written instructions are limited in diversity and quantity, making them insufficient to ensure comprehensive coverage of distilled knowledge; (2) large-scale user texts incur high computational cost, hindering the practicality of these methods. To this end, we introduce COMPEFFDIST, a comprehensive and efficient distillation framework for sentiment analysis. Our framework consists of two key modules: attribute-based automatic instruction construction and difficulty-based data filtering, which correspondingly tackle the aforementioned challenges. Applying our method across multiple model series (Llama-3, Qwen-3, and Gemma-3), we enable 3B student models to match the performance of 20x larger teacher models on most tasks. In addition, our approach greatly outperforms baseline methods in data efficiency, attaining the same performance level with only 10% of the data.
comment: Accepted by EMNLP 2025. 22 pages, 9 figures. The first two authors contribute equally
☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents.
comment: work in progress
☆ Text Simplification with Sentence Embeddings
Sentence embeddings can be decoded to give approximations of the original texts used to create them. We explore this effect in the context of text simplification, demonstrating that reconstructed text embeddings preserve complexity levels. We experiment with a small feed forward neural network to effectively learn a transformation between sentence embeddings representing high-complexity and low-complexity texts. We provide comparison to a Seq2Seq and LLM-based approach, showing encouraging results in our much smaller learning setting. Finally, we demonstrate the applicability of our transformation to an unseen simplification dataset (MedEASI), as well as datasets from languages outside the training data (ES,DE). We conclude that learning transformations in sentence embedding space is a promising direction for future research and has potential to unlock the ability to develop small, but powerful models for text simplification and other natural language generation tasks.
☆ Automatically Benchmarking LLM Code Agents through Agent-Driven Annotation and Evaluation
Recent advances in code agents have enabled automated software development at the project level, supported by large language models (LLMs) and widely adopted tools. However, existing benchmarks for code agent evaluation face two major limitations: high annotation cost and expertise requirements, and rigid evaluation metrics that rely primarily on unit tests. To address these challenges, we propose an agent-driven benchmark construction pipeline that leverages human supervision to efficiently generate diverse and challenging project-level tasks. Based on this approach, we introduce PRDBench, a novel benchmark comprising 50 real-world Python projects across 20 domains, each with structured Product Requirement Document (PRD) requirements, comprehensive evaluation criteria, and reference implementations. PRDBench features rich data sources, high task complexity, and flexible metrics. We further employ an Agent-as-a-Judge paradigm to score agent outputs, enabling the evaluation of various test types beyond unit tests. Extensive experiments on PRDBench demonstrate its effectiveness in assessing the capabilities of both code agents and evaluation agents, providing a scalable and robust framework for annotation and evaluation.
☆ LongWeave: A Long-Form Generation Benchmark Bridging Real-World Relevance and Verifiability EMNLP
Generating long, informative, and factual outputs remains a major challenge for Large Language Models (LLMs). Existing benchmarks for long-form generation typically assess real-world queries with hard-to-verify metrics or use synthetic setups that ease evaluation but overlook real-world intricacies. In this paper, we introduce \textbf{LongWeave}, which balances real-world and verifiable assessment with Constraint-Verifier Evaluation (CoV-Eval). CoV-Eval constructs tasks by first defining verifiable targets within real-world scenarios, then systematically generating corresponding queries, textual materials, and constraints based on these targets. This ensures that tasks are both realistic and objectively assessable, enabling rigorous assessment of model capabilities in meeting complex real-world constraints. LongWeave supports customizable input/output lengths (up to 64K/8K tokens) across seven distinct tasks. Evaluation on 23 LLMs shows that even state-of-the-art models encounter significant challenges in long-form generation as real-world complexity and output length increase.
comment: EMNLP Findings 2025
☆ Beyond MCQ: An Open-Ended Arabic Cultural QA Benchmark with Dialect Variants
Large Language Models (LLMs) are increasingly used to answer everyday questions, yet their performance on culturally grounded and dialectal content remains uneven across languages. We propose a comprehensive method that (i) translates Modern Standard Arabic (MSA) multiple-choice questions (MCQs) into English and several Arabic dialects, (ii) converts them into open-ended questions (OEQs), (iii) benchmarks a range of zero-shot and fine-tuned LLMs under both MCQ and OEQ settings, and (iv) generates chain-of-thought (CoT) rationales to fine-tune models for step-by-step reasoning. Using this method, we extend an existing dataset in which QAs are parallelly aligned across multiple language varieties, making it, to our knowledge, the first of its kind. We conduct extensive experiments with both open and closed models. Our findings show that (i) models underperform on Arabic dialects, revealing persistent gaps in culturally grounded and dialect-specific knowledge; (ii) Arabic-centric models perform well on MCQs but struggle with OEQs; and (iii) CoT improves judged correctness while yielding mixed n-gram-based metrics. The developed dataset will be publicly released to support further research on culturally and linguistically inclusive evaluation.
comment: Cultural Knowledge, Everyday Knowledge, Open-Ended Question, Chain-of-Thought, Large Language Models, Native, Multilingual, Language Diversity
☆ Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.
comment: Preprint, 25 pages, 9 figures. Code: https://github.com/WooooDyy/Critique-RL
☆ Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.
☆ MERGE: Minimal Expression-Replacement GEneralization Test for Natural Language Inference
In recent years, many generalization benchmarks have shown language models' lack of robustness in natural language inference (NLI). However, manually creating new benchmarks is costly, while automatically generating high-quality ones, even by modifying existing benchmarks, is extremely difficult. In this paper, we propose a methodology for automatically generating high-quality variants of original NLI problems by replacing open-class words, while crucially preserving their underlying reasoning. We dub our generalization test as MERGE (Minimal Expression-Replacements GEneralization), which evaluates the correctness of models' predictions across reasoning-preserving variants of the original problem. Our results show that NLI models' perform 4-20% worse on variants, suggesting low generalizability even on such minimally altered problems. We also analyse how word class of the replacements, word probability, and plausibility influence NLI models' performance.
comment: Pre-print
☆ ViPER: Empowering the Self-Evolution of Visual Perception Abilities in Vision-Language Model
The limited capacity for fine-grained visual perception presents a critical bottleneck for Vision-Language Models (VLMs) in real-world applications. Addressing this is challenging due to the scarcity of high-quality data and the limitations of existing methods: supervised fine-tuning (SFT) often compromises general capabilities, while reinforcement fine-tuning (RFT) prioritizes textual reasoning over visual perception. To bridge this gap, we propose a novel two-stage task that structures visual perception learning as a coarse-to-fine progressive process. Based on this task formulation, we develop ViPER, a self-bootstrapping framework specifically designed to enable iterative evolution through self-critiquing and self-prediction. By synergistically integrating image-level and instance-level reconstruction with a two-stage reinforcement learning strategy, ViPER establishes a closed-loop training paradigm, where internally synthesized data directly fuel the enhancement of perceptual ability. Applied to the Qwen2.5-VL family, ViPER produces the Qwen-Viper series. With an average gain of 1.7% on seven comprehensive benchmarks spanning various tasks and up to 6.0% on fine-grained perception, Qwen-Viper consistently demonstrates superior performance across different vision-language scenarios while maintaining generalizability. Beyond enabling self-improvement in perceptual capabilities, ViPER provides concrete evidence for the reciprocal relationship between generation and understanding, a breakthrough to developing more autonomous and capable VLMs.
☆ Can LLMs Translate Human Instructions into a Reinforcement Learning Agent's Internal Emergent Symbolic Representation?
Emergent symbolic representations are critical for enabling developmental learning agents to plan and generalize across tasks. In this work, we investigate whether large language models (LLMs) can translate human natural language instructions into the internal symbolic representations that emerge during hierarchical reinforcement learning. We apply a structured evaluation framework to measure the translation performance of commonly seen LLMs -- GPT, Claude, Deepseek and Grok -- across different internal symbolic partitions generated by a hierarchical reinforcement learning algorithm in the Ant Maze and Ant Fall environments. Our findings reveal that although LLMs demonstrate some ability to translate natural language into a symbolic representation of the environment dynamics, their performance is highly sensitive to partition granularity and task complexity. The results expose limitations in current LLMs capacity for representation alignment, highlighting the need for further research on robust alignment between language and internal agent representations.
☆ From Memorization to Reasoning in the Spectrum of Loss Curvature
We characterize how memorization is represented in transformer models and show that it can be disentangled in the weights of both language models (LMs) and vision transformers (ViTs) using a decomposition based on the loss landscape curvature. This insight is based on prior theoretical and empirical work showing that the curvature for memorized training points is much sharper than non memorized, meaning ordering weight components from high to low curvature can reveal a distinction without explicit labels. This motivates a weight editing procedure that suppresses far more recitation of untargeted memorized data more effectively than a recent unlearning method (BalancedSubnet), while maintaining lower perplexity. Since the basis of curvature has a natural interpretation for shared structure in model weights, we analyze the editing procedure extensively on its effect on downstream tasks in LMs, and find that fact retrieval and arithmetic are specifically and consistently negatively affected, even though open book fact retrieval and general logical reasoning is conserved. We posit these tasks rely heavily on specialized directions in weight space rather than general purpose mechanisms, regardless of whether those individual datapoints are memorized. We support this by showing a correspondence between task data's activation strength with low curvature components that we edit out, and the drop in task performance after the edit. Our work enhances the understanding of memorization in neural networks with practical applications towards removing it, and provides evidence for idiosyncratic, narrowly-used structures involved in solving tasks like math and fact retrieval.
☆ Evaluating LLMs on Generating Age-Appropriate Child-Like Conversations
Large Language Models (LLMs), predominantly trained on adult conversational data, face significant challenges when generating authentic, child-like dialogue for specialized applications. We present a comparative study evaluating five different LLMs (GPT-4, RUTER-LLAMA-2-13b, GPTSW, NorMistral-7b, and NorBloom-7b) to generate age-appropriate Norwegian conversations for children aged 5 and 9 years. Through a blind evaluation by eleven education professionals using both real child interview data and LLM-generated text samples, we assessed authenticity and developmental appropriateness. Our results show that evaluators achieved strong inter-rater reliability (ICC=0.75) and demonstrated higher accuracy in age prediction for younger children (5-year-olds) compared to older children (9-year-olds). While GPT-4 and NorBloom-7b performed relatively well, most models generated language perceived as more linguistically advanced than the target age groups. These findings highlight critical data-related challenges in developing LLM systems for specialized applications involving children, particularly in low-resource languages where comprehensive age-appropriate lexical resources are scarce.
comment: 11 pages excluding references and appendix. 3 figures and 6 tables
☆ Abjad AI at NADI 2025: CATT-Whisper: Multimodal Diacritic Restoration Using Text and Speech Representations
In this work, we tackle the Diacritic Restoration (DR) task for Arabic dialectal sentences using a multimodal approach that combines both textual and speech information. We propose a model that represents the text modality using an encoder extracted from our own pre-trained model named CATT. The speech component is handled by the encoder module of the OpenAI Whisper base model. Our solution is designed following two integration strategies. The former consists of fusing the speech tokens with the input at an early stage, where the 1500 frames of the audio segment are averaged over 10 consecutive frames, resulting in 150 speech tokens. To ensure embedding compatibility, these averaged tokens are processed through a linear projection layer prior to merging them with the text tokens. Contextual encoding is guaranteed by the CATT encoder module. The latter strategy relies on cross-attention, where text and speech embeddings are fused. The cross-attention output is then fed to the CATT classification head for token-level diacritic prediction. To further improve model robustness, we randomly deactivate the speech input during training, allowing the model to perform well with or without speech. Our experiments show that the proposed approach achieves a word error rate (WER) of 0.25 and a character error rate (CER) of 0.9 on the development set. On the test set, our model achieved WER and CER scores of 0.55 and 0.13, respectively.
☆ Towards Transparent Reasoning: What Drives Faithfulness in Large Language Models? NeurIPS 2025
Large Language Models (LLMs) often produce explanations that do not faithfully reflect the factors driving their predictions. In healthcare settings, such unfaithfulness is especially problematic: explanations that omit salient clinical cues or mask spurious shortcuts can undermine clinician trust and lead to unsafe decision support. We study how inference and training-time choices shape explanation faithfulness, focusing on factors practitioners can control at deployment. We evaluate three LLMs (GPT-4.1-mini, LLaMA 70B, LLaMA 8B) on two datasets-BBQ (social bias) and MedQA (medical licensing questions), and manipulate the number and type of few-shot examples, prompting strategies, and training procedure. Our results show: (i) both the quantity and quality of few-shot examples significantly impact model faithfulness; (ii) faithfulness is sensitive to prompting design; (iii) the instruction-tuning phase improves measured faithfulness on MedQA. These findings offer insights into strategies for enhancing the interpretability and trustworthiness of LLMs in sensitive domains.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ HACK: Hallucinations Along Certainty and Knowledge Axes
Hallucinations in LLMs present a critical barrier to their reliable usage. Existing research usually categorizes hallucination by their external properties rather than by the LLMs' underlying internal properties. This external focus overlooks that hallucinations may require tailored mitigation strategies based on their underlying mechanism. We propose a framework for categorizing hallucinations along two axes: knowledge and certainty. Since parametric knowledge and certainty may vary across models, our categorization method involves a model-specific dataset construction process that differentiates between those types of hallucinations. Along the knowledge axis, we distinguish between hallucinations caused by a lack of knowledge and those occurring despite the model having the knowledge of the correct response. To validate our framework along the knowledge axis, we apply steering mitigation, which relies on the existence of parametric knowledge to manipulate model activations. This addresses the lack of existing methods to validate knowledge categorization by showing a significant difference between the two hallucination types. We further analyze the distinct knowledge and hallucination patterns between models, showing that different hallucinations do occur despite shared parametric knowledge. Turning to the certainty axis, we identify a particularly concerning subset of hallucinations where models hallucinate with certainty despite having the correct knowledge internally. We introduce a new evaluation metric to measure the effectiveness of mitigation methods on this subset, revealing that while some methods perform well on average, they fail disproportionately on these critical cases. Our findings highlight the importance of considering both knowledge and certainty in hallucination analysis and call for targeted mitigation approaches that consider the hallucination underlying factors.
comment: The code is available at https://github.com/technion-cs-nlp/HACK_Hallucinations_Along_Certainty_and_Knowledge_axes
☆ Beyond Neural Incompatibility: Easing Cross-Scale Knowledge Transfer in Large Language Models through Latent Semantic Alignment
Large Language Models (LLMs) encode vast amounts of knowledge in their massive parameters, which is accessible to locate, trace, and analyze. Despite advances in neural interpretability, it is still not clear how to transfer knowledge in a fine-grained manner, namely parametric knowledge transfer (PKT). A key problem is enabling effective and efficient knowledge transfer across LLMs of different scales, which is essential for achieving greater flexibility and broader applicability in transferring knowledge between LLMs. Due to neural incompatibility, referring to the architectural and parametric differences between LLMs of varying scales, existing methods that directly reuse layer parameters are severely limited. In this paper, we identify the semantic alignment in latent space as the fundamental prerequisite for LLM cross-scale knowledge transfer. Instead of directly using the layer parameters, our approach takes activations as the medium of layer-wise knowledge transfer. Leveraging the semantics in latent space, our approach is simple and outperforms prior work, better aligning model behaviors across varying scales. Evaluations on four benchmarks demonstrate the efficacy of our method. Further analysis reveals the key factors easing cross-scale knowledge transfer and provides insights into the nature of latent semantic alignment.
comment: an early-stage version
☆ Exploring the Influence of Relevant Knowledge for Natural Language Generation Interpretability
This paper explores the influence of external knowledge integration in Natural Language Generation (NLG), focusing on a commonsense generation task. We extend the CommonGen dataset by creating KITGI, a benchmark that pairs input concept sets with retrieved semantic relations from ConceptNet and includes manually annotated outputs. Using the T5-Large model, we compare sentence generation under two conditions: with full external knowledge and with filtered knowledge where highly relevant relations were deliberately removed. Our interpretability benchmark follows a three-stage method: (1) identifying and removing key knowledge, (2) regenerating sentences, and (3) manually assessing outputs for commonsense plausibility and concept coverage. Results show that sentences generated with full knowledge achieved 91\% correctness across both criteria, while filtering reduced performance drastically to 6\%. These findings demonstrate that relevant external knowledge is critical for maintaining both coherence and concept coverage in NLG. This work highlights the importance of designing interpretable, knowledge-enhanced NLG systems and calls for evaluation frameworks that capture the underlying reasoning beyond surface-level metrics.
☆ MuSaG: A Multimodal German Sarcasm Dataset with Full-Modal Annotations
Sarcasm is a complex form of figurative language in which the intended meaning contradicts the literal one. Its prevalence in social media and popular culture poses persistent challenges for natural language understanding, sentiment analysis, and content moderation. With the emergence of multimodal large language models, sarcasm detection extends beyond text and requires integrating cues from audio and vision. We present MuSaG, the first German multimodal sarcasm detection dataset, consisting of 33 minutes of manually selected and human-annotated statements from German television shows. Each instance provides aligned text, audio, and video modalities, annotated separately by humans, enabling evaluation in unimodal and multimodal settings. We benchmark nine open-source and commercial models, spanning text, audio, vision, and multimodal architectures, and compare their performance to human annotations. Our results show that while humans rely heavily on audio in conversational settings, models perform best on text. This highlights a gap in current multimodal models and motivates the use of MuSaG for developing models better suited to realistic scenarios. We release MuSaG publicly to support future research on multimodal sarcasm detection and human-model alignment.
☆ Ko-MuSR: A Multistep Soft Reasoning Benchmark for LLMs Capable of Understanding Korean ACL
We present Ko-MuSR, the first benchmark to comprehensively evaluate multistep, soft reasoning in long Korean narratives while minimizing data contamination. Built following MuSR, Ko-MuSR features fully Korean narratives, reasoning chains, and multiple-choice questions verified by human annotators for logical consistency and answerability. Evaluations of four large language models -- two multilingual and two Korean-specialized -- show that multilingual models outperform Korean-focused ones even in Korean reasoning tasks, indicating cross-lingual generalization of reasoning ability. Carefully designed prompting strategies, which combine few-shot examples, reasoning traces, and task-specific hints, further boost accuracy, approaching human-level performance. Ko-MuSR offers a solid foundation for advancing Korean NLP by enabling systematic evaluation of long-context reasoning and prompting strategies.
comment: submitted to ACL ARR Rolling Review
☆ Beyond Line-Level Filtering for the Pretraining Corpora of LLMs ACL
While traditional line-level filtering techniques, such as line-level deduplication and trailing-punctuation filters, are commonly used, these basic methods can sometimes discard valuable content, negatively affecting downstream performance. In this paper, we introduce two methods-pattern-aware line-level deduplication (PLD) and pattern-aware trailing punctuation filtering (PTF)-by enhancing the conventional filtering techniques. Our approach not only considers line-level signals but also takes into account their sequential distribution across documents, enabling us to retain structurally important content that might otherwise be removed. We evaluate these proposed methods by training small language models (1 B parameters) in both English and Korean. The results demonstrate that our methods consistently improve performance on multiple-choice benchmarks and significantly enhance generative question-answering accuracy on both SQuAD v1 and KorQuAD v1.
comment: submitted to ACL ARR Rolling Review
☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.
comment: Accepted by EMNLP 2025
☆ Reinforcement Learning for Long-Horizon Multi-Turn Search Agents NeurIPS 2025
Large Language Model (LLM) agents can leverage multiple turns and tools to solve complex tasks, with prompt-based approaches achieving strong performance. This work demonstrates that Reinforcement Learning (RL) can push capabilities significantly further by learning from experience. Through experiments on a legal document search benchmark, we show that our RL-trained 14 Billion parameter model outperforms frontier class models (85% vs 78% accuracy). In addition, we explore turn-restricted regimes, during training and at test-time, that show these agents achieve better results if allowed to operate over longer multi-turn horizons.
comment: 4 pages plus references and appendices. Accepted into the First Workshop on Multi-Turn Interactions in Large Language Models at NeurIPS 2025
☆ Squrve: A Unified and Modular Framework for Complex Real-World Text-to-SQL Tasks
Text-to-SQL technology has evolved rapidly, with diverse academic methods achieving impressive results. However, deploying these techniques in real-world systems remains challenging due to limited integration tools. Despite these advances, we introduce Squrve, a unified, modular, and extensive Text-to-SQL framework designed to bring together research advances and real-world applications. Squrve first establishes a universal execution paradigm that standardizes invocation interfaces, then proposes a multi-actor collaboration mechanism based on seven abstracted effective atomic actor components. Experiments on widely adopted benchmarks demonstrate that the collaborative workflows consistently outperform the original individual methods, thereby opening up a new effective avenue for tackling complex real-world queries. The codes are available at https://github.com/Satissss/Squrve.
☆ RegSpeech12: A Regional Corpus of Bengali Spontaneous Speech Across Dialects
The Bengali language, spoken extensively across South Asia and among diasporic communities, exhibits considerable dialectal diversity shaped by geography, culture, and history. Phonological and pronunciation-based classifications broadly identify five principal dialect groups: Eastern Bengali, Manbhumi, Rangpuri, Varendri, and Rarhi. Within Bangladesh, further distinctions emerge through variation in vocabulary, syntax, and morphology, as observed in regions such as Chittagong, Sylhet, Rangpur, Rajshahi, Noakhali, and Barishal. Despite this linguistic richness, systematic research on the computational processing of Bengali dialects remains limited. This study seeks to document and analyze the phonetic and morphological properties of these dialects while exploring the feasibility of building computational models particularly Automatic Speech Recognition (ASR) systems tailored to regional varieties. Such efforts hold potential for applications in virtual assistants and broader language technologies, contributing to both the preservation of dialectal diversity and the advancement of inclusive digital tools for Bengali-speaking communities. The dataset created for this study is released for public use.
comment: 26 pages
☆ Global PIQA: Evaluating Physical Commonsense Reasoning Across 100+ Languages and Cultures
To date, there exist almost no culturally-specific evaluation benchmarks for large language models (LLMs) that cover a large number of languages and cultures. In this paper, we present Global PIQA, a participatory commonsense reasoning benchmark for over 100 languages, constructed by hand by 335 researchers from 65 countries around the world. The 116 language varieties in Global PIQA cover five continents, 14 language families, and 23 writing systems. In the non-parallel split of Global PIQA, over 50% of examples reference local foods, customs, traditions, or other culturally-specific elements. We find that state-of-the-art LLMs perform well on Global PIQA in aggregate, but they exhibit weaker performance in lower-resource languages (up to a 37% accuracy gap, despite random chance at 50%). Open models generally perform worse than proprietary models. Global PIQA highlights that in many languages and cultures, everyday knowledge remains an area for improvement, alongside more widely-discussed capabilities such as complex reasoning and expert knowledge. Beyond its uses for LLM evaluation, we hope that Global PIQA provides a glimpse into the wide diversity of cultures in which human language is embedded.
comment: Preprint
☆ Challenging Multilingual LLMs: A New Taxonomy and Benchmark for Unraveling Hallucination in Translation
Large Language Models (LLMs) have advanced machine translation but remain vulnerable to hallucinations. Unfortunately, existing MT benchmarks are not capable of exposing failures in multilingual LLMs. To disclose hallucination in multilingual LLMs, we introduce a diagnostic framework with a taxonomy that separates Instruction Detachment from Source Detachment. Guided by this taxonomy, we create HalloMTBench, a multilingual, human-verified benchmark across 11 English-to-X directions. We employed 4 frontier LLMs to generate candidates and scrutinize these candidates with an ensemble of LLM judges, and expert validation. In this way, we curate 5,435 high-quality instances. We have evaluated 17 LLMs on HalloMTBench. Results reveal distinct ``hallucination triggers'' -- unique failure patterns reflecting model scale, source length sensitivity, linguistic biases, and Reinforcement-Learning (RL) amplified language mixing. HalloMTBench offers a forward-looking testbed for diagnosing LLM translation failures. HalloMTBench is available in https://huggingface.co/collections/AIDC-AI/marco-mt.
☆ Pie: A Programmable Serving System for Emerging LLM Applications SOSP 2025
Emerging large language model (LLM) applications involve diverse reasoning strategies and agentic workflows, straining the capabilities of existing serving systems built on a monolithic token generation loop. This paper introduces Pie, a programmable LLM serving system designed for flexibility and efficiency. Pie decomposes the traditional generation loop into fine-grained service handlers exposed via an API and delegates control of the generation process to user-provided programs, called inferlets. This enables applications to implement new KV cache strategies, bespoke generation logic, and seamlessly integrate computation and I/O-entirely within the application, without requiring modifications to the serving system. Pie executes inferlets using WebAssembly, benefiting from its lightweight sandboxing. Our evaluation shows Pie matches state-of-the-art performance on standard tasks (3-12% latency overhead) while significantly improving latency and throughput (1.3x-3.4x higher) on agentic workflows by enabling application-specific optimizations.
comment: SOSP 2025. Source code available at https://github.com/pie-project/pie
☆ GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .
☆ Success and Cost Elicit Convention Formation for Efficient Communication
Humans leverage shared conversational context to become increasingly successful and efficient at communicating over time. One manifestation of this is the formation of ad hoc linguistic conventions, which allow people to coordinate on short, less costly utterances that are understood using shared conversational context. We present a method to train large multimodal models to form conventions, enabling efficient communication. Our approach uses simulated reference games between models, and requires no additional human-produced data. In repeated reference games involving photographs and tangram images, our method enables models to communicate efficiently with people: reducing the message length by up to 41% while increasing success by 15% over the course of the interaction. Human listeners respond faster when interacting with our model that forms conventions. We also show that training based on success or cost alone is insufficient - both are necessary to elicit convention formation.
☆ SpecKD: Speculative Decoding for Effective Knowledge Distillation of LLMs
Knowledge Distillation (KD) has become a cornerstone technique for compressing Large Language Models (LLMs) into smaller, more efficient student models. However, conventional KD approaches typically apply the distillation loss uniformly across all tokens, regardless of the teacher's confidence. This indiscriminate mimicry can introduce noise, as the student is forced to learn from the teacher's uncertain or high-entropy predictions, which may ultimately harm student performance-especially when the teacher is much larger and more powerful. To address this, we propose Speculative Knowledge Distillation (SpecKD), a novel, plug-and-play framework that introduces a dynamic, token-level gating mechanism inspired by the "propose-and-verify" paradigm of speculative decoding. At each step, the student's token proposal is verified against the teacher's distribution; the distillation loss is selectively applied only to "accepted" tokens, while "rejected" tokens are masked out. Extensive experiments on diverse text generation tasks show that SpecKD consistently and significantly outperforms strong KD baselines, leading to more stable training and more capable student models, and achieving state-of-the-art results.
☆ Teaching LLMs to Abstain via Fine-Grained Semantic Confidence Reward
Mitigating hallucinations in Large Language Models (LLMs) is critical for their reliable deployment. Existing methods typically fine-tune LLMs to abstain from answering questions beyond their knowledge scope. However, these methods often rely on coarse-grained signals to guide LLMs to abstain, such as overall confidence or uncertainty scores on multiple sampled answers, which may result in an imprecise awareness of the model's own knowledge boundaries. To this end, we propose a novel reinforcement learning framework built on $\textbf{\underline{Fi}ne-grained \underline{S}emantic \underline{Co}nfidence \underline{Re}ward (\Ours)}$, which guides LLMs to abstain via sample-specific confidence. Specifically, our method operates by sampling multiple candidate answers and conducting semantic clustering, then training the LLM to retain answers within high-confidence clusters and discard those within low-confidence ones, thereby promoting accurate post-hoc abstention. Additionally, we propose a new metric for evaluating the reliability of abstention fine-tuning tasks more comprehensively. Our method significantly enhances reliability in both in-domain and out-of-distribution benchmarks.
comment: 23pages, 4figures
☆ TEXT2DB: Integration-Aware Information Extraction with Large Language Model Agents ACL 2025
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE TEXT2DB that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-PlanAnalyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation. Source code: https://github.com/yzjiao/Text2DB
comment: ACL 2025. Source code: https://github.com/yzjiao/Text2DB
☆ META-RAG: Meta-Analysis-Inspired Evidence-Re-Ranking Method for Retrieval-Augmented Generation in Evidence-Based Medicine
Evidence-based medicine (EBM) holds a crucial role in clinical application. Given suitable medical articles, doctors effectively reduce the incidence of misdiagnoses. Researchers find it efficient to use large language models (LLMs) techniques like RAG for EBM tasks. However, the EBM maintains stringent requirements for evidence, and RAG applications in EBM struggle to efficiently distinguish high-quality evidence. Therefore, inspired by the meta-analysis used in EBM, we provide a new method to re-rank and filter the medical evidence. This method presents multiple principles to filter the best evidence for LLMs to diagnose. We employ a combination of several EBM methods to emulate the meta-analysis, which includes reliability analysis, heterogeneity analysis, and extrapolation analysis. These processes allow the users to retrieve the best medical evidence for the LLMs. Ultimately, we evaluate these high-quality articles and show an accuracy improvement of up to 11.4% in our experiments and results. Our method successfully enables RAG to extract higher-quality and more reliable evidence from the PubMed dataset. This work can reduce the infusion of incorrect knowledge into responses and help users receive more effective replies.
☆ PICOs-RAG: PICO-supported Query Rewriting for Retrieval-Augmented Generation in Evidence-Based Medicine
Evidence-based medicine (EBM) research has always been of paramount importance. It is important to find appropriate medical theoretical support for the needs from physicians or patients to reduce the occurrence of medical accidents. This process is often carried out by human querying relevant literature databases, which lacks objectivity and efficiency. Therefore, researchers utilize retrieval-augmented generation (RAG) to search for evidence and generate responses automatically. However, current RAG methods struggle to handle complex queries in real-world clinical scenarios. For example, when queries lack certain information or use imprecise language, the model may retrieve irrelevant evidence and generate unhelpful answers. To address this issue, we present the PICOs-RAG to expand the user queries into a better format. Our method can expand and normalize the queries into professional ones and use the PICO format, a search strategy tool present in EBM, to extract the most important information used for retrieval. This approach significantly enhances retrieval efficiency and relevance, resulting in up to an 8.8\% improvement compared to the baseline evaluated by our method. Thereby the PICOs-RAG improves the performance of the large language models into a helpful and reliable medical assistant in EBM.
☆ M-Eval: A Heterogeneity-Based Framework for Multi-evidence Validation in Medical RAG Systems
Retrieval-augmented Generation (RAG) has demonstrated potential in enhancing medical question-answering systems through the integration of large language models (LLMs) with external medical literature. LLMs can retrieve relevant medical articles to generate more professional responses efficiently. However, current RAG applications still face problems. They generate incorrect information, such as hallucinations, and they fail to use external knowledge correctly. To solve these issues, we propose a new method named M-Eval. This method is inspired by the heterogeneity analysis approach used in Evidence-Based Medicine (EBM). Our approach can check for factual errors in RAG responses using evidence from multiple sources. First, we extract additional medical literature from external knowledge bases. Then, we retrieve the evidence documents generated by the RAG system. We use heterogeneity analysis to check whether the evidence supports different viewpoints in the response. In addition to verifying the accuracy of the response, we also assess the reliability of the evidence provided by the RAG system. Our method shows an improvement of up to 23.31% accuracy across various LLMs. This work can help detect errors in current RAG-based medical systems. It also makes the applications of LLMs more reliable and reduces diagnostic errors.
☆ emg2speech: synthesizing speech from electromyography using self-supervised speech models
We present a neuromuscular speech interface that translates electromyographic (EMG) signals collected from orofacial muscles during speech articulation directly into audio. We show that self-supervised speech (SS) representations exhibit a strong linear relationship with the electrical power of muscle action potentials: SS features can be linearly mapped to EMG power with a correlation of $r = 0.85$. Moreover, EMG power vectors corresponding to different articulatory gestures form structured and separable clusters in feature space. This relationship: $\text{SS features}$ $\xrightarrow{\texttt{linear mapping}}$ $\text{EMG power}$ $\xrightarrow{\texttt{gesture-specific clustering}}$ $\text{articulatory movements}$, highlights that SS models implicitly encode articulatory mechanisms. Leveraging this property, we directly map EMG signals to SS feature space and synthesize speech, enabling end-to-end EMG-to-speech generation without explicit articulatory models and vocoder training.
☆ Uncovering the Potential Risks in Unlearning: Danger of English-only Unlearning in Multilingual LLMs
There have been a couple of studies showing that attempting to erase multilingual knowledge using only English data is insufficient for multilingual LLMs. However, their analyses remain highly performance-oriented. In this paper, we switch the point of view to evaluation, and address an additional blind spot which reveals itself when the multilingual LLM is fully finetuned with parallel multilingual dataset before unlearning. Here, language confusion occurs whereby a model responds in language different from that of the input prompt. Language confusion is a problematic phenomenon in unlearning, causing the standard reference-based metrics to fail. We tackle this phenomenon in three steps: (1) introduce N-gram-based Language-Mix (N-Mix) score to quantitatively show the language confusion is pervasive and consistent in multilingual LLMs, (2) demonstrate that reference-based metrics result in false negatives when N-Mix score is high, and(3) suggest the need of new type of unlearning evaluation that can directly assess the content of the generated sentences. We call this type of metrics as semantic-based metric.
♻ ☆ Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
comment: published at the Semantic Web journal. The last version is available: https://doi.org/10.1177/22104968251385519
♻ ☆ Arena-Lite: Efficient and Reliable Large Language Model Evaluation via Tournament-Based Direct Comparisons
As Large Language Models (LLMs) expand across domains, LLM judges have become essential for systems evaluation. Current benchmarks typically compare system outputs against baselines. This baseline-mediated approach, though convenient, yields lower reliability than direct comparison between systems. We propose Arena-Lite which integrates tournament structure on top of head-to-head comparison. The application of a tournament structure and direct comparison eliminates the need for baseline outputs, reduces the number of required comparisons, and allows higher reliability in system rankings. We conducted two experiments: (1) controlled stochastic modeling and (2) empirical validation with a real LLM judge. Those experiments collectively demonstrate that Arena-Lite consistently achieves higher reliability with fewer comparisons, even with smaller datasets or weaker judges. We release an easy-to-use web demonstration and code to foster adoption of Arena-Lite, streamlining model selection across research and industry communities. Arena-Lite demo and code are available on \href{https://huggingface.co/spaces/NCSOFT/ArenaLite}{https://huggingface.co/spaces/NCSOFT/ArenaLite}
comment: 8 pages for main body, 19 pages in total
♻ ☆ Says Who? Effective Zero-Shot Annotation of Focalization
Focalization describes the way in which access to narrative information is restricted or controlled based on the knowledge available to knowledge of the narrator. It is encoded via a wide range of lexico-grammatical features and is subject to reader interpretation. Even trained annotators frequently disagree on correct labels, suggesting this task is both qualitatively and computationally challenging. In this work, we test how well five contemporary large language model (LLM) families and two baselines perform when annotating short literary excerpts for focalization. Despite the challenging nature of the task, we find that LLMs show comparable performance to trained human annotators, with GPT-4o achieving an average F1 of 84.79%. Further, we demonstrate that the log probabilities output by GPT-family models frequently reflect the difficulty of annotating particular excerpts. Finally, we provide a case study analyzing sixteen Stephen King novels, demonstrating the usefulness of this approach for computational literary studies and the insights gleaned from examining focalization at scale.
comment: Accepted at CHR 2025
♻ ☆ TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
♻ ☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
♻ ☆ The Hawthorne Effect in Reasoning Models: Evaluating and Steering Test Awareness NeurIPS 2025
Reasoning-focused LLMs sometimes alter their behavior when they detect that they are being evaluated, which can lead them to optimize for test-passing performance or to comply more readily with harmful prompts if real-world consequences appear absent. We present the first quantitative study of how such "test awareness" impacts model behavior, particularly its performance on safety-related tasks. We introduce a white-box probing framework that (i) linearly identifies awareness-related activations and (ii) steers models toward or away from test awareness while monitoring downstream performance. We apply our method to different state-of-the-art open-weight reasoning LLMs across both realistic and hypothetical tasks (denoting tests or simulations). Our results demonstrate that test awareness significantly impacts safety alignment (such as compliance with harmful requests and conforming to stereotypes) with effects varying in both magnitude and direction across models. By providing control over this latent effect, our work aims to provide a stress-test mechanism and increase trust in how we perform safety evaluations.
comment: NeurIPS 2025 (Spotlight). Code is available at: https://github.com/microsoft/Test_Awareness_Steering
♻ ☆ TokenTiming: A Dynamic Alignment Method for Universal Speculative Decoding Model Pairs
Accelerating the inference of large language models (LLMs) has been a critical challenge in generative AI. Speculative decoding (SD) substantially improves LLM inference efficiency. However, its utility is limited by a fundamental constraint: the draft and target models must share the same vocabulary, thus limiting the herd of available draft models and often necessitating the training of a new model from scratch. Inspired by Dynamic Time Warping (DTW), a classic algorithm for aligning time series, we propose the algorithm TokenTiming for universal speculative decoding. It operates by re-encoding the draft token sequence to get a new target token sequence, and then uses DTW to build a mapping to transfer the probability distributions for speculative sampling. Benefiting from this, our method accommodates mismatched vocabularies and works with any off-the-shelf models without retraining and modification. We conduct comprehensive experiments on various tasks, demonstrating 1.57x speedup. This work enables a universal approach for draft model selection, making SD a more versatile and practical tool for LLM acceleration.
♻ ☆ Exploration of Summarization by Generative Language Models for Automated Scoring of Long Essays
BERT and its variants are extensively explored for automated scoring. However, a limit of 512 tokens for these encoder-based models showed the deficiency in automated scoring of long essays. Thus, this research explores generative language models for automated scoring of long essays via summarization and prompting. The results revealed great improvement of scoring accuracy with QWK increased from 0.822 to 0.8878 for the Learning Agency Lab Automated Essay Scoring 2.0 dataset.
comment: 19 pages, 5 Tables 7 Figures, Presentation at Artificial Intelligence in Measurement and Education Conference (AIME-Con)
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
♻ ☆ Mano Technical Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
♻ ☆ Are you sure? Measuring models bias in content moderation through uncertainty ACL
Automatic content moderation is crucial to ensuring safety in social media. Language Model-based classifiers are being increasingly adopted for this task, but it has been shown that they perpetuate racial and social biases. Even if several resources and benchmark corpora have been developed to challenge this issue, measuring the fairness of models in content moderation remains an open issue. In this work, we present an unsupervised approach that benchmarks models on the basis of their uncertainty in classifying messages annotated by people belonging to vulnerable groups. We use uncertainty, computed by means of the conformal prediction technique, as a proxy to analyze the bias of 11 models against women and non-white annotators and observe to what extent it diverges from metrics based on performance, such as the $F_1$ score. The results show that some pre-trained models predict with high accuracy the labels coming from minority groups, even if the confidence in their prediction is low. Therefore, by measuring the confidence of models, we are able to see which groups of annotators are better represented in pre-trained models and lead the debiasing process of these models before their effective use.
comment: accepted at Findings of ACL: EMNLP 2025
♻ ☆ From Language to Action: A Review of Large Language Models as Autonomous Agents and Tool Users
The pursuit of human-level artificial intelligence (AI) has significantly advanced the development of autonomous agents and Large Language Models (LLMs). LLMs are now widely utilized as decision-making agents for their ability to interpret instructions, manage sequential tasks, and adapt through feedback. This review examines recent developments in employing LLMs as autonomous agents and tool users and comprises seven research questions. We only used the papers published between 2023 and 2025 in conferences of the A* and A rank and Q1 journals. A structured analysis of the LLM agents' architectural design principles, dividing their applications into single-agent and multi-agent systems, and strategies for integrating external tools is presented. In addition, the cognitive mechanisms of LLM, including reasoning, planning, and memory, and the impact of prompting methods and fine-tuning procedures on agent performance are also investigated. Furthermore, we evaluated current benchmarks and assessment protocols and have provided an analysis of 68 publicly available datasets to assess the performance of LLM-based agents in various tasks. In conducting this review, we have identified critical findings on verifiable reasoning of LLMs, the capacity for self-improvement, and the personalization of LLM-based agents. Finally, we have discussed ten future research directions to overcome these gaps.
comment: Submitted to Artificial Intelligence Review for peer review
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Zero-Shot Tokenizer Transfer NeurIPS 2024
Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.
comment: NeurIPS 2024
♻ ☆ Face the Facts! Evaluating RAG-based Fact-checking Pipelines in Realistic Settings
Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, under more realistic scenarios, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
comment: Code and data at https://github.com/drusso98/face-the-facts - Accepted for publication at INLG 2025
♻ ☆ Provable Scaling Laws for the Test-Time Compute of Large Language Models NeurIPS 2025
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
comment: NeurIPS 2025 camera-ready version
♻ ☆ Offline Learning and Forgetting for Reasoning with Large Language Models
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. A key challenge we identify is that naive fine-tuning can degrade the model's search capability; we show this can be mitigated with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown arithmetic puzzles show that, replacing CoT-generated data with search-generated data for offline fine-tuning improves success rates by around 23% over inference-time search baselines, while reducing inference time by 180$\times$. On top of this, our learning and forgetting objective consistently outperforms both supervised fine-tuning and preference-based methods.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ NeedleInATable: Exploring Long-Context Capability of Large Language Models towards Long-Structured Tables NeurIPS 2025
Processing structured tabular data, particularly large and lengthy tables, constitutes a fundamental yet challenging task for large language models (LLMs). However, existing long-context benchmarks like Needle-in-a-Haystack primarily focus on unstructured text, neglecting the challenge of diverse structured tables. Meanwhile, previous tabular benchmarks mainly consider downstream tasks that require high-level reasoning abilities, and overlook models' underlying fine-grained perception of individual table cells, which is crucial for practical and robust LLM-based table applications. To address this gap, we introduce \textsc{NeedleInATable} (NIAT), a new long-context tabular benchmark that treats each table cell as a ``needle'' and requires models to extract the target cell based on cell locations or lookup questions. Our comprehensive evaluation of various LLMs and multimodal LLMs reveals a substantial performance gap between popular downstream tabular tasks and the simpler NIAT task, suggesting that they may rely on dataset-specific correlations or shortcuts to obtain better benchmark results but lack truly robust long-context understanding towards structured tables. Furthermore, we demonstrate that using synthesized NIAT training data can effectively improve performance on both NIAT task and downstream tabular tasks, which validates the importance of NIAT capability for LLMs' genuine table understanding ability.
comment: Accepted by NeurIPS 2025
♻ ☆ DrVoice: Parallel Speech-Text Voice Conversation Model via Dual-Resolution Speech Representations
Recent studies on end-to-end (E2E) speech generation with large language models (LLMs) have attracted significant community attention, with multiple works extending text-based LLMs to generate discrete speech tokens. Existing E2E approaches primarily fall into two categories: (1) Methods that generate discrete speech tokens independently without incorporating them into the LLM's autoregressive process, resulting in text generation being unaware of concurrent speech synthesis. (2) Models that generate interleaved or parallel speech-text tokens through joint autoregressive modeling, enabling mutual modality awareness during generation. This paper presents DrVoice, a parallel speech-text voice conversation model based on joint autoregressive modeling, featuring dual-resolution speech representations. Notably, while current methods utilize mainly 12.5Hz input audio representation, our proposed dual-resolution mechanism reduces the input frequency for the LLM to 5Hz, significantly reducing computational cost and alleviating the frequency discrepancy between speech and text tokens and in turn better exploiting LLMs' capabilities. Experimental results demonstrate that DRVOICE-7B establishes new state-of-the-art (SOTA) on OpenAudioBench and Big Bench Audio benchmarks, while achieving performance comparable to the SOTA on VoiceBench and UltraEval-Audio benchmarks, making it a leading open-source speech foundation model in ~7B models.
comment: Work in progress
♻ ☆ Evaluation of Geographical Distortions in Language Models
Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
comment: Accepted version. Published in Machine Learning (Springer) 114:263 (2025). Open access under a CC BY-NC-ND 4.0 license. DOI: 10.1007/s10994-025-06916-9
♻ ☆ Look and Tell: A Dataset for Multimodal Grounding Across Egocentric and Exocentric Views NeurIPS 2025
We introduce Look and Tell, a multimodal dataset for studying referential communication across egocentric and exocentric perspectives. Using Meta Project Aria smart glasses and stationary cameras, we recorded synchronized gaze, speech, and video as 25 participants instructed a partner to identify ingredients in a kitchen. Combined with 3D scene reconstructions, this setup provides a benchmark for evaluating how different spatial representations (2D vs. 3D; ego vs. exo) affect multimodal grounding. The dataset contains 3.67 hours of recordings, including 2,707 richly annotated referential expressions, and is designed to advance the development of embodied agents that can understand and engage in situated dialogue.
comment: 10 pages, 6 figures, 2 tables. Accepted to the NeurIPS 2025 Workshop on SPACE in Vision, Language, and Embodied AI (SpaVLE). Dataset: https://huggingface.co/datasets/annadeichler/KTH-ARIA-referential
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models. Our code and datasets are available at https://github.com/DEEP-PolyU/LinearRAG.
♻ ☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
♻ ☆ GRPO-MA: Multi-Answer Generation in GRPO for Stable and Efficient Chain-of-Thought Training
Recent progress, such as DeepSeek-R1, has shown that the GRPO algorithm, a Reinforcement Learning (RL) approach, can effectively train Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) and Vision-Language Models (VLMs). In this paper, we analyze three challenges of GRPO: gradient coupling between thoughts and answers, sparse reward signals caused by limited parallel sampling, and unstable advantage estimation. To mitigate these challenges, we propose GRPO-MA, a simple yet theoretically grounded method that leverages multi-answer generation from each thought process, enabling more robust and efficient optimization. Theoretically, we show that the variance of thought advantage decreases as the number of answers per thought increases. Empirically, our gradient analysis confirms this effect, showing that GRPO-MA reduces gradient spikes compared to GRPO. Experiments on math, code, and diverse multimodal tasks demonstrate that GRPO-MA substantially improves performance and training efficiency. Our ablation studies further reveal that increasing the number of answers per thought consistently enhances model performance.
comment: Under review
♻ ☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
♻ ☆ Surface Reading LLMs: Synthetic Text and its Styles
Despite a potential plateau in ML advancement, the societal impact of large language models lies not in approaching superintelligence but in generating text surfaces indistinguishable from human writing. While Critical AI Studies provides essential material and socio-technical critique, it risks overlooking how LLMs phenomenologically reshape meaning-making. This paper proposes a semiotics of "surface integrity" as attending to the immediate plane where LLMs inscribe themselves into human communication. I distinguish three knowledge interests in ML research (epistemology, epist\=em\=e, and epistemics) and argue for integrating surface-level stylistic analysis alongside depth-oriented critique. Through two case studies examining stylistic markers of synthetic text, I argue how attending to style as a semiotic phenomenon reveals LLMs as cultural actors that transform the conditions of meaning emergence and circulation in contemporary discourse, independent of questions about machine consciousness.
comment: 12 pages, 1 figure
♻ ☆ SANSKRITI: A Comprehensive Benchmark for Evaluating Language Models' Knowledge of Indian Culture ACL 2025
Language Models (LMs) are indispensable tools shaping modern workflows, but their global effectiveness depends on understanding local socio-cultural contexts. To address this, we introduce SANSKRITI, a benchmark designed to evaluate language models' comprehension of India's rich cultural diversity. Comprising 21,853 meticulously curated question-answer pairs spanning 28 states and 8 union territories, SANSKRITI is the largest dataset for testing Indian cultural knowledge. It covers sixteen key attributes of Indian culture: rituals and ceremonies, history, tourism, cuisine, dance and music, costume, language, art, festivals, religion, medicine, transport, sports, nightlife, and personalities, providing a comprehensive representation of India's cultural tapestry. We evaluate SANSKRITI on leading Large Language Models (LLMs), Indic Language Models (ILMs), and Small Language Models (SLMs), revealing significant disparities in their ability to handle culturally nuanced queries, with many models struggling in region-specific contexts. By offering an extensive, culturally rich, and diverse dataset, SANSKRITI sets a new standard for assessing and improving the cultural understanding of LMs.
comment: ACL 2025 Findings
♻ ☆ MENTOR: A Reinforcement Learning Framework for Enabling Tool Use in Small Models via Teacher-Optimized Rewards
Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. In this paper, we propose TrajAgent, an agent framework powered by large language models, designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. In TrajAgent, we first develop UniEnv, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on UniEnv, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on five tasks using four real-world datasets demonstrate the effectiveness of TrajAgent in automated trajectory modeling, achieving a performance improvement of 2.38%-69.91% over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ The Dialogue That Heals: A Comprehensive Evaluation of Doctor Agents' Inquiry Capability
An effective physician should possess a combination of empathy, expertise, patience, and clear communication when treating a patient. Recent advances have successfully endowed AI doctors with expert diagnostic skills, particularly the ability to actively seek information through inquiry. However, other essential qualities of a good doctor remain overlooked. To bridge this gap, we present MAQuE(Medical Agent Questioning Evaluation), the largest-ever benchmark for the automatic and comprehensive evaluation of medical multi-turn questioning. It features 3,000 realistically simulated patient agents that exhibit diverse linguistic patterns, cognitive limitations, emotional responses, and tendencies for passive disclosure. We also introduce a multi-faceted evaluation framework, covering task success, inquiry proficiency, dialogue competence, inquiry efficiency, and patient experience. Experiments on different LLMs reveal substantial challenges across the evaluation aspects. Even state-of-the-art models show significant room for improvement in their inquiry capabilities. These models are highly sensitive to variations in realistic patient behavior, which considerably impacts diagnostic accuracy. Furthermore, our fine-grained metrics expose trade-offs between different evaluation perspectives, highlighting the challenge of balancing performance and practicality in real-world clinical settings.
♻ ☆ FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay NeurIPS 2025
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism inspired by experience replay in traditional RL. This technique reuses recent rollouts, lowering per-step computation while maintaining stable updates. Experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 23% to 62% while reaching the same level of performance as the original GRPO algorithm. Our code is available at https://github.com/ASTRAL-Group/data-efficient-llm-rl.
comment: Accepted at NeurIPS 2025
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ AdaRewriter: Unleashing the Power of Prompting-based Conversational Query Reformulation via Test-Time Adaptation EMNLP 2025
Prompting-based conversational query reformulation has emerged as a powerful approach for conversational search, refining ambiguous user queries into standalone search queries. Best-of-N reformulation over the generated candidates via prompting shows impressive potential scaling capability. However, both the previous tuning methods (training time) and adaptation approaches (test time) can not fully unleash their benefits. In this paper, we propose AdaRewriter, a novel framework for query reformulation using an outcome-supervised reward model via test-time adaptation. By training a lightweight reward model with contrastive ranking loss, AdaRewriter selects the most promising reformulation during inference. Notably, it can operate effectively in black-box systems, including commercial LLM APIs. Experiments on five conversational search datasets show that AdaRewriter significantly outperforms the existing methods across most settings, demonstrating the potential of test-time adaptation for conversational query reformulation.
comment: Accepted by EMNLP 2025
♻ ☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: project page:https://mined-lmm.github.io/
♻ ☆ Navigation with VLM framework: Towards Going to Any Language
Navigating towards fully open language goals and exploring open scenes in an intelligent way have always raised significant challenges. Recently, Vision Language Models (VLMs) have demonstrated remarkable capabilities to reason with both language and visual data. Although many works have focused on leveraging VLMs for navigation in open scenes, they often require high computational cost, rely on object-centric approaches, or depend on environmental priors in detailed human instructions. We introduce Navigation with VLM (NavVLM), a training-free framework that harnesses open-source VLMs to enable robots to navigate effectively, even for human-friendly language goal such as abstract places, actions, or specific objects in open scenes. NavVLM leverages the VLM as its cognitive core to perceive environmental information and constantly provides exploration guidance achieving intelligent navigation with only a neat target rather than a detailed instruction with environment prior. We evaluated and validated NavVLM in both simulation and real-world experiments. In simulation, our framework achieves state-of-the-art performance in Success weighted by Path Length (SPL) on object-specifc tasks in richly detailed environments from Matterport 3D (MP3D), Habitat Matterport 3D (HM3D) and Gibson. With navigation episode reported, NavVLM demonstrates the capabilities to navigate towards any open-set languages. In real-world validation, we validated our framework's effectiveness in real-world robot at indoor scene.
comment: under review
♻ ☆ Discourse Features Enhance Detection of Document-Level Machine-Generated Content IJCNN 2025
The availability of high-quality APIs for Large Language Models (LLMs) has facilitated the widespread creation of Machine-Generated Content (MGC), posing challenges such as academic plagiarism and the spread of misinformation. Existing MGC detectors often focus solely on surface-level information, overlooking implicit and structural features. This makes them susceptible to deception by surface-level sentence patterns, particularly for longer texts and in texts that have been subsequently paraphrased. To overcome these challenges, we introduce novel methodologies and datasets. Besides the publicly available dataset Plagbench, we developed the paraphrased Long-Form Question and Answer (paraLFQA) and paraphrased Writing Prompts (paraWP) datasets using GPT and DIPPER, a discourse paraphrasing tool, by extending artifacts from their original versions. To better capture the structure of longer texts at document level, we propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features. It results in substantial performance gains across both datasets - 15.5% absolute improvement on paraLFQA, 4% absolute improvement on paraWP, and 1.5% absolute improvemene on M4 compared to SOTA approaches. The data and code are available at: https://github.com/myxp-lyp/Discourse-Features-Enhance-Detection-of-Document-Level-Machine-Generated-Content.git.
comment: Accepted by IJCNN 2025
♻ ☆ BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, benchmarking on large-scale real-world data such as electronic health records (EHRs) is critical, as clinical decisions are directly informed by these sources, yet current evaluations remain limited. Most existing benchmarks rely on medical exam-style questions or PubMed-derived text, failing to capture the complexity of real-world clinical data. Others focus narrowly on specific application scenarios, limiting their generalizability across broader clinical use. To address this gap, we present BRIDGE, a comprehensive multilingual benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages. It covers eight major task types spanning the entire continuum of patient care across six clinical stages and 20 representative applications, including triage and referral, consultation, information extraction, diagnosis, prognosis, and billing coding, and involves 14 clinical specialties. We systematically evaluated 95 LLMs (including DeepSeek-R1, GPT-4o, Gemini series, and Qwen3 series) under various inference strategies. Our results reveal substantial performance variation across model sizes, languages, natural language processing tasks, and clinical specialties. Notably, we demonstrate that open-source LLMs can achieve performance comparable to proprietary models, while medically fine-tuned LLMs based on older architectures often underperform versus updated general-purpose models. The BRIDGE and its corresponding leaderboard serve as a foundational resource and a unique reference for the development and evaluation of new LLMs in real-world clinical text understanding. The BRIDGE leaderboard: https://huggingface.co/spaces/YLab-Open/BRIDGE-Medical-Leaderboard
♻ ☆ SEER: The Span-based Emotion Evidence Retrieval Benchmark
We introduce the SEER (Span-based Emotion Evidence Retrieval) Benchmark to test Large Language Models' (LLMs) ability to identify the specific spans of text that express emotion. Unlike traditional emotion recognition tasks that assign a single label to an entire sentence, SEER targets the underexplored task of emotion evidence detection: pinpointing which exact phrases convey emotion. This span-level approach is crucial for applications like empathetic dialogue and clinical support, which need to know how emotion is expressed, not just what the emotion is. SEER includes two tasks: identifying emotion evidence within a single sentence, and identifying evidence across a short passage of five consecutive sentences. It contains new annotations for both emotion and emotion evidence on 1200 real-world sentences. We evaluate 14 open-source LLMs and find that, while some models approach average human performance on single-sentence inputs, their accuracy degrades in longer passages. Our error analysis reveals key failure modes, including overreliance on emotion keywords and false positives in neutral text.
♻ ☆ PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings ACL 2025
Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and political communication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensive datasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion.
comment: ACL 2025 Main. Code and dataset are released at: https://github.com/holi-lab/PVP_Personalized_Visual_Persuasion
Computation and Language
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-oncescoringintofocused, second-lookreasoning, BR-RMreducesjudgmentdiffusionandimproves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains. The code and the model will be released soon.
☆ Hope Speech Detection in Social Media English Corpora: Performance of Traditional and Transformer Models
The identification of hope speech has become a promised NLP task, considering the need to detect motivational expressions of agency and goal-directed behaviour on social media platforms. This proposal evaluates traditional machine learning models and fine-tuned transformers for a previously split hope speech dataset as train, development and test set. On development test, a linear-kernel SVM and logistic regression both reached a macro-F1 of 0.78; SVM with RBF kernel reached 0.77, and Na\"ive Bayes hit 0.75. Transformer models delivered better results, the best model achieved weighted precision of 0.82, weighted recall of 0.80, weighted F1 of 0.79, macro F1 of 0.79, and 0.80 accuracy. These results suggest that while optimally configured traditional machine learning models remain agile, transformer architectures detect some subtle semantics of hope to achieve higher precision and recall in hope speech detection, suggesting that larges transformers and LLMs could perform better in small datasets.
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ ISA-Bench: Benchmarking Instruction Sensitivity for Large Audio Language Models
Large Audio Language Models (LALMs), which couple acoustic perception with large language models (LLMs) to extract and understand diverse information from audio, have attracted intense interest from both academic and industrial communities. However, existing LALMs are highly sensitive to how instructions are phrased, affecting both (i) instruction-following rates and (ii) task performance. Yet, no existing benchmarks offer a systematic and comprehensive evaluation of this sensitivity. We introduce ISA-Bench, a dynamic benchmark evaluating instruction sensitivity for LALMs along three axes: instruction description, output format, and task composition. We assess recent open-source and proprietary LALMs using ISA-Bench, profiling both compliance and accuracy under controlled instruction variations. Experimental results reveal that even state-of-the-art LALMs suffer significant instruction sensitivity, leading to degraded performance on fundamental audio understanding tasks. To mitigate this issue, we fine-tune Qwen2-Audio on a specifically constructed complex instruction-variant dataset, achieving a marked improvement in instruction-following performance. However, this also induces nontrivial catastrophic forgetting: the model loses some previously mastered task capabilities when exposed to new instruction styles. Our benchmark provides a standardized basis for assessing and improving instruction sensitivity in LALMs, underscoring the need for instruction-robust audio understanding in real-world pipelines.
comment: submitted to icassp 2026
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ IPQA: A Benchmark for Core Intent Identification in Personalized Question Answering
Intent identification serves as the foundation for generating appropriate responses in personalized question answering (PQA). However, existing benchmarks evaluate only response quality or retrieval performance without directly measuring intent identification capabilities. This gap is critical because without understanding which intents users prioritize, systems cannot generate responses satisfying individual information needs. To address this, we introduce the concept of core intents: intents users prioritize when selecting answers to satisfy their information needs. To evaluate these core intents, we propose IPQA, a benchmark for core Intent identification in Personalized Question Answering. Since users do not explicitly state their prioritized intents, we derive core intents from observable behavior patterns in answer selection, grounded in satisficing theory where users choose answers meeting their acceptance thresholds. We construct a dataset with various domains through systematic filtering, LLM-based annotation, and rigorous quality control combining automated verification with human validation. Experimental evaluations across state-of-the-art language models reveal that current systems struggle with core intent identification in personalized contexts. Models fail to identify core intents from user histories, with performance degrading as question complexity increases. The code and dataset will be made publicly available to facilitate future research in this direction.
☆ M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/M4FC
☆ MMTutorBench: The First Multimodal Benchmark for AI Math Tutoring
Effective math tutoring requires not only solving problems but also diagnosing students' difficulties and guiding them step by step. While multimodal large language models (MLLMs) show promise, existing benchmarks largely overlook these tutoring skills. We introduce MMTutorBench, the first benchmark for AI math tutoring, consisting of 685 problems built around pedagogically significant key-steps. Each problem is paired with problem-specific rubrics that enable fine-grained evaluation across six dimensions, and structured into three tasks-Insight Discovery, Operation Formulation, and Operation Execution. We evaluate 12 leading MLLMs and find clear performance gaps between proprietary and open-source systems, substantial room compared to human tutors, and consistent trends across input variants: OCR pipelines degrade tutoring quality, few-shot prompting yields limited gains, and our rubric-based LLM-as-a-Judge proves highly reliable. These results highlight both the difficulty and diagnostic value of MMTutorBench for advancing AI tutoring.
☆ Evaluating Large Language Models for Stance Detection on Financial Targets from SEC Filing Reports and Earnings Call Transcripts
Financial narratives from U.S. Securities and Exchange Commission (SEC) filing reports and quarterly earnings call transcripts (ECTs) are very important for investors, auditors, and regulators. However, their length, financial jargon, and nuanced language make fine-grained analysis difficult. Prior sentiment analysis in the financial domain required a large, expensive labeled dataset, making the sentence-level stance towards specific financial targets challenging. In this work, we introduce a sentence-level corpus for stance detection focused on three core financial metrics: debt, earnings per share (EPS), and sales. The sentences were extracted from Form 10-K annual reports and ECTs, and labeled for stance (positive, negative, neutral) using the advanced ChatGPT-o3-pro model under rigorous human validation. Using this corpus, we conduct a systematic evaluation of modern large language models (LLMs) using zero-shot, few-shot, and Chain-of-Thought (CoT) prompting strategies. Our results show that few-shot with CoT prompting performs best compared to supervised baselines, and LLMs' performance varies across the SEC and ECT datasets. Our findings highlight the practical viability of leveraging LLMs for target-specific stance in the financial domain without requiring extensive labeled data.
☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ A Neuro-Symbolic Multi-Agent Approach to Legal-Cybersecurity Knowledge Integration
The growing intersection of cybersecurity and law creates a complex information space where traditional legal research tools struggle to deal with nuanced connections between cases, statutes, and technical vulnerabilities. This knowledge divide hinders collaboration between legal experts and cybersecurity professionals. To address this important gap, this work provides a first step towards intelligent systems capable of navigating the increasingly intricate cyber-legal domain. We demonstrate promising initial results on multilingual tasks.
comment: 7 pages
☆ EMTSF:Extraordinary Mixture of SOTA Models for Time Series Forecasting
The immense success of the Transformer architecture in Natural Language Processing has led to its adoption in Time Se ries Forecasting (TSF), where superior performance has been shown. However, a recent important paper questioned their effectiveness by demonstrating that a simple single layer linear model outperforms Transformer-based models. This was soon shown to be not as valid, by a better transformer-based model termed PatchTST. More re cently, TimeLLM demonstrated even better results by repurposing a Large Language Model (LLM) for the TSF domain. Again, a follow up paper challenged this by demonstrating that removing the LLM component or replacing it with a basic attention layer in fact yields better performance. One of the challenges in forecasting is the fact that TSF data favors the more recent past, and is sometimes subject to unpredictable events. Based upon these recent insights in TSF, we propose a strong Mixture of Experts (MoE) framework. Our method combines the state-of-the-art (SOTA) models including xLSTM, en hanced Linear, PatchTST, and minGRU, among others. This set of complimentary and diverse models for TSF are integrated in a Trans former based MoE gating network. Our proposed model outperforms all existing TSF models on standard benchmarks, surpassing even the latest approaches based on MoE frameworks.
☆ Detecting Religious Language in Climate Discourse
Religious language continues to permeate contemporary discourse, even in ostensibly secular domains such as environmental activism and climate change debates. This paper investigates how explicit and implicit forms of religious language appear in climate-related texts produced by secular and religious nongovernmental organizations (NGOs). We introduce a dual methodological approach: a rule-based model using a hierarchical tree of religious terms derived from ecotheology literature, and large language models (LLMs) operating in a zero-shot setting. Using a dataset of more than 880,000 sentences, we compare how these methods detect religious language and analyze points of agreement and divergence. The results show that the rule-based method consistently labels more sentences as religious than LLMs. These findings highlight not only the methodological challenges of computationally detecting religious language but also the broader tension over whether religious language should be defined by vocabulary alone or by contextual meaning. This study contributes to digital methods in religious studies by demonstrating both the potential and the limitations of approaches for analyzing how the sacred persists in climate discourse.
☆ How AI Forecasts AI Jobs: Benchmarking LLM Predictions of Labor Market Changes
Artificial intelligence is reshaping labor markets, yet we lack tools to systematically forecast its effects on employment. This paper introduces a benchmark for evaluating how well large language models (LLMs) can anticipate changes in job demand, especially in occupations affected by AI. Existing research has shown that LLMs can extract sentiment, summarize economic reports, and emulate forecaster behavior, but little work has assessed their use for forward-looking labor prediction. Our benchmark combines two complementary datasets: a high-frequency index of sector-level job postings in the United States, and a global dataset of projected occupational changes due to AI adoption. We format these data into forecasting tasks with clear temporal splits, minimizing the risk of information leakage. We then evaluate LLMs using multiple prompting strategies, comparing task-scaffolded, persona-driven, and hybrid approaches across model families. We assess both quantitative accuracy and qualitative consistency over time. Results show that structured task prompts consistently improve forecast stability, while persona prompts offer advantages on short-term trends. However, performance varies significantly across sectors and horizons, highlighting the need for domain-aware prompting and rigorous evaluation protocols. By releasing our benchmark, we aim to support future research on labor forecasting, prompt design, and LLM-based economic reasoning. This work contributes to a growing body of research on how LLMs interact with real-world economic data, and provides a reproducible testbed for studying the limits and opportunities of AI as a forecasting tool in the context of labor markets.
comment: 8 pages + Limitations + References
☆ LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
The scarcity of high-quality knowledge graphs (KGs) remains a critical bottleneck for downstream AI applications, as existing extraction methods rely heavily on error-prone pattern-matching techniques or resource-intensive large language models (LLMs). While recent tools leverage LLMs to generate KGs, their computational demands limit accessibility for low-resource environments. Our paper introduces LightKGG, a novel framework that enables efficient KG extraction from textual data using small-scale language models (SLMs) through two key technical innovations: (1) Context-integrated Graph extraction integrates contextual information with nodes and edges into a unified graph structure, reducing the reliance on complex semantic processing while maintaining more key information; (2) Topology-enhanced relationship inference leverages the inherent topology of the extracted graph to efficiently infer relationships, enabling relationship discovery without relying on complex language understanding capabilities of LLMs. By enabling accurate KG construction with minimal hardware requirements, this work bridges the gap between automated knowledge extraction and practical deployment scenarios while introducing scientifically rigorous methods for optimizing SLM efficiency in structured NLP tasks.
☆ Planning Ahead with RSA: Efficient Signalling in Dynamic Environments by Projecting User Awareness across Future Timesteps
Adaptive agent design offers a way to improve human-AI collaboration on time-sensitive tasks in rapidly changing environments. In such cases, to ensure the human maintains an accurate understanding of critical task elements, an assistive agent must not only identify the highest priority information but also estimate how and when this information can be communicated most effectively, given that human attention represents a zero-sum cognitive resource where focus on one message diminishes awareness of other or upcoming information. We introduce a theoretical framework for adaptive signalling which meets these challenges by using principles of rational communication, formalised as Bayesian reference resolution using the Rational Speech Act (RSA) modelling framework, to plan a sequence of messages which optimise timely alignment between user belief and a dynamic environment. The agent adapts message specificity and timing to the particulars of a user and scenario based on projections of how prior-guided interpretation of messages will influence attention to the interface and subsequent belief update, across several timesteps out to a fixed horizon. In a comparison to baseline methods, we show that this effectiveness depends crucially on combining multi-step planning with a realistic model of user awareness. As the first application of RSA for communication in a dynamic environment, and for human-AI interaction in general, we establish theoretical foundations for pragmatic communication in human-agent teams, highlighting how insights from cognitive science can be capitalised to inform the design of assistive agents.
comment: 11 pages, 3 figures
☆ BaZi-Based Character Simulation Benchmark: Evaluating AI on Temporal and Persona Reasoning
Human-like virtual characters are crucial for games, storytelling, and virtual reality, yet current methods rely heavily on annotated data or handcrafted persona prompts, making it difficult to scale up and generate realistic, contextually coherent personas. We create the first QA dataset for BaZi-based persona reasoning, where real human experiences categorized into wealth, health, kinship, career, and relationships are represented as life-event questions and answers. Furthermore, we propose the first BaZi-LLM system that integrates symbolic reasoning with large language models to generate temporally dynamic and fine-grained virtual personas. Compared with mainstream LLMs such as DeepSeek-v3 and GPT-5-mini, our method achieves a 30.3%-62.6% accuracy improvement. In addition, when incorrect BaZi information is used, our model's accuracy drops by 20%-45%, showing the potential of culturally grounded symbolic-LLM integration for realistic character simulation.
☆ Adaptive Blockwise Search: Inference-Time Alignment for Large Language Models
LLM alignment remains a critical challenge. Inference-time methods provide a flexible alternative to fine-tuning, but their uniform computational effort often yields suboptimal alignment. We hypothesize that for many alignment tasks, the initial tokens of a response are disproportionately more critical. To leverage this principle, we introduce AdaSearch, a novel blockwise search strategy. It adaptively allocates a fixed computational budget using a sampling schedule, focusing search effort on these critical tokens. We apply AdaSearch to sequential decoding and introduce its tree-search counterpart, AdaBeam. Our comprehensive evaluation across eight LLMs demonstrates that AdaSearch outperforms strong Best-of-N and fine-tuning baselines. Specifically, win-rates improve by over 10% for harmlessness generation, controlled sentiment generation, and for mathematical reasoning tasks relative to Best-of-N.
☆ LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization LREC 2026
We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions.
comment: Submitted to LREC 2026
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ DCMM-SQL: Automated Data-Centric Pipeline and Multi-Model Collaboration Training for Text-to-SQL Model
Text-to-SQL tasks have gained attractive improvements since the release of ChatGPT. Among them, agent-based frameworks have been widely used in this field. However, the impact of data-centric strategies on text-to-SQL tasks has rarely been explored. In this paper, we systemically design a fully automated data-centric pipeline for text-to-SQL tasks, including \emph{adaptive data repair}, which can automatically find and fix errors in the training dataset; and \emph{error data augmentation}, where we specifically diffuse and enhance erroneous data predicted by the initially trained models. Meanwhile, we propose a Multi-Model collaboration training schema, aiming to train multiple models with different augmented data, enabling them to possess distinct capabilities and work together to complement each other, because it has been found that the capability of a single fine-tuned model is very limited. Furthermore, we utilize an ensemble strategy to integrate the capabilities of multiple models to solve a multiple-choice question, aiming to further improve the accuracy of text-to-SQL tasks. The experiment results and ablation study have demonstrated the effectiveness of data-centric pipeline and Multi-Model(MM) interactive iterative strategies, achieving first place in lightweight text-to-SQL models (within 70B).
☆ A Cocktail-Party Benchmark: Multi-Modal dataset and Comparative Evaluation Results ICASSP 2026
We introduce the task of Multi-Modal Context-Aware Recognition (MCoRec) in the ninth CHiME Challenge, which addresses the cocktail-party problem of overlapping conversations in a single-room setting using audio, visual, and contextual cues. MCoRec captures natural multi-party conversations where the recordings focus on unscripted, casual group chats, leading to extreme speech overlap of up to 100% and highly fragmented conversational turns. The task requires systems to answer the question "Who speaks when, what, and with whom?" by jointly transcribing each speaker's speech and clustering them into their respective conversations from audio-visual recordings. Audio-only baselines exceed 100% word error rate, whereas incorporating visual cues yields substantial 50% improvements, highlighting the importance of multi-modality. In this manuscript, we present the motivation behind the task, outline the data collection process, and report the baseline systems developed for the MCoRec.
comment: Submitted to ICASSP 2026
☆ Code Aesthetics with Agentic Reward Feedback
Large Language Models (LLMs) have become valuable assistants for developers in code-related tasks. While LLMs excel at traditional programming tasks such as code generation and bug fixing, they struggle with visually-oriented coding tasks, often producing suboptimal aesthetics. In this paper, we introduce a new pipeline to enhance the aesthetic quality of LLM-generated code. We first construct AesCode-358K, a large-scale instruction-tuning dataset focused on code aesthetics. Next, we propose agentic reward feedback, a multi-agent system that evaluates executability, static aesthetics, and interactive aesthetics. Building on this, we develop GRPO-AR, which integrates these signals into the GRPO algorithm for joint optimization of functionality and code aesthetics. Finally, we develop OpenDesign, a benchmark for assessing code aesthetics. Experimental results show that combining supervised fine-tuning on AesCode-358K with reinforcement learning using agentic reward feedback significantly improves performance on OpenDesign and also enhances results on existing benchmarks such as PandasPlotBench. Notably, our AesCoder-4B surpasses GPT-4o and GPT-4.1, and achieves performance comparable to large open-source models with 480B-685B parameters, underscoring the effectiveness of our approach.
comment: 30 pages, 7 figures
☆ Mubeen AI: A Specialized Arabic Language Model for Heritage Preservation and User Intent Understanding
Mubeen is a proprietary Arabic language model developed by MASARAT SA, optimized for deep understanding of Arabic linguistics, Islamic studies, and cultural heritage. Trained on an extensive collection of authentic Arabic sources significantly expanded by digitizing historical manuscripts via a proprietary Arabic OCR engine, the model incorporates seminal scholarly works in linguistics, jurisprudence, hadith, and Quranic exegesis, alongside thousands of academic theses and peer-reviewed research papers. Conditioned through a deep linguistic engineering framework, Mubeen masters not just the meaning but the eloquence of Arabic, enabling precise understanding across classical texts, contemporary writing, and regional dialects with focus on comprehending user intent and delivering accurate, contextually relevant responses. Unlike other Arabic models relying on translated English data that often fail in intent detection or retrieval-augmented generation (RAG), Mubeen uses native Arabic sources to ensure cultural authenticity and accuracy. Its core innovation is the Practical Closure Architecture, designed to solve the "Utility Gap Crisis" where factually correct answers fail to resolve users' core needs, forcing them into frustrating cycles of re-prompting. By prioritizing clarity and decisive guidance, Mubeen transforms from an information repository into a decisive guide, aligning with Saudi Vision 2030. The model's architecture combines deep heritage specialization with multi-disciplinary expert modules, enabling robust performance across both cultural preservation and general knowledge domains.
comment: 21 pages, 2 figures, 3 tables. Includes appendices on ethical guidelines and training framework. Submitted September 04, 2025
☆ Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? AACL
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available
comment: This manuscript contains 11 pages, 5 tables and 16 figures This was accepted at International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL) 2025
☆ Process Reward Models for Sentence-Level Verification of LVLM Radiology Reports
Automating radiology report generation with Large Vision-Language Models (LVLMs) holds great potential, yet these models often produce clinically critical hallucinations, posing serious risks. Existing hallucination detection methods frequently lack the necessary sentence-level granularity or robust generalization across different LVLM generators. We introduce a novel approach: a sentence-level Process Reward Model (PRM) adapted for this vision-language task. Our PRM predicts the factual correctness of each generated sentence, conditioned on clinical context and preceding text. When fine-tuned on MIMIC-CXR with weakly-supervised labels, a lightweight 0.5B-parameter PRM outperforms existing verification techniques, demonstrating, for instance, relative improvements of 7.5% in Matthews Correlation Coefficient and 1.8% in AUROC over strong white-box baselines on outputs from one LVLM. Unlike methods reliant on internal model states, our PRM demonstrates strong generalization to an unseen LVLM. We further show its practical utility: PRM scores effectively filter low-quality reports, improving F1-CheXbert scores by 4.5% (when discarding the worst 10% of reports). Moreover, when guiding a novel weighted best-of-N selection process on the MIMIC-CXR test set, our PRM show relative improvements in clinical metrics of 7.4% for F1-CheXbert and 0.6% for BERTScore. These results demonstrate that a lightweight, context-aware PRM provides a model-agnostic safety layer for clinical LVLMs without access to internal activations
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.
comment: 17 pages, 9 figures
☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
☆ ENTP: Enhancing Low-Quality SFT Data via Neural-Symbolic Text Purge-Mix
Supervised Fine-Tuning (SFT) adapts pre-trained Large Language Models (LLMs) to domain-specific instructions by training on a carefully curated subset of high-quality instruction-response pairs, typically drawn from a larger dataset that often contains many low-quality or noisy samples. However, existing quality-first paradigms often overlook valuable signals in discarded low-quality data and rely on imperfect quality filters. We introduce ENTP (Enhancing low-quality SFT data via Neural-symbolic Text Purge-Mix), a framework that revitalizes low-quality corpora through symbolic purification and neural reconstruction. The symbolic module identifies and prunes noisy samples based on statistical priors, while the neural component synthesizes enriched instruction-response pairs by leveraging latent representations and model knowledge. This neural-symbolic synergy enhances data informativeness and diversity. Experiments show that ENTP-augmented datasets, constructed exclusively from low-quality data, outperform 13 established data-selection baselines across five instruction-following benchmarks, and even surpass fine-tuning on the full original dataset (approximately 300K examples). Our results highlight the untapped potential of low-quality data and underscore the importance of intelligent purification and synthesis for efficient instruction alignment.
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Corpus Frequencies in Morphological Inflection: Do They Matter?
The traditional approach to morphological inflection (the task of modifying a base word (lemma) to express grammatical categories) has been, for decades, to consider lexical entries of lemma-tag-form triples uniformly, lacking any information about their frequency distribution. However, in production deployment, one might expect the user inputs to reflect a real-world distribution of frequencies in natural texts. With future deployment in mind, we explore the incorporation of corpus frequency information into the task of morphological inflection along three key dimensions during system development: (i) for train-dev-test split, we combine a lemma-disjoint approach, which evaluates the model's generalization capabilities, with a frequency-weighted strategy to better reflect the realistic distribution of items across different frequency bands in training and test sets; (ii) for evaluation, we complement the standard type accuracy (often referred to simply as accuracy), which treats all items equally regardless of frequency, with token accuracy, which assigns greater weight to frequent words and better approximates performance on running text; (iii) for training data sampling, we introduce a method novel in the context of inflection, frequency-aware training, which explicitly incorporates word frequency into the sampling process. We show that frequency-aware training outperforms uniform sampling in 26 out of 43 languages.
comment: Published in the proceedings of ITAT 2025.15 pages, 1 figure, 4 tables
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.
comment: Published in the proceedings of TSD 2025. 12 pages, 1 figure, 4 tables
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ MAP4TS: A Multi-Aspect Prompting Framework for Time-Series Forecasting with Large Language Models
Recent advances have investigated the use of pretrained large language models (LLMs) for time-series forecasting by aligning numerical inputs with LLM embedding spaces. However, existing multimodal approaches often overlook the distinct statistical properties and temporal dependencies that are fundamental to time-series data. To bridge this gap, we propose MAP4TS, a novel Multi-Aspect Prompting Framework that explicitly incorporates classical time-series analysis into the prompt design. Our framework introduces four specialized prompt components: a Global Domain Prompt that conveys dataset-level context, a Local Domain Prompt that encodes recent trends and series-specific behaviors, and a pair of Statistical and Temporal Prompts that embed handcrafted insights derived from autocorrelation (ACF), partial autocorrelation (PACF), and Fourier analysis. Multi-Aspect Prompts are combined with raw time-series embeddings and passed through a cross-modality alignment module to produce unified representations, which are then processed by an LLM and projected for final forecasting. Extensive experiments across eight diverse datasets show that MAP4TS consistently outperforms state-of-the-art LLM-based methods. Our ablation studies further reveal that prompt-aware designs significantly enhance performance stability and that GPT-2 backbones, when paired with structured prompts, outperform larger models like LLaMA in long-term forecasting tasks.
☆ A Survey on LLM Mid-training
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
☆ Fast-MIA: Efficient and Scalable Membership Inference for LLMs
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.
☆ Quality-Aware Translation Tagging in Multilingual RAG system EMNLP 2025
Multilingual Retrieval-Augmented Generation (mRAG) often retrieves English documents and translates them into the query language for low-resource settings. However, poor translation quality degrades response generation performance. Existing approaches either assume sufficient translation quality or utilize the rewriting method, which introduces factual distortion and hallucinations. To mitigate these problems, we propose Quality-Aware Translation Tagging in mRAG (QTT-RAG), which explicitly evaluates translation quality along three dimensions-semantic equivalence, grammatical accuracy, and naturalness&fluency-and attach these scores as metadata without altering the original content. We evaluate QTT-RAG against CrossRAG and DKM-RAG as baselines in two open-domain QA benchmarks (XORQA, MKQA) using six instruction-tuned LLMs ranging from 2.4B to 14B parameters, covering two low-resource languages (Korean and Finnish) and one high-resource language (Chinese). QTT-RAG outperforms the baselines by preserving factual integrity while enabling generator models to make informed decisions based on translation reliability. This approach allows for effective usage of cross-lingual documents in low-resource settings with limited native language documents, offering a practical and robust solution across multilingual domains.
comment: EMNLP 2025 MRL Workshop
☆ Knocking-Heads Attention
Multi-head attention (MHA) has become the cornerstone of modern large language models, enhancing representational capacity through parallel attention heads. However, increasing the number of heads inherently weakens individual head capacity, and existing attention mechanisms - whether standard MHA or its variants like grouped-query attention (GQA) and grouped-tied attention (GTA) - simply concatenate outputs from isolated heads without strong interaction. To address this limitation, we propose knocking-heads attention (KHA), which enables attention heads to "knock" on each other - facilitating cross-head feature-level interactions before the scaled dot-product attention. This is achieved by applying a shared, diagonally-initialized projection matrix across all heads. The diagonal initialization preserves head-specific specialization at the start of training while allowing the model to progressively learn integrated cross-head representations. KHA adds only minimal parameters and FLOPs and can be seamlessly integrated into MHA, GQA, GTA, and other attention variants. We validate KHA by training a 6.1B parameter MoE model (1.01B activated) on 1T high-quality tokens. Compared to baseline attention mechanisms, KHA brings superior and more stable training dynamics, achieving better performance across downstream tasks.
☆ Incentivizing Agentic Reasoning in LLM Judges via Tool-Integrated Reinforcement Learning
Large Language Models (LLMs) are widely used as judges to evaluate response quality, providing a scalable alternative to human evaluation. However, most LLM judges operate solely on intrinsic text-based reasoning, limiting their ability to verify complex constraints or perform accurate computation. Motivated by the success of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an end-to-end RL framework for training LLM judges that integrates a code executor for precise evaluation. TIR-Judge is built on three principles: (i) diverse training across verifiable and non-verifiable domains, (ii) flexible judgment formats (pointwise, pairwise, listwise), and (iii) iterative RL that bootstraps directly from the initial model without distillation. On seven public benchmarks, TIR-Judge surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pairwise), and achieves listwise performance comparable to Claude-Opus-4 despite having only 8B parameters. Remarkably, TIR-Judge-Zero - trained entirely without distilled judge trajectories, matches the performance of distilled variants, demonstrating that tool-augmented judges can self-evolve through iterative reinforcement learning.
comment: Work in Progress
☆ Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts
Recent advances in reinforcement learning (RL) have substantially improved the training of large-scale language models, leading to significant gains in generation quality and reasoning ability. However, most existing research focuses on dense models, while RL training for Mixture-of-Experts (MoE) architectures remains underexplored. To address the instability commonly observed in MoE training, we propose a novel router-aware approach to optimize importance sampling (IS) weights in off-policy RL. Specifically, we design a rescaling strategy guided by router logits, which effectively reduces gradient variance and mitigates training divergence. Experimental results demonstrate that our method significantly improves both the convergence stability and the final performance of MoE models, highlighting the potential of RL algorithmic innovations tailored to MoE architectures and providing a promising direction for efficient training of large-scale expert models.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ LangLingual: A Personalised, Exercise-oriented English Language Learning Tool Leveraging Large Language Models
Language educators strive to create a rich experience for learners, while they may be restricted in the extend of feedback and practice they can provide. We present the design and development of LangLingual, a conversational agent built using the LangChain framework and powered by Large Language Models. The system is specifically designed to provide real-time, grammar-focused feedback, generate context-aware language exercises and track learner proficiency over time. The paper discusses the architecture, implementation and evaluation of LangLingual in detail. The results indicate strong usability, positive learning outcomes and encouraging learner engagement.
comment: 14 pages
☆ Leveraging LLMs for Early Alzheimer's Prediction
We present a connectome-informed LLM framework that encodes dynamic fMRI connectivity as temporal sequences, applies robust normalization, and maps these data into a representation suitable for a frozen pre-trained LLM for clinical prediction. Applied to early Alzheimer's detection, our method achieves sensitive prediction with error rates well below clinically recognized margins, with implications for timely Alzheimer's intervention.
☆ Auto prompting without training labels: An LLM cascade for product quality assessment in e-commerce catalogs
We introduce a novel, training free cascade for auto-prompting Large Language Models (LLMs) to assess product quality in e-commerce. Our system requires no training labels or model fine-tuning, instead automatically generating and refining prompts for evaluating attribute quality across tens of thousands of product category-attribute pairs. Starting from a seed of human-crafted prompts, the cascade progressively optimizes instructions to meet catalog-specific requirements. This approach bridges the gap between general language understanding and domain-specific knowledge at scale in complex industrial catalogs. Our extensive empirical evaluations shows the auto-prompt cascade improves precision and recall by $8-10\%$ over traditional chain-of-thought prompting. Notably, it achieves these gains while reducing domain expert effort from 5.1 hours to 3 minutes per attribute - a $99\%$ reduction. Additionally, the cascade generalizes effectively across five languages and multiple quality assessment tasks, consistently maintaining performance gains.
☆ Latent Chain-of-Thought for Visual Reasoning NeurIPS 2025
Chain-of-thought (CoT) reasoning is critical for improving the interpretability and reliability of Large Vision-Language Models (LVLMs). However, existing training algorithms such as SFT, PPO, and GRPO may not generalize well across unseen reasoning tasks and heavily rely on a biased reward model. To address this challenge, we reformulate reasoning in LVLMs as posterior inference and propose a scalable training algorithm based on amortized variational inference. By leveraging diversity-seeking reinforcement learning algorithms, we introduce a novel sparse reward function for token-level learning signals that encourage diverse, high-likelihood latent CoT, overcoming deterministic sampling limitations and avoiding reward hacking. Additionally, we implement a Bayesian inference-scaling strategy that replaces costly Best-of-N and Beam Search with a marginal likelihood to efficiently rank optimal rationales and answers. We empirically demonstrate that the proposed method enhances the state-of-the-art LVLMs on seven reasoning benchmarks, in terms of effectiveness, generalization, and interpretability.
comment: NeurIPS 2025
☆ Agent-based Automated Claim Matching with Instruction-following LLMs
We present a novel agent-based approach for the automated claim matching task with instruction-following LLMs. We propose a two-step pipeline that first generates prompts with LLMs, to then perform claim matching as a binary classification task with LLMs. We demonstrate that LLM-generated prompts can outperform SOTA with human-generated prompts, and that smaller LLMs can do as well as larger ones in the generation process, allowing to save computational resources. We also demonstrate the effectiveness of using different LLMs for each step of the pipeline, i.e. using an LLM for prompt generation, and another for claim matching. Our investigation into the prompt generation process in turn reveals insights into the LLMs' understanding of claim matching.
comment: Accepted for the International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (2025) Findings
☆ Breaking the Benchmark: Revealing LLM Bias via Minimal Contextual Augmentation
Large Language Models have been shown to demonstrate stereotypical biases in their representations and behavior due to the discriminative nature of the data that they have been trained on. Despite significant progress in the development of methods and models that refrain from using stereotypical information in their decision-making, recent work has shown that approaches used for bias alignment are brittle. In this work, we introduce a novel and general augmentation framework that involves three plug-and-play steps and is applicable to a number of fairness evaluation benchmarks. Through application of augmentation to a fairness evaluation dataset (Bias Benchmark for Question Answering (BBQ)), we find that Large Language Models (LLMs), including state-of-the-art open and closed weight models, are susceptible to perturbations to their inputs, showcasing a higher likelihood to behave stereotypically. Furthermore, we find that such models are more likely to have biased behavior in cases where the target demographic belongs to a community less studied by the literature, underlining the need to expand the fairness and safety research to include more diverse communities.
comment: 9 pages, 3 figures, 3 tables
☆ AfriMTEB and AfriE5: Benchmarking and Adapting Text Embedding Models for African Languages
Text embeddings are an essential building component of several NLP tasks such as retrieval-augmented generation which is crucial for preventing hallucinations in LLMs. Despite the recent release of massively multilingual MTEB (MMTEB), African languages remain underrepresented, with existing tasks often repurposed from translation benchmarks such as FLORES clustering or SIB-200. In this paper, we introduce AfriMTEB -- a regional expansion of MMTEB covering 59 languages, 14 tasks, and 38 datasets, including six newly added datasets. Unlike many MMTEB datasets that include fewer than five languages, the new additions span 14 to 56 African languages and introduce entirely new tasks, such as hate speech detection, intent detection, and emotion classification, which were not previously covered. Complementing this, we present AfriE5, an adaptation of the instruction-tuned mE5 model to African languages through cross-lingual contrastive distillation. Our evaluation shows that AfriE5 achieves state-of-the-art performance, outperforming strong baselines such as Gemini-Embeddings and mE5.
☆ Language Models for Longitudinal Clinical Prediction
We explore a lightweight framework that adapts frozen large language models to analyze longitudinal clinical data. The approach integrates patient history and context within the language model space to generate accurate forecasts without model fine-tuning. Applied to neuropsychological assessments, it achieves accurate and reliable performance even with minimal training data, showing promise for early-stage Alzheimer's monitoring.
☆ OraPlan-SQL: A Planning-Centric Framework for Complex Bilingual NL2SQL Reasoning
We present OraPlan-SQL, our system for the Archer NL2SQL Evaluation Challenge 2025, a bilingual benchmark requiring complex reasoning such as arithmetic, commonsense, and hypothetical inference. OraPlan-SQL ranked first, exceeding the second-best system by more than 6% in execution accuracy (EX), with 55.0% in English and 56.7% in Chinese, while maintaining over 99% SQL validity (VA). Our system follows an agentic framework with two components: Planner agent that generates stepwise natural language plans, and SQL agent that converts these plans into executable SQL. Since SQL agent reliably adheres to the plan, our refinements focus on the planner. Unlike prior methods that rely on multiple sub-agents for planning and suffer from orchestration overhead, we introduce a feedback-guided meta-prompting strategy to refine a single planner. Failure cases from a held-out set are clustered with human input, and an LLM distills them into corrective guidelines that are integrated into the planner's system prompt, improving generalization without added complexity. For the multilingual scenario, to address transliteration and entity mismatch issues, we incorporate entity-linking guidelines that generate alternative surface forms for entities and explicitly include them in the plan. Finally, we enhance reliability through plan diversification: multiple candidate plans are generated for each query, with the SQL agent producing a query for each plan, and final output selected via majority voting over their executions.
☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
☆ Can LLMs Narrate Tabular Data? An Evaluation Framework for Natural Language Representations of Text-to-SQL System Outputs EMNLP 2025
In modern industry systems like multi-turn chat agents, Text-to-SQL technology bridges natural language (NL) questions and database (DB) querying. The conversion of tabular DB results into NL representations (NLRs) enables the chat-based interaction. Currently, NLR generation is typically handled by large language models (LLMs), but information loss or errors in presenting tabular results in NL remains largely unexplored. This paper introduces a novel evaluation method - Combo-Eval - for judgment of LLM-generated NLRs that combines the benefits of multiple existing methods, optimizing evaluation fidelity and achieving a significant reduction in LLM calls by 25-61%. Accompanying our method is NLR-BIRD, the first dedicated dataset for NLR benchmarking. Through human evaluations, we demonstrate the superior alignment of Combo-Eval with human judgments, applicable across scenarios with and without ground truth references.
comment: Accepted at EMNLP 2025
☆ Temporal Blindness in Multi-Turn LLM Agents: Misaligned Tool Use vs. Human Time Perception
Large language model agents are increasingly used in multi-turn conversational settings to interact with and execute tasks in dynamic environments. However, a key limitation is their temporal blindness: they, by default, operate with a stationary context, failing to account for the real-world time elapsed between messages. This becomes a critical liability when an agent must decide whether to invoke a tool based on how much time has passed since the last observation. Without temporal awareness, agents often either over-rely on previous context (skipping necessary tool calls), or under-rely on it (unnecessarily repeating tool calls). To study this challenge, we introduce TicToc-v1, a test set of multi-turn user-agent trajectories across 34 scenarios with varying time sensitivity. Each trajectory ends with a user question, where the need for a tool call depends on the amount of time elapsed since the last message. To give LLMs temporal context, we augment dialogue messages with explicit timestamps, bridging the gap between static dialogue and evolving environments. We then collected human preferences for these samples, creating two subsets: one where humans preferred relying on the previous observation (prefer-noTool), and another where they preferred a new tool call (prefer-Tool). We evaluated how well LLM tool-calling decisions align with human preferences under varying time intervals on TicToc-v1. Our analysis show that without time information, most models perform only slightly better than random, with the top alignment rate being just over 60%. While adding timestamps leads to a slight improvement, particularly for larger models, the improvement is modest, peaking at around 65%. We also show that naive, prompt-based alignment have limited effectiveness. Our findings highlight the need for specific post-training alignment to align multi-turn LLM tool use with human temporal perception.
comment: preliminary work in progress
☆ A Neural Model for Contextual Biasing Score Learning and Filtering
Contextual biasing improves automatic speech recognition (ASR) by integrating external knowledge, such as user-specific phrases or entities, during decoding. In this work, we use an attention-based biasing decoder to produce scores for candidate phrases based on acoustic information extracted by an ASR encoder, which can be used to filter out unlikely phrases and to calculate bonus for shallow-fusion biasing. We introduce a per-token discriminative objective that encourages higher scores for ground-truth phrases while suppressing distractors. Experiments on the Librispeech biasing benchmark show that our method effectively filters out majority of the candidate phrases, and significantly improves recognition accuracy under different biasing conditions when the scores are used in shallow fusion biasing. Our approach is modular and can be used with any ASR system, and the filtering mechanism can potentially boost performance of other biasing methods.
comment: Accepted to IEEE ASRU 2025
☆ CRADLE Bench: A Clinician-Annotated Benchmark for Multi-Faceted Mental Health Crisis and Safety Risk Detection
Detecting mental health crisis situations such as suicide ideation, rape, domestic violence, child abuse, and sexual harassment is a critical yet underexplored challenge for language models. When such situations arise during user--model interactions, models must reliably flag them, as failure to do so can have serious consequences. In this work, we introduce CRADLE BENCH, a benchmark for multi-faceted crisis detection. Unlike previous efforts that focus on a limited set of crisis types, our benchmark covers seven types defined in line with clinical standards and is the first to incorporate temporal labels. Our benchmark provides 600 clinician-annotated evaluation examples and 420 development examples, together with a training corpus of around 4K examples automatically labeled using a majority-vote ensemble of multiple language models, which significantly outperforms single-model annotation. We further fine-tune six crisis detection models on subsets defined by consensus and unanimous ensemble agreement, providing complementary models trained under different agreement criteria.
☆ How Pragmatics Shape Articulation: A Computational Case Study in STEM ASL Discourse
Most state-of-the-art sign language models are trained on interpreter or isolated vocabulary data, which overlooks the variability that characterizes natural dialogue. However, human communication dynamically adapts to contexts and interlocutors through spatiotemporal changes and articulation style. This specifically manifests itself in educational settings, where novel vocabularies are used by teachers, and students. To address this gap, we collect a motion capture dataset of American Sign Language (ASL) STEM (Science, Technology, Engineering, and Mathematics) dialogue that enables quantitative comparison between dyadic interactive signing, solo signed lecture, and interpreted articles. Using continuous kinematic features, we disentangle dialogue-specific entrainment from individual effort reduction and show spatiotemporal changes across repeated mentions of STEM terms. On average, dialogue signs are 24.6%-44.6% shorter in duration than the isolated signs, and show significant reductions absent in monologue contexts. Finally, we evaluate sign embedding models on their ability to recognize STEM signs and approximate how entrained the participants become over time. Our study bridges linguistic analysis and computational modeling to understand how pragmatics shape sign articulation and its representation in sign language technologies.
☆ Beyond Understanding: Evaluating the Pragmatic Gap in LLMs' Cultural Processing of Figurative Language
We present a comprehensive evaluation of the ability of large language models (LLMs) to process culturally grounded language, specifically to understand and pragmatically use figurative expressions that encode local knowledge and cultural nuance. Using figurative language as a proxy for cultural nuance and local knowledge, we design evaluation tasks for contextual understanding, pragmatic use, and connotation interpretation in Arabic and English. We evaluate 22 open- and closed-source LLMs on Egyptian Arabic idioms, multidialectal Arabic proverbs, and English proverbs. Our results show a consistent hierarchy: the average accuracy for Arabic proverbs is 4.29% lower than for English proverbs, and performance for Egyptian idioms is 10.28% lower than for Arabic proverbs. For the pragmatic use task, accuracy drops by 14.07% relative to understanding, though providing contextual idiomatic sentences improves accuracy by 10.66%. Models also struggle with connotative meaning, reaching at most 85.58% agreement with human annotators on idioms with 100% inter-annotator agreement. These findings demonstrate that figurative language serves as an effective diagnostic for cultural reasoning: while LLMs can often interpret figurative meaning, they face challenges in using it appropriately. To support future research, we release Kinayat, the first dataset of Egyptian Arabic idioms designed for both figurative understanding and pragmatic use evaluation.
☆ BitSkip: An Empirical Analysis of Quantization and Early Exit Composition
The pursuit of efficient Large Language Models (LLMs) has led to increasingly complex techniques like extreme quantization and dynamic routing. While individual benefits of these methods are well-documented, their compositional effects remain poorly understood. This paper introduces BitSkip, a hybrid architectural framework for systematically exploring these interactions. Counter-intuitively, our findings reveal that a simple 8-bit quantized model without Hadamard transform (BitSkip-V1) not only outperforms its more complex 4-bit and Hadamard-enhanced counterparts but also competes the full-precision baseline in quality (perplexity of 1.13 vs 1.19) . The introduction of Hadamard transforms, even at 8-bit precision, catastrophically degraded performance by over 37,000%, tracing fundamental training instability. Our BitSkip-V1 recipe demonstrates superior early-exit characteristics, with layer 18 providing optimal 32.5% speed gain for minimal 4% quality loss.
comment: Submitted to JMLR
☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
☆ Evaluating Long-Term Memory for Long-Context Question Answering
In order for large language models to achieve true conversational continuity and benefit from experiential learning, they need memory. While research has focused on the development of complex memory systems, it remains unclear which types of memory are most effective for long-context conversational tasks. We present a systematic evaluation of memory-augmented methods using LoCoMo, a benchmark of synthetic long-context dialogues annotated for question-answering tasks that require diverse reasoning strategies. We analyse full-context prompting, semantic memory through retrieval-augmented generation and agentic memory, episodic memory through in-context learning, and procedural memory through prompt optimization. Our findings show that memory-augmented approaches reduce token usage by over 90% while maintaining competitive accuracy. Memory architecture complexity should scale with model capability, with small foundation models benefitting most from RAG, and strong instruction-tuned reasoning model gaining from episodic learning through reflections and more complex agentic semantic memory. In particular, episodic memory can help LLMs recognise the limits of their own knowledge.
comment: 14 pages including appendix, 3 figures. Submitted to October ARR and to Metacognition in Generative AI EurIPS workshop (under review for both)
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
comment: 34 pages, 5 figures, 7 tables
♻ ☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) is a common practice to adapt generalist models to specialized domains. However, recent studies show that fine-tuning can erode safety alignment, causing LLMs to respond to harmful or unethical prompts. Many methods to realign safety have been proposed, but often introduce custom algorithms that are difficult to implement or compromise task utility. In this work, we propose SafeMERGE, a lightweight, post-fine-tuning framework that preserves safety while maintaining downstream performance. SafeMERGE selectively merges fine-tuned with safety-aligned model layers only when they deviate from safe behavior, measured by a cosine similarity criterion. Across three LLMs and two tasks, SafeMERGE consistently reduces harmful outputs compared to other defenses, with negligible or even positive impact on utility. Our results demonstrate that selective layer-wise merging offers an effective safeguard against the inadvertent loss of safety during fine-tuning, establishing SafeMERGE as a simple post-fine-tuning defense.
♻ ☆ Superficial Self-Improved Reasoners Benefit from Model Merging EMNLP 2025
As scaled language models (LMs) approach human-level reasoning capabilities, self-improvement emerges as a solution to synthesizing high-quality data corpus. While previous research has identified model collapse as a risk in self-improvement, where model outputs become increasingly deterministic, we discover a more fundamental challenge: the superficial self-improved reasoners phenomenon. In particular, our analysis reveals that even when LMs show improved in-domain (ID) reasoning accuracy, they actually compromise their generalized reasoning capabilities on out-of-domain (OOD) tasks due to memorization rather than genuine. Through a systematic investigation of LM architecture, we discover that during self-improvement, LM weight updates are concentrated in less reasoning-critical layers, leading to superficial learning. To address this, we propose Iterative Model Merging (IMM), a method that strategically combines weights from original and self-improved models to preserve generalization while incorporating genuine reasoning improvements. Our approach effectively mitigates both LM collapse and superficial learning, moving towards more stable self-improving systems.
comment: EMNLP 2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate HAF of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and irrelevant responses. We open-source our code at https://github.com/uofthcdslab/HAF and LLM-generated explanations at https://huggingface.co/collections/uofthcdslab/haf.
comment: 23 pages, 5 figures, 7 tables
♻ ☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
♻ ☆ Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, previous work on vocabulary expansion has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion in low-resource settings has yet to be explored. In this article, we investigate vocabulary expansion in low-resource settings by considering embedding initialization methods and continual pre-training strategies. Through extensive experiments across typologically diverse languages, tasks and models, we establish a set of strategies to perform vocabulary expansion for faster inference, while striving to maintain competitive downstream performance to baselines. This is achieved with only 30K sentences ($\sim$0.01GB text data) from the target language.
comment: Accepted to Computational Linguistics
♻ ☆ A Data-driven ML Approach for Maximizing Performance in LLM-Adapter Serving
With the rapid adoption of Large Language Models (LLMs), LLM-adapters have become increasingly common, providing lightweight specialization of large-scale models. Serving hundreds or thousands of these adapters on a single GPU allows request aggregation, increasing throughput, but may also cause request starvation if GPU memory limits are exceeded. To address this issue, this study focuses on determining the joint configuration of concurrent and parallel adapters that maximizes GPU throughput without inducing starvation, given heterogeneous adapter and traffic properties. We propose a data-driven ML approach leveraging interpretable models to tackle this caching problem and introduce the first Digital Twin capable of reproducing an LLM-adapter serving system, enabling efficient training data generation. Experiments with the vLLM framework and LoRA adapters show that the Digital Twin reproduces throughput within 5.1% of real results, while the ML approach predicts optimal numbers of concurrent and parallel adapters with an error of at most 7.2% under heterogeneous, real-world workloads.
comment: Accepted in a computer science workshop
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
♻ ☆ Are LLMs Empathetic to All? Investigating the Influence of Multi-Demographic Personas on a Model's Empathy EMNLP 2025
Large Language Models' (LLMs) ability to converse naturally is empowered by their ability to empathetically understand and respond to their users. However, emotional experiences are shaped by demographic and cultural contexts. This raises an important question: Can LLMs demonstrate equitable empathy across diverse user groups? We propose a framework to investigate how LLMs' cognitive and affective empathy vary across user personas defined by intersecting demographic attributes. Our study introduces a novel intersectional analysis spanning 315 unique personas, constructed from combinations of age, culture, and gender, across four LLMs. Results show that attributes profoundly shape a model's empathetic responses. Interestingly, we see that adding multiple attributes at once can attenuate and reverse expected empathy patterns. We show that they broadly reflect real-world empathetic trends, with notable misalignments for certain groups, such as those from Confucian culture. We complement our quantitative findings with qualitative insights to uncover model behaviour patterns across different demographic groups. Our findings highlight the importance of designing empathy-aware LLMs that account for demographic diversity to promote more inclusive and equitable model behaviour.
comment: 9 pages, 4 figures, 4 tables, EMNLP 2025 Findings
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Tiny but Mighty: A Software-Hardware Co-Design Approach for Efficient Multimodal Inference on Battery-Powered Small Devices
Large Multimodal Models (LMMs) are inherently modular, consisting of vision and audio encoders, projectors, and large language models. Yet, they are almost always executed monolithically, which underutilizes the heterogeneous accelerators (NPUs, GPUs, DSPs) in modern SoCs and leads to high end-to-end latency. In this paper, we present NANOMIND, a hardware--software co-design inference framework for Large Multimodal Models (LMMs) that breaks large models into modular ``bricks'' (vision, language, audio, etc.) and maps each to its ideal accelerator. The key insight is that large models can be broken into modular components and scheduled to run on the most appropriate compute units. It performs module-level dynamic offloading across accelerators on unified-memory SoCs. By combining customized hardware design, system-level scheduling, and optimized low-bit computation kernels, we demonstrate our framework with a compact, battery-powered device capable of running LMMs entirely on device. This prototype functions as a self-contained intelligent assistant that requires no network connectivity, while achieving higher throughput and superior power efficiency under strict resource constraints. The design further bypasses CPU bottlenecks and reduces redundant memory usage through token-aware buffer management and module-level coordination. Our system outperforms existing implementations in resource efficiency, cutting energy consumption by 42.3\% and GPU memory usage by 11.2\%. This enables a battery-powered device to run LLaVA-OneVision with a camera for nearly half a day and LLaMA-3-8B for voice interactions up to almost 20.8 hours.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search NeurIPS 2025
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the new task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent literature show that our method consistently outperforms strong baselines.
comment: Accepted by NeurIPS 2025
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ ThinkBrake: Mitigating Overthinking in Tool Reasoning
Small reasoning models (SRMs) often overthink during tool use: they reach a correct tool-argument configuration, then continue reasoning and overwrite it with an incorrect final call. We diagnose overthinking via oracle rollouts that inject at sentence boundaries. On the Berkeley Function Calling Leaderboard (BFCL), this oracle termination lifts average accuracy from 85.8\% to 94.2\% while reducing tokens by 80-94\%, revealing substantial recoverable headroom and potential redundant reasoning. While prior work on concise reasoning has largely targeted mathematics, tool reasoning remains underexplored. We adapt various early-termination baselines to tool use and introduce ThinkBrake, a training-free decoding heuristic. ThinkBrake monitors the log-probability margin between and the current top token at sentence boundaries and triggers termination when this margin becomes small. Across BFCL's single turn, non-live and live splits, ThinkBrake preserves or improves accuracy while reducing tokens up to 25\%, outperforming various baselines.
♻ ☆ OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report, Update on OpenS2S_v1.5
♻ ☆ When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning
While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
♻ ☆ Input Matters: Evaluating Input Structure's Impact on LLM Summaries of Sports Play-by-Play
A major concern when deploying LLMs in accuracy-critical domains such as sports reporting is that the generated text may not faithfully reflect the input data. We quantify how input structure affects hallucinations and other factual errors in LLM-generated summaries of NBA play-by-play data, across three formats: row-structured, JSON and unstructured. We manually annotated 3,312 factual errors across 180 game summaries produced by two models, Llama-3.1-70B and Qwen2.5-72B. Input structure has a strong effect: JSON input reduces error rates by 69% for Llama and 65% for Qwen compared to unstructured input, while row-structured input reduces errors by 54% for Llama and 51% for Qwen. A two-way repeated measures ANOVA shows that input structure accounts for over 80% of the variance in error rates, with Tukey HSD post hoc tests confirming statistically significant differences between all input formats.
comment: Accepted at INLG 2025
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ StereoDetect: Detecting Stereotypes and Anti-stereotypes the Correct Way Using Social Psychological Underpinnings
Stereotypes are known to have very harmful effects, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases, thereby leaving the study of stereotypes in its early stages. Our study revealed that many works have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and Anti-stereotype detection is a problem that requires social knowledge; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a five-tuple definition and provide precise terminologies disentangling stereotypes, anti-stereotypes, stereotypical bias, and general bias. We provide a conceptual framework grounded in social psychology for reliable detection. We identify key shortcomings in existing benchmarks for this task of stereotype and anti-stereotype detection. To address these gaps, we developed StereoDetect, a well curated, definition-aligned benchmark dataset designed for this task. We show that sub-10B language models and GPT-4o frequently misclassify anti-stereotypes and fail to recognize neutral overgeneralizations. We demonstrate StereoDetect's effectiveness through multiple qualitative and quantitative comparisons with existing benchmarks and models fine-tuned on them. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.
♻ ☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
♻ ☆ Can Confidence Estimates Decide When Chain-of-Thought Is Necessary for LLMs?
Chain-of-thought (CoT) prompting has emerged as a common technique for enhancing the reasoning abilities of large language models (LLMs). While extended reasoning can boost accuracy on complex tasks, it is often unnecessary and substantially increases token usage, limiting the practicality of reasoning models in many scenarios. Recent models, such as GPT-OSS and Qwen3, expose controls that enable users to adjust the length of CoT or determine whether it is used at all. Yet, it remains unclear when CoT should be used: on some tasks it improves performance, while on others it provides little benefit or even harms performance. We address this challenge with confidence-gated CoT, where a model invokes reasoning only when confidence in its direct answer is low. To this end, we present the first systematic study of training-free confidence estimation methods for CoT gating. Specifically, we evaluate four training-free confidence estimation methods and compare them to a random baseline and an oracle that always knows when CoT is needed. Through extensive experiments, we show that existing training-free confidence measures can reduce redundant CoT and outperform randomly invoked CoT. However, the utility of individual confidence measures is inconsistent, varying with both the dataset and the model, underscoring the difficulty of deploying confidence-gated CoT in practice. By analysing both strengths and failure modes, our study highlights the potential and limitations of current methods and paves the way toward more reliable adaptive gating of CoT.
comment: Under Review
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ DeepOmni: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
♻ ☆ COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection EMNLP 2025
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
comment: EMNLP 2025 (Main Track)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: Accepted by Frontiers of Computer Science
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions NeurIPS 2025
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts surrounding humans to enhance the proactivity of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and personas from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants. The code and dataset are publicly available at https://github.com/openaiotlab/ContextAgent.
comment: Accepted by NeurIPS 2025
♻ ☆ ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large language models (LLMs) increasingly produce natural language explanations, yet these explanations often lack faithfulness, and they do not reliably reflect the evidence the model uses to decide. We introduce FaithLM, a model-agnostic framework that evaluates and improves the faithfulness of LLM explanations without token masking or task-specific heuristics. FaithLM formalizes explanation faithfulness as an intervention property: a faithful explanation should yield a prediction shift when its content is contradicted. Theoretical analysis shows that the resulting contrary-hint score is a sound and discriminative estimator of faithfulness. Building on this principle, FaithLM iteratively refines both the elicitation prompt and the explanation to maximize the measured score. Experiments on three multi-domain datasets and multiple LLM backbones demonstrate that FaithLM consistently increases faithfulness and produces explanations more aligned with human rationales than strong self-explanation baselines. These findings highlight that intervention-based evaluation, coupled with iterative optimization, provides a principled route toward faithful and reliable LLM explanations.
♻ ☆ Agent KB: Leveraging Cross-Domain Experience for Agentic Problem Solving
AI agent frameworks operate in isolation, forcing agents to rediscover solutions and repeat mistakes across different systems. Despite valuable problem-solving experiences accumulated by frameworks like smolagents, OpenHands, and OWL, this knowledge remains trapped within individual systems, preventing the emergence of collective intelligence. Current memory systems focus on individual agents or framework-specific demonstrations, failing to enable cross-architecture knowledge transfer. We introduce AGENT KB, a universal memory infrastructure enabling seamless experience sharing across heterogeneous agent frameworks without retraining. AGENT KB aggregates trajectories into a structured knowledge base and serves lightweight APIs. At inference time, hybrid retrieval operates through two stages: planning seeds agents with cross-domain workflows, while feedback applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge enhances rather than disrupts reasoning, addressing knowledge interference in cross-framework transfer. We validate AGENT KB across major frameworks on GAIA, Humanity's Last Exam, GPQA, and SWE-bench. Results show substantial improvements across diverse model families: compared to baseline pass@1, smolagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2% -> 73.9%), while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3% -> 28.3%). Similar improvements are observed across all base model families. Ablations confirm that hybrid retrieval and feedback stages are essential, with automatically generated experiences matching manual curation. This establishes the foundation for collective agent intelligence through shared memory infrastructures.
♻ ☆ Detecting and Rectifying Noisy Labels: A Similarity-based Approach
Label noise in datasets could significantly damage the performance and robustness of deep neural networks (DNNs) trained on these datasets. As the size of modern DNNs grows, there is a growing demand for automated tools for detecting such errors. In this paper, we propose post-hoc, model-agnostic noise detection and rectification methods utilizing the penultimate feature from a DNN. Our idea is based on the observation that the similarity between the penultimate feature of a mislabeled data point and its true class data points is higher than that for data points from other classes, making the probability of label occurrence within a tight, similar cluster informative for detecting and rectifying errors. Through theoretical and empirical analyses, we demonstrate that our approach achieves high detection performance across diverse, realistic noise scenarios and can automatically rectify these errors to improve dataset quality. Our implementation is available at https://anonymous.4open.science/r/noise-detection-and-rectification-AD8E.
♻ ☆ EQ-Negotiator: Emotion Policing Personas for Anti-Manipulation in Credit Collection Dialogues
Persona modeling in large language models typically focuses on static character traits, but overlooks the dynamic emotional intelligence required for real-time adversarial negotiations. In financial dialogues, this limitation creates critical vulnerabilities: debtors exploit predictable empathetic responses through emotional manipulation tactics like aggression, feigned distress, and guilt-tripping. To bridge this gap, we present EQ-Negotiator, a novel framework that grounds persona behavior in emotion dynamics rather than static personality profiles. Unlike naive empathy-centric agents, EQ-Negotiator integrates emotion memory and game-theoretic reasoning, powered by a Hidden Markov Model (HMM) to track and predict debtor emotional states. By analyzing both real-time and historical emotional cues, EQ-Negotiator strategically counters negative emotions (e.g., aggression, feigned distress) while preserving productive debtor relationships. This work advances persona modeling from descriptive character profiles to functional emotional architectures, establishing emotion as the critical link between persona design and tactical execution. Through agent-to-agent validation across 20 credit negotiation scenarios, we demonstrate that emotion-driven personas enable robust defensive capabilities against manipulation while maintaining strategic effectiveness.
♻ ☆ Seeing Symbols, Missing Cultures: Probing Vision-Language Models' Reasoning on Fire Imagery and Cultural Meaning COLING 2025
Vision-Language Models (VLMs) often appear culturally competent but rely on superficial pattern matching rather than genuine cultural understanding. We introduce a diagnostic framework to probe VLM reasoning on fire-themed cultural imagery through both classification and explanation analysis. Testing multiple models on Western festivals, non-Western traditions, and emergency scenes reveals systematic biases: models correctly identify prominent Western festivals but struggle with underrepresented cultural events, frequently offering vague labels or dangerously misclassifying emergencies as celebrations. These failures expose the risks of symbolic shortcuts and highlight the need for cultural evaluation beyond accuracy metrics to ensure interpretable and fair multimodal systems.
comment: 8 pages, 5 figures, 4 tables. Submitted to WiNLP 2025 Workshop at COLING 2025
♻ ☆ Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector NeurIPS 2025
LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
comment: Accepted at NeurIPS 2025 (Camera-Ready Version)
♻ ☆ A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.
comment: 38 pages, 4 figures, 7 tables
♻ ☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography
♻ ☆ OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.
comment: Technical Report. Code: https://github.com/NVlabs/OmniVinci
♻ ☆ Semantic Agreement Enables Efficient Open-Ended LLM Cascades EMNLP
Cascade systems route computational requests to smaller models when possible and defer to larger models only when necessary, offering a promising approach to balance cost and quality in LLM deployment. However, they face a fundamental challenge in open-ended text generation: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose semantic agreement -- meaning-level consensus between ensemble outputs -- as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, we find that semantic cascades match or surpass target-model quality at 40% of the cost and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.
comment: 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Industry Track
♻ ☆ Offline RL by Reward-Weighted Fine-Tuning for Conversation Optimization NeurIPS 2025
Offline reinforcement learning (RL) is a variant of RL where the policy is learned from a previously collected dataset of trajectories and rewards. In our work, we propose a practical approach to offline RL with large language models (LLMs). We recast the problem as reward-weighted fine-tuning, which can be solved using similar techniques to supervised fine-tuning (SFT). To showcase the value of our approach, we apply it to learning short-horizon question-answering policies of a fixed length, where the agent reasons about potential answers or asks clarifying questions. Our work stands in a stark contrast to state-of-the-art methods in this domain, based on SFT and direct preference optimization, which have additional hyper-parameters and do not directly optimize for rewards. We compare to them empirically, and report major gains in both optimized rewards and language quality.
comment: Accepted at NeurIPS 2025 (main conference)
♻ ☆ Learned, Lagged, LLM-splained: LLM Responses to End User Security Questions
Answering end user security questions is challenging. While large language models (LLMs) like GPT, LLAMA, and Gemini are far from error-free, they have shown promise in answering a variety of questions outside of security. We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions. While LLMs demonstrate broad generalist ``knowledge'' of end user security information, there are patterns of errors and limitations across LLMs consisting of stale and inaccurate answers, and indirect or unresponsive communication styles, all of which impacts the quality of information received. Based on these patterns, we suggest directions for model improvement and recommend user strategies for interacting with LLMs when seeking assistance with security.
comment: 17 pages, 7 tables
♻ ☆ RARE: Retrieval-Aware Robustness Evaluation for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) enhances recency and factuality in answers. However, existing evaluations rarely test how well these systems cope with real-world noise, conflicting between internal and external retrieved contexts, or fast-changing facts. We introduce Retrieval-Aware Robustness Evaluation (RARE), a unified framework and large-scale benchmark that jointly stress-tests query and document perturbations over dynamic, time-sensitive corpora. One of the central features of RARE is a knowledge-graph-driven synthesis pipeline (RARE-Get) that automatically extracts single and multi-hop relations from the customized corpus and generates multi-level question sets without manual intervention. Leveraging this pipeline, we construct a dataset (RARE-Set) spanning 527 expert-level time-sensitive finance, economics, and policy documents and 48295 questions whose distribution evolves as the underlying sources change. To quantify resilience, we formalize retrieval-conditioned robustness metrics (RARE-Met) that capture a model's ability to remain correct or recover when queries, documents, or real-world retrieval results are systematically altered. Our findings reveal that RAG systems are unexpectedly sensitive to perturbations. Moreover, they consistently demonstrate lower robustness on multi-hop queries compared to single-hop queries across all domains.
♻ ☆ DPRF: A Generalizable Dynamic Persona Refinement Framework for Optimizing Behavior Alignment Between Personalized LLM Role-Playing Agents and Humans
The emerging large language model role-playing agents (LLM RPAs) aim to simulate individual human behaviors, but the persona fidelity is often undermined by manually-created profiles (e.g., cherry-picked information and personality characteristics) without validating the alignment with the target individuals. To address this limitation, our work introduces the Dynamic Persona Refinement Framework (DPRF).DPRF aims to optimize the alignment of LLM RPAs' behaviors with those of target individuals by iteratively identifying the cognitive divergence, either through free-form or theory-grounded, structured analysis, between generated behaviors and human ground truth, and refining the persona profile to mitigate these divergences.We evaluate DPRF with five LLMs on four diverse behavior-prediction scenarios: formal debates, social media posts with mental health issues, public interviews, and movie reviews.DPRF can consistently improve behavioral alignment considerably over baseline personas and generalizes across models and scenarios.Our work provides a robust methodology for creating high-fidelity persona profiles and enhancing the validity of downstream applications, such as user simulation, social studies, and personalized AI.
comment: In Submission
Computation and Language
☆ AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite
AI agents hold the potential to revolutionize scientific productivity by automating literature reviews, replicating experiments, analyzing data, and even proposing new directions of inquiry; indeed, there are now many such agents, ranging from general-purpose "deep research" systems to specialized science-specific agents, such as AI Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet existing benchmarks fall short on several fronts: they (1) fail to provide holistic, product-informed measures of real-world use cases such as science research; (2) lack reproducible agent tools necessary for a controlled comparison of core agentic capabilities; (3) do not account for confounding variables such as model cost and tool access; (4) do not provide standardized interfaces for quick agent prototyping and evaluation; and (5) lack comprehensive baseline agents necessary to identify true advances. In response, we define principles and tooling for more rigorously benchmarking agents. Using these, we present AstaBench, a suite that provides the first holistic measure of agentic ability to perform scientific research, comprising 2400+ problems spanning the entire scientific discovery process and multiple scientific domains, and including many problems inspired by actual user requests to deployed Asta agents. Our suite comes with the first scientific research environment with production-grade search tools that enable controlled, reproducible evaluation, better accounting for confounders. Alongside, we provide a comprehensive suite of nine science-optimized classes of Asta agents and numerous baselines. Our extensive evaluation of 57 agents across 22 agent classes reveals several interesting findings, most importantly that despite meaningful progress on certain individual aspects, AI remains far from solving the challenge of science research assistance.
♻ ☆ Knee-Deep in C-RASP: A Transformer Depth Hierarchy
It has been observed that transformers with greater depth (that is, more layers) have more capabilities, but can we establish formally which capabilities are gained? We answer this question with a theoretical proof followed by an empirical study. First, we consider transformers that round to fixed precision except inside attention. We show that this subclass of transformers is expressively equivalent to the programming language C-RASP and this equivalence preserves depth. Second, we prove that deeper C-RASP programs are more expressive than shallower C-RASP programs, implying that deeper transformers are more expressive than shallower transformers (within the subclass mentioned above). The same is also proven for transformers with positional encodings (like RoPE and ALiBi). These results are established by studying a temporal logic with counting operators equivalent to C-RASP. Finally, we provide empirical evidence that our theory predicts the depth required for transformers without positional encodings to length-generalize on a family of sequential dependency tasks.
comment: 35 pages, 5 figures
♻ ☆ SimuRA: A World-Model-Driven Simulative Reasoning Architecture for General Goal-Oriented Agents
AI agents built on foundation models hold enormous promise. Current practice, however, focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also faces practical limitations from black-box autoregressive reasoning, where decisions unfold token by token without explicit simulation or counterfactual evaluation of outcomes. Humans, on the other hand, reason and plan by mentally simulating the consequences of actions within an internal model of the world -- a capability that supports flexible, goal-directed behavior across diverse contexts. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of an optimal agent in any general environment, SimuRA addresses the limitations of black-box autoregressive reasoning by incorporating the world model for planning via simulation. Our prototype world model is implemented using LLMs as a substrate, leveraging the natural language as a discrete, hierarchical representation grounded in concepts for planning, while remaining model-agnostic. On complex web-browsing tasks such as flight search, SimuRA improves the success rate from 0% to 32.2% compared to a representative open-web agent baseline. Across tasks, world-model-based planning achieves up to 124% higher task completion rates than a matched black-box autoregressive baseline, demonstrating the advantages of simulative reasoning. We release ReasonerAgent-Web, a web-browsing agent built on SimuRA, as an open-source research demo.
comment: This submission has been updated to adjust the scope and presentation of the work
♻ ☆ RECODE-H: A Benchmark for Research Code Development with Interactive Human Feedback
Large language models (LLMs) show the promise in supporting scientific research implementation, yet their ability to generate correct and executable code remains limited. Existing works largely adopt one-shot settings, ignoring the iterative and feedback-driven nature of realistic workflows of scientific research development. To address this gap, we present RECODE-H, a benchmark of 102 tasks from research papers and repositories that evaluates LLM agents through multi-turn interactions with LLM-simulated human feedback. It includes structured instructions,unit tests, and a five-level feedback hierarchy to reflect realistic researcher-agent collaboration. We further present ReCodeAgent, a framework that integrates feedback into iterative code generation. Experiments with leading LLMs, including GPT-5, Claude-Sonnet-4, DeepSeek-V3.1, and Gemini 2.5, show substantial performance gains with richer feedback, while also highlighting ongoing challenges in the generation of complex research code. RECODE-H establishes a foundation for developing adaptive, feedback-driven LLM agents in scientific research implementation
comment: Code and dataset are available at github.com/ChunyuMiao98/RECODE
♻ ☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
Computation and Language
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Structure-Conditional Minimum Bayes Risk Decoding EMNLP 2025
Minimum Bayes Risk (MBR) decoding has seen renewed interest as an alternative to traditional generation strategies. While MBR has proven effective in machine translation, where the variability of a language model's outcome space is naturally constrained, it may face challenges in more open-ended tasks such as dialogue or instruction-following. We hypothesise that in such settings, applying MBR with standard similarity-based utility functions may result in selecting responses that are broadly representative of the model's distribution, yet sub-optimal with respect to any particular grouping of generations that share an underlying latent structure. In this work, we introduce three lightweight adaptations to the utility function, designed to make MBR more sensitive to structural variability in the outcome space. To test our hypothesis, we curate a dataset capturing three representative types of latent structure: dialogue act, emotion, and response structure (e.g., a sentence, a paragraph, or a list). We further propose two metrics to evaluate the structural optimality of MBR. Our analysis demonstrates that common similarity-based utility functions fall short by these metrics. In contrast, our proposed adaptations considerably improve structural optimality. Finally, we evaluate our approaches on real-world instruction-following benchmarks, AlpacaEval and MT-Bench, and show that increased structural sensitivity improves generation quality by up to 13.7 percentage points in win rate.
comment: EMNLP 2025 Camera-Ready
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ \textsc{CantoNLU}: A benchmark for Cantonese natural language understanding
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.
comment: 13 pages, 1 figure
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Beyond Retrieval-Ranking: A Multi-Agent Cognitive Decision Framework for E-Commerce Search
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Assessing the Political Fairness of Multilingual LLMs: A Case Study based on a 21-way Multiparallel EuroParl Dataset
The political biases of Large Language Models (LLMs) are usually assessed by simulating their answers to English surveys. In this work, we propose an alternative framing of political biases, relying on principles of fairness in multilingual translation. We systematically compare the translation quality of speeches in the European Parliament (EP), observing systematic differences with majority parties from left, center, and right being better translated than outsider parties. This study is made possible by a new, 21-way multiparallel version of EuroParl, the parliamentary proceedings of the EP, which includes the political affiliations of each speaker. The dataset consists of 1.5M sentences for a total of 40M words and 249M characters. It covers three years, 1000+ speakers, 7 countries, 12 EU parties, 25 EU committees, and hundreds of national parties.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Robust Preference Alignment via Directional Neighborhood Consensus ICLR 2026
Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
comment: Under review at ICLR 2026. 10 pages, 5 figures. Code and data available at https://github.com/rcmao/robust-preference-alignment
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Mask and You Shall Receive: Optimizing Masked Language Modeling For Pretraining BabyLMs
We describe our strategy for the 2025 edition of the BabyLM Challenge. Our main contribution is that of an improved form of Masked Language Modeling (MLM), which adapts the probabilities of the tokens masked according to the model's ability to predict them. The results show a substantial increase in performance on (Super)GLUE tasks over the standard MLM. We also incorporate sub-token embeddings, finding that this increases the model's morphological generalization capabilities. Our submission beats the baseline in the strict-small track.
comment: Submission to the 2025 BabyLM Challenge
☆ Systematic Evaluation of Uncertainty Estimation Methods in Large Language Models
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
☆ LM-mixup: Text Data Augmentation via Language Model based Mixup
Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
☆ Teacher Demonstrations in a BabyLM's Zone of Proximal Development for Contingent Multi-Turn Interaction EMNLP 2025
Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs.
comment: Outstanding Paper Award, EMNLP 2025 BabyLM Workshop - Oral presentation, Suzhou, China
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew
Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Dialogue Is Not Enough to Make a Communicative BabyLM (But Neither Is Developmentally Inspired Reinforcement Learning)
We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
☆ FreeChunker: A Cross-Granularity Chunking Framework
Chunking strategies significantly impact the effectiveness of Retrieval-Augmented Generation (RAG) systems. Existing methods operate within fixed-granularity paradigms that rely on static boundary identification, limiting their adaptability to diverse query requirements. This paper presents FreeChunker, a Cross-Granularity Encoding Framework that fundamentally transforms the traditional chunking paradigm: the framework treats sentences as atomic units and shifts from static chunk segmentation to flexible retrieval supporting arbitrary sentence combinations. This paradigm shift not only significantly reduces the computational overhead required for semantic boundary detection but also enhances adaptability to complex queries. Experimental evaluation on LongBench V2 demonstrates that FreeChunker achieves superior retrieval performance compared to traditional chunking methods, while significantly outperforming existing approaches in computational efficiency.
comment: Submitted to arXiv, October 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ Teaching Language Models to Reason with Tools NIPS2025
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.
comment: NIPS2025 Accepted
☆ Exploring Generative Process Reward Modeling for Semi-Structured Data: A Case Study of Table Question Answering
Process reward models (PRMs) improve complex reasoning in large language models (LLMs) by grading candidate solutions step-by-step and selecting answers via aggregated step scores. While effective in domains such as mathematics, their applicability to tasks involving semi-structured data, like table question answering (TQA) remains unexplored. TQA poses unique challenges for PRMs, including abundant irrelevant information, loosely connected reasoning steps, and domain-specific reasoning. This work presents the first systematic study of PRMs for TQA. We evaluate state-of-the-art generative PRMs on TQA from both answer and step perspectives. Results show that PRMs that combine textual and code verification can aid solution selection but struggle to generalize to out-of-domain data. Analysis reveals a weak correlation between performance in step-level verification and answer accuracy, possibly stemming from weak step dependencies and loose causal links. Our findings highlight limitations of current PRMs on TQA and offer valuable insights for building more robust, process-aware verifiers.
☆ Citation Failure: Definition, Analysis and Efficient Mitigation
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.
comment: Under review. Paper repository: https://github.com/UKPLab/arxiv2025-citation-failure
☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
☆ ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Tri-Modal Severity Fused Diagnosis across Depression and Post-traumatic Stress Disorders
Depression and post traumatic stress disorder (PTSD) often co-occur with connected symptoms, complicating automated assessment, which is often binary and disorder specific. Clinically useful diagnosis needs severity aware cross disorder estimates and decision support explanations. Our unified tri modal affective severity framework synchronizes and fuses interview text with sentence level transformer embeddings, audio with log Mel statistics with deltas, and facial signals with action units, gaze, head and pose descriptors to output graded severities for diagnosing both depression (PHQ-8; 5 classes) and PTSD (3 classes). Standardized features are fused via a calibrated late fusion classifier, yielding per disorder probabilities and feature-level attributions. This severity aware tri-modal affective fusion approach is demoed on multi disorder concurrent depression and PTSD assessment. Stratified cross validation on DAIC derived corpora outperforms unimodal/ablation baselines. The fused model matches the strongest unimodal baseline on accuracy and weighted F1, while improving decision curve utility and robustness under noisy or missing modalities. For PTSD specifically, fusion reduces regression error and improves class concordance. Errors cluster between adjacent severities; extreme classes are identified reliably. Ablations show text contributes most to depression severity, audio and facial cues are critical for PTSD, whereas attributions align with linguistic and behavioral markers. Our approach offers reproducible evaluation and clinician in the loop support for affective clinical decision making.
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ Decoding-Free Sampling Strategies for LLM Marginalization
Modern language models operate on subword-tokenized text in order to make a trade-off between model size, inference speed, and vocabulary coverage. A side effect of this is that, during inference, models are evaluated by measuring the probability of only the specific tokenization produced as the output, despite there being many possible ways to represent the same text with a subword vocabulary. Recent studies have argued instead for evaluating LLMs by marginalization - the probability mass of all tokenizations of a given text. Marginalization is difficult due to the number of possible tokenizations of a text, so often approximate marginalization is done via sampling. However, a downside of sampling is that an expensive generation step must be performed by the LLM for each sample, which limits the number of samples that can be acquired given a runtime budget, and therefore also the accuracy of the approximation. Since computing the probability of a sequence given the tokenization is relatively cheap compared to actually generating it, we investigate sampling strategies that are decoding-free - they require no generation from the LLM, instead relying entirely on extremely cheap sampling strategies that are model and tokenizer agnostic. We investigate the approximation quality and speed of decoding-free sampling strategies for a number of open models to find that they provide sufficiently accurate marginal estimates at a small fraction of the runtime cost and demonstrate its use on a set of downstream inference tasks.
comment: 10 pages, 3 figures
☆ Stuck in the Matrix: Probing Spatial Reasoning in Large Language Models
This paper explores the spatial reasoning capability of large language models (LLMs) over textual input through a suite of five tasks aimed at probing their spatial understanding and computational abilities. The models were tested on both fundamental spatial reasoning and multi-step problem-solving within structured grid-based environments using tasks such as quadrant identification, geometric transformations, distance evaluation, word searches, and tile sliding. Each task was scaled in complexity through increasing grid dimensions, requiring models to extend beyond simple pattern recognition into abstract spatial reasoning. Our results reveal that while LLMs demonstrate moderate success in all tasks with small complexity and size, performance drops off rapidly as scale increases, with an average loss in accuracy of 42.7%, and reaching as high as 84%. Every test that began with over 50% accuracy showed a loss of at least 48%, illustrating the consistent nature of the deterioration. Furthermore, their struggles with scaling complexity hint at a lack of robust spatial representations in their underlying architectures. This paper underscores the gap between linguistic and spatial reasoning in LLMs, offering insights into their current limitations, and laying the groundwork for future integrative benchmarks at the intersection of language and geometry.
comment: 20 pages, 24 figures
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
comment: 15 pages, 4 figures
☆ Mixture-of-Minds: Multi-Agent Reinforcement Learning for Table Understanding
Understanding and reasoning over tables is a critical capability for many real-world applications. Large language models (LLMs) have shown promise on this task, but current approaches remain limited. Fine-tuning based methods strengthen language reasoning; yet they are prone to arithmetic errors and hallucination. In contrast, tool-based methods enable precise table manipulation but rely on rigid schemas and lack semantic understanding. These complementary drawbacks highlight the need for approaches that integrate robust reasoning with reliable table processing. In this work, we propose Mixture-of-Minds, a multi-agent framework that decomposes table reasoning into three specialized roles: planning, coding, and answering. This design enables each agent to focus on a specific aspect of the task while leveraging code execution for precise table manipulation. Building on this workflow, we introduce a self-improvement training framework that employs Monte Carlo Tree Search (MCTS) rollouts to generate pseudo-gold trajectories and optimize agents with reinforcement learning (RL). Extensive experiments show that Mixture-of-Minds delivers substantial gains, reaching 62.13% on TableBench and surpassing OpenAI-o4-mini-high. These results demonstrate the promise of combining structured multi-agent workflows with RL to advance table understanding.
comment: 18 pages, 4 figures
☆ DeepWideSearch: Benchmarking Depth and Width in Agentic Information Seeking
Current search agents fundamentally lack the ability to simultaneously perform \textit{deep} reasoning over multi-hop retrieval and \textit{wide}-scale information collection-a critical deficiency for real-world applications like comprehensive market analysis and business development. To bridge this gap, we introduce DeepWideSearch, the first benchmark explicitly designed to evaluate agents to integrate depth and width in information seeking. In DeepWideSearch, agents must process a large volume of data, each requiring deep reasoning over multi-hop retrieval paths. Specifically, we propose two methods to converse established datasets, resulting in a curated collection of 220 questions spanning 15 diverse domains. Extensive experiments demonstrate that even state-of-the-art agents achieve only 2.39% average success rate on DeepWideSearch, highlighting the substantial challenge of integrating depth and width search in information-seeking tasks. Furthermore, our error analysis reveals four failure modes: lack of reflection, overreliance on internal knowledge, insufficient retrieval, and context overflow-exposing key limitations in current agent architectures. We publicly release DeepWideSearch to catalyze future research on more capable and robust information-seeking agents.
☆ Are Stereotypes Leading LLMs' Zero-Shot Stance Detection ? EMNLP 2025
Large Language Models inherit stereotypes from their pretraining data, leading to biased behavior toward certain social groups in many Natural Language Processing tasks, such as hateful speech detection or sentiment analysis. Surprisingly, the evaluation of this kind of bias in stance detection methods has been largely overlooked by the community. Stance Detection involves labeling a statement as being against, in favor, or neutral towards a specific target and is among the most sensitive NLP tasks, as it often relates to political leanings. In this paper, we focus on the bias of Large Language Models when performing stance detection in a zero-shot setting. We automatically annotate posts in pre-existing stance detection datasets with two attributes: dialect or vernacular of a specific group and text complexity/readability, to investigate whether these attributes influence the model's stance detection decisions. Our results show that LLMs exhibit significant stereotypes in stance detection tasks, such as incorrectly associating pro-marijuana views with low text complexity and African American dialect with opposition to Donald Trump.
comment: Accepted in EMNLP 2025 (Main)
☆ BoundRL: Efficient Structured Text Segmentation through Reinforced Boundary Generation
As structured texts become increasingly complex across diverse domains -- from technical reports to generative AI prompts -- the need for text segmentation into semantically meaningful components becomes critical. Such texts often contain elements beyond plain language, including tables, code snippets, and placeholders, which conventional sentence- or paragraph-level segmentation methods cannot handle effectively. To address this challenge, we propose BoundRL, a novel and efficient approach that jointly performs token-level text segmentation and label prediction for long structured texts. Instead of generating complete contents for each segment, it generates only a sequence of starting tokens and reconstructs the complete contents by locating these tokens within the original texts, thereby reducing inference costs by orders of magnitude and minimizing hallucination. To adapt the model for the output format, BoundRL~performs reinforcement learning with verifiable rewards (RLVR) with a specifically designed reward that jointly optimizes document reconstruction fidelity and semantic alignment. To mitigate entropy collapse, it further constructs intermediate candidates by systematically perturbing a fraction of generated sequences of segments to create stepping stones toward higher-quality solutions. To demonstrate BoundRL's effectiveness on particularly challenging structured texts, we focus evaluation on complex prompts used for LLM applications. Experiments show that BoundRL enables small language models (1.7B parameters) to outperform few-shot prompting of much larger models. Moreover, RLVR with our designed reward yields significant improvements over supervised fine-tuning, and incorporating intermediate candidates further improves both performance and generalization.
☆ AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
comment: Under Review
☆ Leveraging the Power of Large Language Models in Entity Linking via Adaptive Routing and Targeted Reasoning
Entity Linking (EL) has traditionally relied on large annotated datasets and extensive model fine-tuning. While recent few-shot methods leverage large language models (LLMs) through prompting to reduce training requirements, they often suffer from inefficiencies due to expensive LLM-based reasoning. ARTER (Adaptive Routing and Targeted Entity Reasoning) presents a structured pipeline that achieves high performance without deep fine-tuning by strategically combining candidate generation, context-based scoring, adaptive routing, and selective reasoning. ARTER computes a small set of complementary signals(both embedding and LLM-based) over the retrieved candidates to categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively. On standard benchmarks, ARTER outperforms ReFinED by up to +4.47%, with an average gain of +2.53% on 5 out of 6 datasets, and performs comparably to pipelines using LLM-based reasoning for all mentions, while being as twice as efficient in terms of the number of LLM tokens.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ CreativityPrism: A Holistic Benchmark for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as producing creative text, there is still no holistic framework to evaluate their creativity across diverse scenarios. Existing evaluation methods remain fragmented, with dramatic variation across domains and tasks, largely due to differing definitions and measurements of creativity. Inspired by the hypothesis that creativity is not one fixed idea, we propose CreativityPrism, an evaluation analysis framework that decomposes creativity into three dimensions: quality, novelty, and diversity. CreativityPrism incorporates nine tasks, three domains, i.e., divergent thinking, creative writing, and logical reasoning, and twenty evaluation metrics, which measure each dimension in task-specific, unique ways. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CreativityPrism and analyze the performance correlations among different metrics and task domains. Our results reveal a notable gap between proprietary and open-source models. Overall, model performance tends to be highly correlated across tasks within the same domain and less so across different domains. Among evaluation dimensions, diversity and quality metrics show strong correlations - models that perform well on one often excel on the other - whereas novelty exhibits much weaker correlation with either. These findings support our hypothesis that strong performance in one creativity task or dimension does not necessarily generalize to others, underscoring the need for a holistic evaluation of LLM creativity.
♻ ☆ Language Models use Lookbacks to Track Beliefs
How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze LMs' ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset, CausalToM, consisting of simple stories where two characters independently change the state of two objects, potentially unaware of each other's actions. Our investigation uncovers a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating their reference information, represented as Ordering IDs (OIs), in low-rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the correct state OI and then the answer lookback retrieves the corresponding state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
comment: 31 pages, 33 figures. Code and data at https://belief.baulab.info/
♻ ☆ Text2Mem: A Unified Memory Operation Language for Memory Operating System
Large language model agents increasingly depend on memory to sustain long horizon interaction, but existing frameworks remain limited. Most expose only a few basic primitives such as encode, retrieve, and delete, while higher order operations like merge, promote, demote, split, lock, and expire are missing or inconsistently supported. Moreover, there is no formal and executable specification for memory commands, leaving scope and lifecycle rules implicit and causing unpredictable behavior across systems. We introduce Text2Mem, a unified memory operation language that provides a standardized pathway from natural language to reliable execution. Text2Mem defines a compact yet expressive operation set aligned with encoding, storage, and retrieval. Each instruction is represented as a JSON based schema instance with required fields and semantic invariants, which a parser transforms into typed operation objects with normalized parameters. A validator ensures correctness before execution, while adapters map typed objects either to a SQL prototype backend or to real memory frameworks. Model based services such as embeddings or summarization are integrated when required. All results are returned through a unified execution contract. This design ensures safety, determinism, and portability across heterogeneous backends. We also outline Text2Mem Bench, a planned benchmark that separates schema generation from backend execution to enable systematic evaluation. Together, these components establish the first standardized foundation for memory control in agents.
comment: 12 pages, 3 figures, 2 tables
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Blockwise SFT for Diffusion Language Models: Reconciling Bidirectional Attention and Autoregressive Decoding
Discrete diffusion language models have shown strong potential for text generation, yet standard supervised fine-tuning (SFT) misaligns with their semi-autoregressive inference: training randomly masks tokens across the entire response, while inference generates fixed-size blocks sequentially. This mismatch introduces noisy prefixes and leaky suffixes, biasing gradients away from the desired blockwise likelihood. We propose Blockwise SFT, which partitions responses into fixed-size blocks, selects one active block per step for stochastic masking, freezes all preceding tokens, and fully hides future ones. Loss is computed only over the active block, directly mirroring the blockwise decoding process. Experiments on GSM8K, MATH, and MetaMathQA show consistent gains over classical SFT under equal compute or token budgets. Block size consistency studies and ablations confirm that improvements stem from faithful training-inference alignment rather than incidental masking effects. Our results highlight the importance of matching supervision granularity to the decoding procedure in diffusion-based language models.
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ XtraGPT: Context-Aware and Controllable Academic Paper Revision
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited to support high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision centered on criteria-guided intent alignment and context-aware modeling. To validate the framework, we curate a dataset of 7,000 research papers from top-tier venues annotated with 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. We instantiate the framework in XtraGPT, the first suite of open-source LLMs (1.5B to 14B parameters) for context-aware, instruction-guided writing assistance. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of XtraGPT in improving scientific drafts.
comment: Preprint. The model report is available at https://arxiv.org/abs/2505.11336v1
♻ ☆ Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders EMNLP 2025
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
comment: EMNLP 2025
♻ ☆ MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance EMNLP 2025
Large language models (LLMs) have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.
comment: EMNLP 2025 (Oral)
♻ ☆ MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale improvement by approximately 0.12 to 0.36 points for the semantic similarity score, 0.16 to 0.36 for NLI entailment and 0.29 to 0.42 for hallucination detection in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Work in progress
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
♻ ☆ Less is More: Compact Clue Selection for Efficient Retrieval-Augmented Generation Reasoning
Current RAG retrievers are designed primarily for human readers, emphasizing complete, readable, and coherent paragraphs. However, LLMs benefit more from precise, compact, and well-structured input, which enhances reasoning quality and efficiency. Existing methods often rely on reranking or summarization to identify key sentences, but may suffer from semantic breaks and unfaithfulness. Thus, efficiently extracting and organizing answer-relevant clues from large-scale documents while reducing LLM reasoning costs remains a challenge for RAG. Inspired by Occam's razor, we frame LLM-centric retrieval as a MinMax optimization: maximizing the extraction of potential clues and reranking them for well-organization, while minimizing reasoning costs by truncating to the smallest sufficient clues set. In this paper, we propose CompSelect, a Compact clue Selection mechanism for LLM-centric RAG, consisting of a clue extractor, a reranker, and a truncator. (1) The clue extractor first uses answer-containing sentences as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on real LLM feedback; (3) The truncator uses the truncated text containing the minimum sufficient clues for answering the question as fine-tuning targets, thereby enabling efficient RAG reasoning. Experiments on three QA datasets show that CompSelect improves QA performance by approximately 11\% and reduces Total Latency and Online Latency by approximately 17\% and 67\% compared to various baseline methods on both LLaMA3 and Qwen3. Further analysis confirms its robustness to unreliable retrieval and generalization across different scenarios, offering a scalable and cost-efficient solution for web-scale RAG applications.
comment: 12 pages, 7 figures, 12 tables, under review
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ MLMA: Towards Multilingual ASR With Mamba-based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Retrieval-Augmented Generation (RAG) enhances the accuracy of Large Language Model (LLM) responses by leveraging relevant external documents during generation. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for most LLMs, reducing performance by up to 20%. However, Qwen2.5 maintained consistent results across increasing document counts, indicating better multi-document handling capability. Finally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .
comment: Preprint
♻ ☆ A New Benchmark Dataset and Mixture-of-Experts Language Models for Adversarial Natural Language Inference in Vietnamese
Existing Vietnamese Natural Language Inference (NLI) datasets lack adversarial complexity, limiting their ability to evaluate model robustness against challenging linguistic phenomena. In this article, we address the gap in robust Vietnamese NLI resources by introducing ViANLI, the first adversarial NLI dataset for Vietnamese, and propose NLIMoE, a Mixture-of-Experts model to tackle its complexity. We construct ViANLI using an adversarial human-and-machine-in-the-loop approach with rigorous verification. NLIMoE integrates expert subnetworks with a learned dynamic routing mechanism on top of a shared transformer encoder. ViANLI comprises over 10,000 premise-hypothesis pairs and challenges state-of-the-art models, with XLM-R Large achieving only 45.5% accuracy, while NLIMoE reaches 47.3%. Training with ViANLI improves performance on other benchmark Vietnamese NLI datasets including ViNLI, VLSP2021-NLI, and VnNewsNLI. ViANLI is released for enhancing research into model robustness and enriching resources for future Vietnamese and multilingual NLI research.
comment: Accepted by Expert Systems with Applications
♻ ☆ Born a Transformer -- Always a Transformer? On the Effect of Pretraining on Architectural Abilities NeurIPS 2025
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
comment: NeurIPS 2025
♻ ☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
♻ ☆ Stress-Testing Model Specs Reveals Character Differences among Language Models
Large language models (LLMs) are increasingly trained from AI constitutions and model specifications that establish behavioral guidelines and ethical principles. However, these specifications face critical challenges, including internal conflicts between principles and insufficient coverage of nuanced scenarios. We present a systematic methodology for stress-testing model character specifications, automatically identifying numerous cases of principle contradictions and interpretive ambiguities in current model specs. We stress test current model specs by generating scenarios that force explicit tradeoffs between competing value-based principles. Using a comprehensive taxonomy we generate diverse value tradeoff scenarios where models must choose between pairs of legitimate principles that cannot be simultaneously satisfied. We evaluate responses from twelve frontier LLMs across major providers (Anthropic, OpenAI, Google, xAI) and measure behavioral disagreement through value classification scores. Among these scenarios, we identify over 70,000 cases exhibiting significant behavioral divergence. Empirically, we show this high divergence in model behavior strongly predicts underlying problems in model specifications. Through qualitative analysis, we provide numerous example issues in current model specs such as direct contradiction and interpretive ambiguities of several principles. Additionally, our generated dataset also reveals both clear misalignment cases and false-positive refusals across all of the frontier models we study. Lastly, we also provide value prioritization patterns and differences of these models.
♻ ☆ LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
♻ ☆ Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation
Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.
comment: This version has been withdrawn after receiving the conference review results. We are currently extending and reorganizing the work into a new study
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ TianHui: A Domain-Specific Large Language Model for Diverse Traditional Chinese Medicine Scenarios
Domain-specific LLMs in TCM face limitations in research settings due to constrained adaptability, insufficient evaluation datasets, and limited computational resources. This study presents TianHui, a specialized TCM LLM built through contextual data integration and domain knowledge fusion. We constructed a large-scale TCM corpus (0.97GB unsupervised data + 611,312 QA pairs) and employed a two-stage training strategy with QLoRA, DeepSpeed Stage 2, and Flash Attention 2. Evaluation on 12 benchmarks showed TianHui ranked top-three in all metrics for six datasets (APQ, TCMCD, HFR, HCCA, DHPE, TLAW) and achieved top results in the other six (TCMEE, APR, GCPMI, TCMKQA, TCMRC, ADTG). Optimal configuration was identified as LoRA rank=128, alpha=256, epoch=4, dropout=0.2, max length=2048. TianHui enables systematic preservation and scalable application of TCM knowledge. All resources are open-sourced.
comment: 46 pages, 5 figures,3 tables
♻ ☆ Does Thinking More always Help? Mirage of Test-Time Scaling in Reasoning Models NeurIPS 2025
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
comment: Accepted at NeurIPS 2025
♻ ☆ LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
♻ ☆ MLP Memory: A Retriever-Pretrained Memory for Large Language Models
Modern approaches to enhancing Large Language Models' factual accuracy and knowledge utilization face a fundamental trade-off: non-parametric retrieval-augmented generation (RAG) provides flexible access to external knowledge but suffers from high inference latency and shallow integration, while parametric fine-tuning methods like LoRA risk catastrophic forgetting and degraded general capabilities. In this work, we propose MLP Memory, a lightweight parametric module that learns to internalize retrieval patterns without explicit document access. By pretraining an MLP to imitate a $k$NN retriever's behavior on the entire pretraining dataset, we create a differentiable memory component that captures the benefits of retrieval-based knowledge access in a fully parametric form. Our architecture integrates this pretrained MLP Memory with Transformer decoders through simple probability interpolation, yielding 17.5\% and 24.1\% scaling gains on WikiText-103 and Web datasets, respectively. It further achieves 12.3\% relative improvement on five question-answering benchmarks and 5.2 points absolute gain across nine general NLP tasks, while reducing hallucinations by up to 10 points on HaluEval. Moreover, MLP Memory delivers 2.5$\times$ faster inference than RAG with superior accuracy. Our findings show that learning retrieval patterns parametrically bridges the gap between efficient inference and effective knowledge access, offering a practical alternative to both RAG and fine-tuning approaches.
♻ ☆ Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models? NeurIPS 2025
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
comment: NeurIPS 2025 Spotlight
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate transformer-based language models, including RoBERTa, T5, Llama-3, and MatSciBERT, for predicting the band gaps of semiconductor materials directly from textual descriptions. The inputs encode key material features, such as chemical composition, crystal system, space group, and other structural and electronic properties. Unlike shallow machine learning models, which require extensive feature engineering, or Graph Neural Networks, which rely on graph representations derived from atomic coordinates, pretrained language models can process textual inputs directly, eliminating the need for manual feature preprocessing or structure-based encoding. Material descriptions were constructed in two formats: structured strings with a consistent template and natural language narratives generated via the ChatGPT API. Each model was augmented with a custom regression head and finetuned for band gap prediction task. Language models of different architectures and parameter sizes were all able to predict band gaps from human-readable text with strong accuracy, achieving MAEs in the range of 0.25-0.33 eV, highlighting the success of this approach for scientific regression tasks. Finetuned Llama-3, with 1.2 billion parameters, achieved the highest accuracy (MAE 0.248 eV, R2 0.891). MatSciBERT, pretrained on materials science literature, reached comparable performance (MAE 0.288 eV, R2 0.871) with significantly fewer parameters (110 million), emphasizing the importance of domain-specific pretraining. Attention analysis shows that both models selectively focus on compositional and spin-related features while de-emphasizing geometric features, reflecting the difficulty of capturing spatial information from text. These results establish that pretrained language models can effectively extract complex feature-property relationships from textual material descriptions.
♻ ☆ LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration AAAI 2025
Building a universal multilingual automatic speech recognition (ASR) model that performs equitably across languages has long been a challenge due to its inherent difficulties. To address this task we introduce a Language-Agnostic Multilingual ASR pipeline through orthography Unification and language-specific Transliteration (LAMA-UT). LAMA-UT operates without any language-specific modules while matching the performance of state-of-the-art models trained on a minimal amount of data. Our pipeline consists of two key steps. First, we utilize a universal transcription generator to unify orthographic features into Romanized form and capture common phonetic characteristics across diverse languages. Second, we utilize a universal converter to transform these universal transcriptions into language-specific ones. In experiments, we demonstrate the effectiveness of our proposed method leveraging universal transcriptions for massively multilingual ASR. Our pipeline achieves a relative error reduction rate of 45% when compared to Whisper and performs comparably to MMS, despite being trained on only 0.1% of Whisper's training data. Furthermore, our pipeline does not rely on any language-specific modules. However, it performs on par with zero-shot ASR approaches which utilize additional language-specific lexicons and language models. We expect this framework to serve as a cornerstone for flexible multilingual ASR systems that are generalizable even to unseen languages.
comment: Accepted to AAAI 2025 (Oral Presentation)
♻ ☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
♻ ☆ Curing Miracle Steps in LLM Mathematical Reasoning with Rubric Rewards
Large language models for mathematical reasoning are typically trained with outcome-based rewards, which credit only the final answer. In our experiments, we observe that this paradigm is highly susceptible to reward hacking, leading to a substantial overestimation of a model's reasoning ability. This is evidenced by a high incidence of false positives - solutions that reach the correct final answer through an unsound reasoning process. Through a systematic analysis with human verification, we establish a taxonomy of these failure modes, identifying patterns like Miracle Steps - abrupt jumps to a correct output without a valid preceding derivation. Probing experiments suggest a strong association between these Miracle Steps and memorization, where the model appears to recall the answer directly rather than deriving it. To mitigate this systemic issue, we introduce the Rubric Reward Model (RRM), a process-oriented reward function that evaluates the entire reasoning trajectory against problem-specific rubrics. The generative RRM provides fine-grained, calibrated rewards (0-1) that explicitly penalize logical flaws and encourage rigorous deduction. When integrated into a reinforcement learning pipeline, RRM-based training consistently outperforms outcome-only supervision across four math benchmarks. Notably, it boosts Verified Pass@1024 on AIME2024 from 26.7% to 62.6% and reduces the incidence of Miracle Steps by 71%. Our work demonstrates that rewarding the solution process is crucial for building models that are not only more accurate but also more reliable.
comment: 25 pages, 11 figures, 6 Tables
♻ ☆ A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
The integration of Large Language Models (LLMs) into software engineering has driven a transition from traditional rule-based systems to autonomous agentic systems capable of solving complex problems. However, systematic progress is hindered by a lack of comprehensive understanding of how benchmarks and solutions interconnect. This survey addresses this gap by providing the first holistic analysis of LLM-powered software engineering, offering insights into evaluation methodologies and solution paradigms. We review over 150 recent papers and propose a taxonomy along two key dimensions: (1) Solutions, categorized into prompt-based, fine-tuning-based, and agent-based paradigms, and (2) Benchmarks, including tasks such as code generation, translation, and repair. Our analysis highlights the evolution from simple prompt engineering to sophisticated agentic systems incorporating capabilities like planning, reasoning, memory mechanisms, and tool augmentation. To contextualize this progress, we present a unified pipeline illustrating the workflow from task specification to deliverables, detailing how different solution paradigms address various complexity levels. Unlike prior surveys that focus narrowly on specific aspects, this work connects 50+ benchmarks to their corresponding solution strategies, enabling researchers to identify optimal approaches for diverse evaluation criteria. We also identify critical research gaps and propose future directions, including multi-agent collaboration, self-evolving systems, and formal verification integration. This survey serves as a foundational guide for advancing LLM-driven software engineering. We maintain a GitHub repository that continuously updates the reviewed and related papers at https://github.com/lisaGuojl/LLM-Agent-SE-Survey.
comment: 22 pages
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ Quantitative LLM Judges
LLM-as-a-judge is a framework where a large language model (LLM) evaluates the output of another LLM. While LLMs excel at producing qualitative textual evaluations, they often struggle to predict human preferences and numeric scores. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to humans in a given domain using regression models. The models are trained to improve the score of the original judge using its rationale and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in practice. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can improve the predictive power of existing judges through post-hoc modeling.
♻ ☆ Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification
Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
comment: The manuscript has been accepted for publication in IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3570775
♻ ☆ Hybrid Latent Reasoning via Reinforcement Learning NeurIPS 2025
Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
comment: NeurIPS 2025
♻ ☆ PersonaMatrix: A Recipe for Persona-Aware Evaluation of Legal Summarization
Legal documents are often long, dense, and difficult to comprehend, not only for laypeople but also for legal experts. While automated document summarization has great potential to improve access to legal knowledge, prevailing task-based evaluators overlook divergent user and stakeholder needs. Tool development is needed to encompass the technicality of a case summary for a litigator yet be accessible for a self-help public researching for their lawsuit. We introduce PersonaMatrix, a persona-by-criterion evaluation framework that scores summaries through the lens of six personas, including legal and non-legal users. We also introduce a controlled dimension-shifted pilot dataset of U.S. civil rights case summaries that varies along depth, accessibility, and procedural detail as well as Diversity-Coverage Index (DCI) to expose divergent optima of legal summary between persona-aware and persona-agnostic judges. This work enables refinement of legal AI summarization systems for both expert and non-expert users, with the potential to increase access to legal knowledge. The code base and data are publicly available in GitHub.
comment: Accepted for publication in JURIX 2025 (Legal Knowledge and Information Systems, FAIA series, IOS Press). Long Paper
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing
Recent advancements in Large Language Models (LLMs) have shown outstanding potential for role-playing applications. Evaluating these capabilities is becoming crucial yet remains challenging. Existing benchmarks mostly adopt a \textbf{character-centric} approach, simplify user-character interactions to isolated Q&A tasks, and fail to reflect real-world applications. To address this limitation, we introduce RMTBench, a comprehensive \textbf{user-centric} bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds. RMTBench includes custom characters with detailed backgrounds and abstract characters defined by simple traits, enabling evaluation across various user scenarios. Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications. Furthermore, we construct an authentic multi-turn dialogue simulation mechanism. With carefully selected evaluation dimensions and LLM-based scoring, this mechanism captures the complex intention of conversations between the user and the character. By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements, offering a more effective framework for assessing role-playing capabilities in LLMs. All code and datasets will be released soon. We release the datasets at https://huggingface.co/datasets/xiangh/RMTBENCH.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning ICLR2025
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark. Codes are available at https://github.com/FYYFU/HeadKV
comment: Accepted to ICLR2025
♻ ☆ Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models EMNLP 2025
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SafeBench, a benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 20 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
comment: EMNLP 2025 Findings
Computation and Language
☆ olmOCR 2: Unit Test Rewards for Document OCR
We present olmOCR 2, the latest in our family of powerful OCR systems for converting digitized print documents, like PDFs, into clean, naturally ordered plain text. olmOCR 2 is powered by olmOCR-2-7B-1025, a specialized, 7B vision language model (VLM) trained using reinforcement learning with verifiable rewards (RLVR), where our rewards are a diverse set of binary unit tests. To scale unit test creation, we develop a pipeline for generating synthetic documents with diverse and challenging layouts, known ground-truth HTML source code, and extracted test cases. We show that RL training on these test cases results in state-of-the-art performance on olmOCR-Bench, our English-language OCR benchmark, with the largest improvements in math formula conversion, table parsing, and multi-column layouts compared to previous versions. We release our model, data and code under permissive open licenses.
comment: https://olmocr.allen.ai/
☆ Hubble: a Model Suite to Advance the Study of LLM Memorization
We present Hubble, a suite of fully open-source large language models (LLMs) for the scientific study of LLM memorization. Hubble models come in standard and perturbed variants: standard models are pretrained on a large English corpus, and perturbed models are trained in the same way but with controlled insertion of text (e.g., book passages, biographies, and test sets) designed to emulate key memorization risks. Our core release includes 8 models -- standard and perturbed models with 1B or 8B parameters, pretrained on 100B or 500B tokens -- establishing that memorization risks are determined by the frequency of sensitive data relative to size of the training corpus (i.e., a password appearing once in a smaller corpus is memorized better than the same password in a larger corpus). Our release also includes 6 perturbed models with text inserted at different pretraining phases, showing that sensitive data without continued exposure can be forgotten. These findings suggest two best practices for addressing memorization risks: to dilute sensitive data by increasing the size of the training corpus, and to order sensitive data to appear earlier in training. Beyond these general empirical findings, Hubble enables a broad range of memorization research; for example, analyzing the biographies reveals how readily different types of private information are memorized. We also demonstrate that the randomized insertions in Hubble make it an ideal testbed for membership inference and machine unlearning, and invite the community to further explore, benchmark, and build upon our work.
☆ Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
Recent advances in multimodal models have demonstrated remarkable text-guided image editing capabilities, with systems like GPT-4o and Nano-Banana setting new benchmarks. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built from real images. We introduce Pico-Banana-400K, a comprehensive 400K-image dataset for instruction-based image editing. Our dataset is constructed by leveraging Nano-Banana to generate diverse edit pairs from real photographs in the OpenImages collection. What distinguishes Pico-Banana-400K from previous synthetic datasets is our systematic approach to quality and diversity. We employ a fine-grained image editing taxonomy to ensure comprehensive coverage of edit types while maintaining precise content preservation and instruction faithfulness through MLLM-based quality scoring and careful curation. Beyond single turn editing, Pico-Banana-400K enables research into complex editing scenarios. The dataset includes three specialized subsets: (1) a 72K-example multi-turn collection for studying sequential editing, reasoning, and planning across consecutive modifications; (2) a 56K-example preference subset for alignment research and reward model training; and (3) paired long-short editing instructions for developing instruction rewriting and summarization capabilities. By providing this large-scale, high-quality, and task-rich resource, Pico-Banana-400K establishes a robust foundation for training and benchmarking the next generation of text-guided image editing models.
☆ Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.
comment: Code: https://github.com/dvlab-research/Scaf-GRPO
☆ The Art of Asking: Multilingual Prompt Optimization for Synthetic Data
Synthetic data has become a cornerstone for scaling large language models, yet its multilingual use remains bottlenecked by translation-based prompts. This strategy inherits English-centric framing and style and neglects cultural dimensions, ultimately constraining model generalization. We argue that the overlooked prompt space-the very inputs that define training distributions-offers a more powerful lever for improving multilingual performance. We introduce a lightweight framework for prompt-space optimization, where translated prompts are systematically transformed for Naturalness, Cultural Adaptation, and Difficulty Enhancement. Using an off-the-shelf multilingual LLM, we apply these transformations to prompts for 12 languages spanning 7 families. Under identical data conditions, our approaches achieve substantial and consistent downstream improvements over the translation-only baseline: +4.7% on Global-MMLU accuracy, +2.4% on Flores XCometXL and +35.3% wins in preferences on mArenaHard. We establish prompt-space optimization as a simple yet powerful paradigm for building multilingual LLMs that are more robust, culturally grounded, and globally capable.
☆ Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
☆ ToolDreamer: Instilling LLM Reasoning Into Tool Retrievers
Tool calling has become increasingly popular for Large Language Models (LLMs). However, for large tool sets, the resulting tokens would exceed the LLM's context window limit, making it impossible to include every tool. Hence, an external retriever is used to provide LLMs with the most relevant tools for a query. Existing retrieval models rank tools based on the similarity between a user query and a tool description (TD). This leads to suboptimal retrieval as user requests are often poorly aligned with the language of TD. To remedy the issue, we propose ToolDreamer, a framework to condition retriever models to fetch tools based on hypothetical (synthetic) TD generated using an LLM, i.e., description of tools that the LLM feels will be potentially useful for the query. The framework enables a more natural alignment between queries and tools within the language space of TD's. We apply ToolDreamer on the ToolRet dataset and show that our method improves the performance of sparse and dense retrievers with and without training, thus showcasing its flexibility. Through our proposed framework, our aim is to offload a portion of the reasoning burden to the retriever so that the LLM may effectively handle a large collection of tools without inundating its context window.
☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
☆ AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.
☆ GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters
Sparse fine-tuning techniques adapt LLMs to downstream tasks by only tuning a sparse subset of model parameters. However, the effectiveness of sparse adaptation depends on optimally selecting the model parameters to be fine-tuned. In this work, we introduce a novel sparse fine-tuning technique named GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters, which fine-tunes only those model parameters which have the largest gradient magnitudes on downstream tasks and the smallest pre-trained magnitudes, intuitively prioritizing parameters that are highly task-relevant, but minimally disruptive to pre-trained knowledge. Our experimentation with LLaMA3 8B and Gemma 2B as base models shows that GaLLoP consistently improves or matches the in-distribution as well as out-of-distribution performance obtained via the usage of other leading parameter-efficient fine-tuning techniques, including LoRA, DoRA, and SAFT. Our analysis demonstrates that GaLLoP mitigates catastrophic forgetting and memorization of task data, as important pre-trained parameters remain unchanged, and stabilizes performance relative to other fine-tuning techniques, robustly generalizing across most random seeds.
☆ SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.
comment: Code: https://github.com/dvlab-research/SmartSwitch
☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
☆ From Answers to Guidance: A Proactive Dialogue System for Legal Documents
The accessibility of legal information remains a constant challenge, particularly for laypersons seeking to understand and apply complex institutional texts. While the European Union provides open access to legislation, parliamentary responses, and regulatory documents, these resources can be challenging for laypeople to explore. In this paper, we introduce EUDial, a proactive multi-turn dialogue dataset constructed from 204 blogs curated by the Citizens' Enquiries Unit (AskEP) of the European Parliamentary Research Service. EUDial contains 880 dialogue turns (averaging 4.3 turns per dialogue), where each dialogue includes initial questions, structured answers, and follow-up questions. Beyond dataset construction, we propose the LexGuide framework that leverages retrieval-augmented generation with hierarchical topic organization to structure dialogue progression, ensuring both comprehensive coverage of legal aspects and coherence across conversational turns. The results demonstrate that proactive, structured navigation closes the gap between the availability of legal information and citizen comprehension, establishing EUDial and LexGuide as practical resources for advancing proactive legal dialogue systems.
comment: 21 pages, 3 figures, 2 tables, 2 prompts
☆ Do Prompts Reshape Representations? An Empirical Study of Prompting Effects on Embeddings
Prompting is a common approach for leveraging LMs in zero-shot settings. However, the underlying mechanisms that enable LMs to perform diverse tasks without task-specific supervision remain poorly understood. Studying the relationship between prompting and the quality of internal representations can shed light on how pre-trained embeddings may support in-context task solving. In this empirical study, we conduct a series of probing experiments on prompt embeddings, analyzing various combinations of prompt templates for zero-shot classification. Our findings show that while prompting affects the quality of representations, these changes do not consistently correlate with the relevance of the prompts to the target task. This result challenges the assumption that more relevant prompts necessarily lead to better representations. We further analyze potential factors that may contribute to this unexpected behavior.
☆ Are Large Language Models Sensitive to the Motives Behind Communication? NeurIPS 2025
Human communication is motivated: people speak, write, and create content with a particular communicative intent in mind. As a result, information that large language models (LLMs) and AI agents process is inherently framed by humans' intentions and incentives. People are adept at navigating such nuanced information: we routinely identify benevolent or self-serving motives in order to decide what statements to trust. For LLMs to be effective in the real world, they too must critically evaluate content by factoring in the motivations of the source -- for instance, weighing the credibility of claims made in a sales pitch. In this paper, we undertake a comprehensive study of whether LLMs have this capacity for motivational vigilance. We first employ controlled experiments from cognitive science to verify that LLMs' behavior is consistent with rational models of learning from motivated testimony, and find they successfully discount information from biased sources in a human-like manner. We then extend our evaluation to sponsored online adverts, a more naturalistic reflection of LLM agents' information ecosystems. In these settings, we find that LLMs' inferences do not track the rational models' predictions nearly as closely -- partly due to additional information that distracts them from vigilance-relevant considerations. However, a simple steering intervention that boosts the salience of intentions and incentives substantially increases the correspondence between LLMs and the rational model. These results suggest that LLMs possess a basic sensitivity to the motivations of others, but generalizing to novel real-world settings will require further improvements to these models.
comment: NeurIPS 2025
☆ CoSense-LLM: Semantics at the Edge with Cost- and Uncertainty-Aware Cloud-Edge Cooperation
We present CoSense-LLM, an edge-first framework that turns continuous multimodal sensor streams (for example Wi-Fi CSI, IMU, audio, RFID, and lightweight vision) into compact, verifiable semantic tokens and coordinates with large language models under explicit latency, energy, bandwidth, and privacy constraints. CoSense-LLM has four parts: (i) SenseFusion, a lightweight encoder that aligns sensor embeddings with language and compresses them into short discrete code sequences; (ii) Edge-RAG, a local hybrid retrieval layer that grounds generation in site specific policies and notes; (iii) PromptRouter, a cost and uncertainty aware policy that selects edge only generation, edge plus retrieval, or compact cloud escalation; and (iv) Secure Execution, an auditable redaction path that enforces data minimization so raw waveforms never leave the device. The system works with modern serving optimizations, including paged or streaming KV caches, FlashAttention style kernels, speculative decoding, and quantized LoRA adapters, and supports on device personalization and federated updates under non IID drift. Across home, office, and clinic deployments, CoSense-LLM delivers grounded explanations while meeting tight service level objectives: it sustains sub second (p95) end to end latency on edge dominant paths, reduces inter tier token and bandwidth costs by preferring local retrieval grounded responses, and preserves privacy by transmitting only discrete codes and redacted metadata. Ablations show that Edge-RAG improves factual consistency and reduces contradictions, calibrated uncertainty enables selective abstention and controlled escalations, and KV plus decoding accelerators lower energy per decision. The results support an edge first design that treats semantics, privacy, and predictable latency as co equal goals for large model deployments in interference prone environments.
comment: 19 pages,8 figures
☆ DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference
Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce \textbf{DiffAdapt}, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.
☆ Unraveling Emotions with Pre-Trained Models
Transformer models have significantly advanced the field of emotion recognition. However, there are still open challenges when exploring open-ended queries for Large Language Models (LLMs). Although current models offer good results, automatic emotion analysis in open texts presents significant challenges, such as contextual ambiguity, linguistic variability, and difficulty interpreting complex emotional expressions. These limitations make the direct application of generalist models difficult. Accordingly, this work compares the effectiveness of fine-tuning and prompt engineering in emotion detection in three distinct scenarios: (i) performance of fine-tuned pre-trained models and general-purpose LLMs using simple prompts; (ii) effectiveness of different emotion prompt designs with LLMs; and (iii) impact of emotion grouping techniques on these models. Experimental tests attain metrics above 70% with a fine-tuned pre-trained model for emotion recognition. Moreover, the findings highlight that LLMs require structured prompt engineering and emotion grouping to enhance their performance. These advancements improve sentiment analysis, human-computer interaction, and understanding of user behavior across various domains.
☆ From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
☆ LLavaCode: Compressed Code Representations for Retrieval-Augmented Code Generation
Retrieval-augmented generation has emerged as one of the most effective approaches for code completion, particularly when context from a surrounding repository is essential. However, incorporating context significantly extends sequence length, leading to slower inference - a critical limitation for interactive settings such as IDEs. In this work, we introduce LlavaCode, a framework that compresses code into compact, semantically rich representations interpretable by code LLM, enhancing generation quality while reducing the retrieved context to only a few compressed single-token vectors. Using a small projector module we can significantly increase the EM and ES metrics of coding model with negligible latency increase. Our experiments demonstrate that compressed context enables 20-38% reduction in Time-to-First-Token (TTFT) on line completion tasks compared to full-RAG pipelines.
☆ Style Attack Disguise: When Fonts Become a Camouflage for Adversarial Intent
With social media growth, users employ stylistic fonts and font-like emoji to express individuality, creating visually appealing text that remains human-readable. However, these fonts introduce hidden vulnerabilities in NLP models: while humans easily read stylistic text, models process these characters as distinct tokens, causing interference. We identify this human-model perception gap and propose a style-based attack, Style Attack Disguise (SAD). We design two sizes: light for query efficiency and strong for superior attack performance. Experiments on sentiment classification and machine translation across traditional models, LLMs, and commercial services demonstrate SAD's strong attack performance. We also show SAD's potential threats to multimodal tasks including text-to-image and text-to-speech generation.
☆ HSCodeComp: A Realistic and Expert-level Benchmark for Deep Search Agents in Hierarchical Rule Application
Effective deep search agents must not only access open-domain and domain-specific knowledge but also apply complex rules-such as legal clauses, medical manuals and tariff rules. These rules often feature vague boundaries and implicit logic relationships, making precise application challenging for agents. However, this critical capability is largely overlooked by current agent benchmarks. To fill this gap, we introduce HSCodeComp, the first realistic, expert-level e-commerce benchmark designed to evaluate deep search agents in hierarchical rule application. In this task, the deep reasoning process of agents is guided by these rules to predict 10-digit Harmonized System Code (HSCode) of products with noisy but realistic descriptions. These codes, established by the World Customs Organization, are vital for global supply chain efficiency. Built from real-world data collected from large-scale e-commerce platforms, our proposed HSCodeComp comprises 632 product entries spanning diverse product categories, with these HSCodes annotated by several human experts. Extensive experimental results on several state-of-the-art LLMs, open-source, and closed-source agents reveal a huge performance gap: best agent achieves only 46.8% 10-digit accuracy, far below human experts at 95.0%. Besides, detailed analysis demonstrates the challenges of hierarchical rule application, and test-time scaling fails to improve performance further.
☆ CrossNews-UA: A Cross-lingual News Semantic Similarity Benchmark for Ukrainian, Polish, Russian, and English
In the era of social networks and rapid misinformation spread, news analysis remains a critical task. Detecting fake news across multiple languages, particularly beyond English, poses significant challenges. Cross-lingual news comparison offers a promising approach to verify information by leveraging external sources in different languages (Chen and Shu, 2024). However, existing datasets for cross-lingual news analysis (Chen et al., 2022a) were manually curated by journalists and experts, limiting their scalability and adaptability to new languages. In this work, we address this gap by introducing a scalable, explainable crowdsourcing pipeline for cross-lingual news similarity assessment. Using this pipeline, we collected a novel dataset CrossNews-UA of news pairs in Ukrainian as a central language with linguistically and contextually relevant languages-Polish, Russian, and English. Each news pair is annotated for semantic similarity with detailed justifications based on the 4W criteria (Who, What, Where, When). We further tested a range of models, from traditional bag-of-words, Transformer-based architectures to large language models (LLMs). Our results highlight the challenges in multilingual news analysis and offer insights into models performance.
☆ PBBQ: A Persian Bias Benchmark Dataset Curated with Human-AI Collaboration for Large Language Models
With the increasing adoption of large language models (LLMs), ensuring their alignment with social norms has become a critical concern. While prior research has examined bias detection in various languages, there remains a significant gap in resources addressing social biases within Persian cultural contexts. In this work, we introduce PBBQ, a comprehensive benchmark dataset designed to evaluate social biases in Persian LLMs. Our benchmark, which encompasses 16 cultural categories, was developed through questionnaires completed by 250 diverse individuals across multiple demographics, in close collaboration with social science experts to ensure its validity. The resulting PBBQ dataset contains over 37,000 carefully curated questions, providing a foundation for the evaluation and mitigation of bias in Persian language models. We benchmark several open-source LLMs, a closed-source model, and Persian-specific fine-tuned models on PBBQ. Our findings reveal that current LLMs exhibit significant social biases across Persian culture. Additionally, by comparing model outputs to human responses, we observe that LLMs often replicate human bias patterns, highlighting the complex interplay between learned representations and cultural stereotypes.Upon acceptance of the paper, our PBBQ dataset will be publicly available for use in future work. Content warning: This paper contains unsafe content.
☆ Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.
☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
☆ [De|Re]constructing VLMs' Reasoning in Counting
Vision-Language Models (VLMs) have recently gained attention due to their competitive performance on multiple downstream tasks, achieved by following user-input instructions. However, VLMs still exhibit several limitations in visual reasoning, such as difficulties in identifying relations (e.g., spatial, temporal, and among objects), understanding temporal sequences (e.g., frames), and counting objects. In this work, we go beyond score-level benchmark evaluations of VLMs by investigating the underlying causes of their failures and proposing a targeted approach to improve their reasoning capabilities. We study the reasoning skills of seven state-of-the-art VLMs in the counting task under controlled experimental conditions. Our experiments show that VLMs are highly sensitive to the number and type of objects, their spatial arrangement, and the co-occurrence of distractors. A layer-wise analysis reveals that errors are due to incorrect mapping of the last-layer representation into the output space. Our targeted training shows that fine-tuning just the output layer improves accuracy by up to 21%. We corroborate these findings by achieving consistent improvements on real-world datasets.
comment: This work has been submitted to the IEEE for possible publication
☆ Conditions for Catastrophic Forgetting in Multilingual Translation
Fine-tuning multilingual foundation models on specific languages often induces catastrophic forgetting, degrading performance on languages unseen in fine-tuning. While this phenomenon is widely-documented, the literature presents fragmented results about when forgetting occurs. To address this ambiguity, we conduct a systematic empirical study using machine translation as a testbed to identify the conditions that trigger catastrophic forgetting in multilingual fine-tuning. Through controlled experiments across different model architectures, data scales, and fine-tuning approaches, we reveal that the relative scale between model and data size is a primary determinant of forgetting. Moreover, we demonstrate that a model's instruction-following ability is more critical for retaining multilingual knowledge than its architecture. Contrary to assumptions, parameter-efficient fine-tuning offers no clear advantage over full fine-tuning in mitigating forgetting. Lastly, we show that cross-lingual alignment can mitigate forgetting while also facilitating positive transfer to unseen target languages.
comment: Multilingual Representation Learning (MRL) Workshop 2025
☆ Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
Speech foundation models have recently achieved remarkable capabilities across a wide range of tasks. However, their evaluation remains disjointed across tasks and model types. Different models excel at distinct aspects of speech processing and thus require different evaluation protocols. This paper proposes a unified taxonomy that addresses the question: Which evaluation is appropriate for which model? The taxonomy defines three orthogonal axes: the \textbf{evaluation aspect} being measured, the model capabilities required to attempt the task, and the task or protocol requirements needed to perform it. We classify a broad set of existing evaluations and benchmarks along these axes, spanning areas such as representation learning, speech generation, and interactive dialogue. By mapping each evaluation to the capabilities a model exposes (e.g., speech generation, real-time processing) and to its methodological demands (e.g., fine-tuning data, human judgment), the taxonomy provides a principled framework for aligning models with suitable evaluation methods. It also reveals systematic gaps, such as limited coverage of prosody, interaction, or reasoning, that highlight priorities for future benchmark design. Overall, this work offers a conceptual foundation and practical guide for selecting, interpreting, and extending evaluations of speech models.
comment: 57 pages (26 main, 25 appendix, 6 references)
☆ Lookahead Routing for Large Language Models
Large language model (LLM) routers improve the efficiency of multi-model systems by directing each query to the most appropriate model while leveraging the diverse strengths of heterogeneous LLMs. Most existing approaches frame routing as a classification problem based solely on the input query. While this reduces overhead by avoiding inference across all models, it overlooks valuable information that could be gleaned from potential outputs and fails to capture implicit intent or contextual nuances that often emerge only during response generation. These limitations can result in suboptimal routing decisions, particularly for complex or ambiguous queries that require deeper semantic understanding. To address this challenge, we propose Lookahead, a routing framework that "foresees" potential model outputs by predicting their latent representations and uses these predictions to guide model selection, thus enabling more informed routing without full inference. Within this framework, we implement two approaches based on causal and masked language models. Empirical evaluations across seven public benchmarks - spanning instruction following, mathematical reasoning, and code generation - show that Lookahead consistently outperforms existing routing baselines, achieving an average performance gain of 7.7% over the state-of-the-art. Our code is available at https://github.com/huangcb01/lookahead-routing.
☆ What is the Best Sequence Length for BABYLM? EMNLP
Transformer language models typically operate with a fixed-length context window, which has grown in step with large-scale pretraining datasets. In the BabyLM Challenge, however, many past submissions have defaulted to using much shorter sequence lengths. We examine the impact of sequence length on BabyLM pretraining, to answer the simple question: what sequence length should we be using when training Baby LMs? Using 100M-word training data and fixed compute budgets, we compare 125M-parameter Mamba and OPT models, finding that although longer is often better, the optimal length depends on both task and architecture. Shorter sequences are sufficient for grammatical generalization tasks whereas longer contexts benefit morphological analogical reasoning tasks.
comment: Paper Accepted at the 2025 BabyLM Workshop @ EMNLP (Suzhou, China)
☆ Machine Text Detectors are Membership Inference Attacks
Although membership inference attacks (MIAs) and machine-generated text detection target different goals, identifying training samples and synthetic texts, their methods often exploit similar signals based on a language model's probability distribution. Despite this shared methodological foundation, the two tasks have been independently studied, which may lead to conclusions that overlook stronger methods and valuable insights developed in the other task. In this work, we theoretically and empirically investigate the transferability, i.e., how well a method originally developed for one task performs on the other, between MIAs and machine text detection. For our theoretical contribution, we prove that the metric that achieves the asymptotically highest performance on both tasks is the same. We unify a large proportion of the existing literature in the context of this optimal metric and hypothesize that the accuracy with which a given method approximates this metric is directly correlated with its transferability. Our large-scale empirical experiments, including 7 state-of-the-art MIA methods and 5 state-of-the-art machine text detectors across 13 domains and 10 generators, demonstrate very strong rank correlation (rho > 0.6) in cross-task performance. We notably find that Binoculars, originally designed for machine text detection, achieves state-of-the-art performance on MIA benchmarks as well, demonstrating the practical impact of the transferability. Our findings highlight the need for greater cross-task awareness and collaboration between the two research communities. To facilitate cross-task developments and fair evaluations, we introduce MINT, a unified evaluation suite for MIAs and machine-generated text detection, with implementation of 15 recent methods from both tasks.
☆ VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
Training computer-use agents requires massive amounts of GUI interaction data, but manually annotating action trajectories at scale is prohibitively expensive. We present VideoAgentTrek, a scalable pipeline that automatically mines training data from publicly available screen-recorded videos at web scale, eliminating the need for manual annotation. Our approach addresses a key challenge: raw videos contain implicit demonstrations but lack explicit action labels. To solve this, we develop Video2Action, an inverse dynamics module (IDM) with two components: (1) a video grounding model that detects and localizes GUI actions with precise temporal boundaries and context, and (2) an action-content recognizer that extracts structured parameters like click coordinates and typed text with high fidelity. Applied to 39,000 YouTube tutorial videos, our pipeline generates 1.52 million interaction steps automatically. We leverage this data through continued pretraining followed by supervised fine-tuning. On OSWorld-Verified, our approach improves task success rates from 9.3% (SFT-only baseline) to 15.8%, a 70% relative improvement. On AgentNetBench, step accuracy increases from 64.1% to 69.3%. Our results demonstrate that passive internet videos can be transformed into high-quality supervision for computer-use agents, providing a scalable alternative to expensive manual annotation.
comment: 8 pages, 6 figures
☆ Re-evaluating Minimum Bayes Risk Decoding for Automatic Speech Recognition
Recent work has shown that sample-based Minimum Bayes Risk (MBR) decoding outperforms beam search in text-to-text generation tasks, such as machine translation, text summarization, and image captioning. On the other hand, beam search is the current practice for speech-to-text tasks such as automatic speech recognition (ASR) and Speech Translation (ST). Given that MBR decoding is effective in text-to-text generation tasks, it is reasonable to expect it to also be effective for speech-to-text tasks. In this paper, we evaluate MBR decoding for ASR and ST tasks on English and Japanese using Whisper and its derivative models. We observe that the accuracy of MBR decoding outperforms that of beam search in most of the experimental settings we have evaluated. The results show that MBR decoding is a promising method for offline ASR and ST tasks that require high accuracy. The code is available at https://github.com/CyberAgentAILab/mbr-for-asr
☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: project page:https://mined-lmm.github.io/
☆ LLM Unlearning with LLM Beliefs
Large language models trained on vast corpora inherently risk memorizing sensitive or harmful content, which may later resurface in their outputs. Prevailing unlearning methods generally rely on gradient ascent and its variants to lower the probability of specific target responses. However, we find that this strategy induces a critical side effect: probability mass is redistributed into high-likelihood regions, often corresponding to semantically related rephrasings of the targets. We refer to this as the squeezing effect, which explains why many methods yield merely spurious unlearning, a problem further obscured by automated metrics (e.g., ROUGE, truth ratio) that misreport actual success. To address this, we propose a bootstrapping (BS) framework that explicitly links the squeezing effect with the model's own high-confidence generations, namely its model beliefs. Since model beliefs inherently capture the very high-likelihood regions where probability mass is squeezed, incorporating them into the unlearning objective directly counters the squeezing effect. By jointly suppressing both target responses and model beliefs, BS-T (token) attenuates high-probability tokens, whereas BS-S (sequence) removes entire high-confidence generations, together achieving more thorough forgetting while preserving utility. Extensive experiments across diverse benchmarks with various model families confirm the effectiveness of our approach.
☆ BLiSS 1.0: Evaluating Bilingual Learner Competence in Second Language Small Language Models EMNLP
To bridge the gap between performance-oriented benchmarks and the evaluation of cognitively inspired models, we introduce BLiSS 1.0, a Benchmark of Learner Interlingual Syntactic Structure. Our benchmark operationalizes a new paradigm of selective tolerance, testing whether a model finds a naturalistic learner error more plausible than a matched, artificial error within the same sentence. Constructed from over 2.8 million naturalistic learner sentences, BLiSS provides 136,867 controlled triplets (corrected, learner, artificial) for this purpose. Experiments on a diverse suite of models demonstrate that selective tolerance is a distinct capability from standard grammaticality, with performance clustering strongly by training paradigm. This validates BLiSS as a robust tool for measuring how different training objectives impact a model's alignment with the systematic patterns of human language acquisition.
comment: Accepted Paper at the BabyLM Workshop 2025 @ EMNLP (Presentation in Suzhou, China)
☆ Spatio-temporal Sign Language Representation and Translation
This paper describes the DFKI-MLT submission to the WMT-SLT 2022 sign language translation (SLT) task from Swiss German Sign Language (video) into German (text). State-of-the-art techniques for SLT use a generic seq2seq architecture with customized input embeddings. Instead of word embeddings as used in textual machine translation, SLT systems use features extracted from video frames. Standard approaches often do not benefit from temporal features. In our participation, we present a system that learns spatio-temporal feature representations and translation in a single model, resulting in a real end-to-end architecture expected to better generalize to new data sets. Our best system achieved $5\pm1$ BLEU points on the development set, but the performance on the test dropped to $0.11\pm0.06$ BLEU points.
☆ ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.
comment: Code is available at https://github.com/VictorMorand/llm2ner
☆ SONAR-SLT: Multilingual Sign Language Translation via Language-Agnostic Sentence Embedding Supervision
Sign language translation (SLT) is typically trained with text in a single spoken language, which limits scalability and cross-language generalization. Earlier approaches have replaced gloss supervision with text-based sentence embeddings, but up to now, these remain tied to a specific language and modality. In contrast, here we employ language-agnostic, multimodal embeddings trained on text and speech from multiple languages to supervise SLT, enabling direct multilingual translation. To address data scarcity, we propose a coupled augmentation method that combines multilingual target augmentations (i.e. translations into many languages) with video-level perturbations, improving model robustness. Experiments show consistent BLEURT gains over text-only sentence embedding supervision, with larger improvements in low-resource settings. Our results demonstrate that language-agnostic embedding supervision, combined with coupled augmentation, provides a scalable and semantically robust alternative to traditional SLT training.
☆ ColorAgent: Building A Robust, Personalized, and Interactive OS Agent
With the advancements in hardware, software, and large language model technologies, the interaction between humans and operating systems has evolved from the command-line interface to the rapidly emerging AI agent interactions. Building an operating system (OS) agent capable of executing user instructions and faithfully following user desires is becoming a reality. In this technical report, we present ColorAgent, an OS agent designed to engage in long-horizon, robust interactions with the environment while also enabling personalized and proactive user interaction. To enable long-horizon interactions with the environment, we enhance the model's capabilities through step-wise reinforcement learning and self-evolving training, while also developing a tailored multi-agent framework that ensures generality, consistency, and robustness. In terms of user interaction, we explore personalized user intent recognition and proactive engagement, positioning the OS agent not merely as an automation tool but as a warm, collaborative partner. We evaluate ColorAgent on the AndroidWorld and AndroidLab benchmarks, achieving success rates of 77.2% and 50.7%, respectively, establishing a new state of the art. Nonetheless, we note that current benchmarks are insufficient for a comprehensive evaluation of OS agents and propose further exploring directions in future work, particularly in the areas of evaluation paradigms, agent collaboration, and security. Our code is available at https://github.com/MadeAgents/mobile-use.
☆ Sign Language Translation with Sentence Embedding Supervision
State-of-the-art sign language translation (SLT) systems facilitate the learning process through gloss annotations, either in an end2end manner or by involving an intermediate step. Unfortunately, gloss labelled sign language data is usually not available at scale and, when available, gloss annotations widely differ from dataset to dataset. We present a novel approach using sentence embeddings of the target sentences at training time that take the role of glosses. The new kind of supervision does not need any manual annotation but it is learned on raw textual data. As our approach easily facilitates multilinguality, we evaluate it on datasets covering German (PHOENIX-2014T) and American (How2Sign) sign languages and experiment with mono- and multilingual sentence embeddings and translation systems. Our approach significantly outperforms other gloss-free approaches, setting the new state-of-the-art for data sets where glosses are not available and when no additional SLT datasets are used for pretraining, diminishing the gap between gloss-free and gloss-dependent systems.
☆ MoE-Prism: Disentangling Monolithic Experts for Elastic MoE Services via Model-System Co-Designs
Mixture-of-Experts (MoE) models, the state-of-the-art in large-scale AI, achieve high quality by sparsely activating parameters. However, their reliance on routing between a few monolithic experts via a top-k mechanism creates a "quality cliff", offering only a few coarse-grained operating points. This inflexibility forces a difficult trade-off between cost and quality, preventing adaptation to diverse Service Level Objectives (SLOs) and leading to significant resource over-provisioning. This paper introduces MoE-Prism, a model-system co-design that transforms rigid MoE models into elastic services. Our methodology is divided into two phases. First, an \emph{Offline Refactoring Engine} systematically deconstructs monolithic experts into fine-grained "sub-experts." This engine employs a partitioning optimization solver that uses a metaheuristic-based approach to group neurons, preserving functional locality without requiring retraining. Second, an \emph{Online Scheduling Engine} leverages this new elasticity through QoS-aware scheduling. It implements specialized policies to solve complex system problems, including maximizing throughput in cloud deployments and managing latency-optimized offloading for memory-constrained devices. Our evaluation across three different MoE models shows that MoE-Prismprovides over 4 times more distinct, stable operating points than the baseline. This allows an AI service to dynamically improve throughput by up to 19.9\% under a strict latency budget or reduce latency by up to 10.36\% under limited resources. MoE-Prism provides the critical "control knob" to bridge the model-system gap, enabling the next generation of adaptive, efficient, and QoS-aware AI services.
☆ The Massive Legal Embedding Benchmark (MLEB)
We present the Massive Legal Embedding Benchmark (MLEB), the largest, most diverse, and most comprehensive open-source benchmark for legal information retrieval to date. MLEB consists of ten expert-annotated datasets spanning multiple jurisdictions (the US, UK, EU, Australia, Ireland, and Singapore), document types (cases, legislation, regulatory guidance, contracts, and literature), and task types (search, zero-shot classification, and question answering). Seven of the datasets in MLEB were newly constructed in order to fill domain and jurisdictional gaps in the open-source legal information retrieval landscape. We document our methodology in building MLEB and creating the new constituent datasets, and release our code, results, and data openly to assist with reproducible evaluations.
comment: 15 pages, 2 figures
☆ LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts
Reasoning over long contexts is essential for large language models. While reinforcement learning (RL) enhances short-context reasoning by inducing "Aha" moments in chain-of-thought, the advanced thinking patterns required for long-context reasoning remain largely unexplored, and high-difficulty RL data are scarce. In this paper, we introduce LoongRL, a data-driven RL method for advanced long-context reasoning. Central to LoongRL is KeyChain, a synthesis approach that transforms short multi-hop QA into high-difficulty long-context tasks by inserting UUID chains that hide the true question among large collections of distracting documents. Solving these tasks requires the model to trace the correct chain step-by-step, identify the true question, retrieve relevant facts and reason over them to answer correctly. RL training on KeyChain data induces an emergent plan-retrieve-reason-recheck reasoning pattern that generalizes far beyond training length. Models trained at 16K effectively solve 128K tasks without prohibitive full-length RL rollout costs. On Qwen2.5-7B and 14B, LoongRL substantially improves long-context multi-hop QA accuracy by +23.5% and +21.1% absolute gains. The resulting LoongRL-14B reaches a score of 74.2, rivaling much larger frontier models such as o3-mini (74.5) and DeepSeek-R1 (74.9). It also improves long-context retrieval, passes all 128K needle-in-a-haystack stress tests, and preserves short-context reasoning capabilities.
☆ AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: Work in progress
☆ M3-SLU: Evaluating Speaker-Attributed Reasoning in Multimodal Large Language Models LREC 2026
We present M3-SLU, a new multimodal large language model (MLLM) benchmark for evaluating multi-speaker, multi-turn spoken language understanding. While recent models show strong performance in speech and text comprehension, they still struggle with speaker-attributed reasoning, the ability to understand who said what and when in natural conversations. M3-SLU is built from four open corpora (CHiME-6, MELD, MultiDialog, and AMI) and comprises over 12,000 validated instances with paired audio, transcripts, and metadata. It includes two tasks: (1) Speaker-Attributed Question Answering and (2) Speaker Attribution via Utterance Matching. We provide baseline results for both cascaded pipelines and end-to-end MLLMs, evaluated using an LLM-as-Judge and accuracy metrics. Results show that while models can capture what was said, they often fail to identify who said it, revealing a key gap in speaker-aware dialogue understanding. M3-SLU offers as a challenging benchmark to advance research in speaker-aware multimodal understanding.
comment: Submitted to LREC 2026. 11 pages, 5 figures
☆ Modeling Turn-Taking with Semantically Informed Gestures
In conversation, humans use multimodal cues, such as speech, gestures, and gaze, to manage turn-taking. While linguistic and acoustic features are informative, gestures provide complementary cues for modeling these transitions. To study this, we introduce DnD Gesture++, an extension of the multi-party DnD Gesture corpus enriched with 2,663 semantic gesture annotations spanning iconic, metaphoric, deictic, and discourse types. Using this dataset, we model turn-taking prediction through a Mixture-of-Experts framework integrating text, audio, and gestures. Experiments show that incorporating semantically guided gestures yields consistent performance gains over baselines, demonstrating their complementary role in multimodal turn-taking.
☆ Local Obfuscation by GLINER for Impartial Context Aware Lineage: Development and evaluation of PII Removal system
Removing Personally Identifiable Information (PII) from clinical notes in Electronic Health Records (EHRs) is essential for research and AI development. While Large Language Models (LLMs) are powerful, their high computational costs and the data privacy risks of API-based services limit their use, especially in low-resource settings. To address this, we developed LOGICAL (Local Obfuscation by GLINER for Impartial Context-Aware Lineage), an efficient, locally deployable PII removal system built on a fine-tuned Generalist and Lightweight Named Entity Recognition (GLiNER) model. We used 1515 clinical documents from a psychiatric hospital's EHR system. We defined nine PII categories for removal. A modern-gliner-bi-large-v1.0 model was fine-tuned on 2849 text instances and evaluated on a test set of 376 instances using character-level precision, recall, and F1-score. We compared its performance against Microsoft Azure NER, Microsoft Presidio, and zero-shot prompting with Gemini-Pro-2.5 and Llama-3.3-70B-Instruct. The fine-tuned GLiNER model achieved superior performance, with an overall micro-average F1-score of 0.980, significantly outperforming Gemini-Pro-2.5 (F1-score: 0.845). LOGICAL correctly sanitised 95% of documents completely, compared to 64% for the next-best solution. The model operated efficiently on a standard laptop without a dedicated GPU. However, a 2% entity-level false negative rate underscores the need for human-in-the-loop validation across all tested systems. Fine-tuned, specialised transformer models like GLiNER offer an accurate, computationally efficient, and secure solution for PII removal from clinical notes. This "sanitisation at the source" approach is a practical alternative to resource-intensive LLMs, enabling the creation of de-identified datasets for research and AI development while preserving data privacy, particularly in resource-constrained environments.
comment: 30 pages, 15 main text and 15 supplementary material
☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
☆ Algorithmic Fairness in NLP: Persona-Infused LLMs for Human-Centric Hate Speech Detection
In this paper, we investigate how personalising Large Language Models (Persona-LLMs) with annotator personas affects their sensitivity to hate speech, particularly regarding biases linked to shared or differing identities between annotators and targets. To this end, we employ Google's Gemini and OpenAI's GPT-4.1-mini models and two persona-prompting methods: shallow persona prompting and a deeply contextualised persona development based on Retrieval-Augmented Generation (RAG) to incorporate richer persona profiles. We analyse the impact of using in-group and out-group annotator personas on the models' detection performance and fairness across diverse social groups. This work bridges psychological insights on group identity with advanced NLP techniques, demonstrating that incorporating socio-demographic attributes into LLMs can address bias in automated hate speech detection. Our results highlight both the potential and limitations of persona-based approaches in reducing bias, offering valuable insights for developing more equitable hate speech detection systems.
comment: This paper has been accepted for the upcoming 59th Hawaii International Conference on System Sciences (HICSS-59), 2026, Hawaii, USA. The final published version will appear in the official conference proceedings
☆ Slot Filling as a Reasoning Task for SpeechLLMs
We propose integration of reasoning into speech large language models (speechLLMs) for the end-to-end slot-filling task. Inspired by the recent development of reasoning LLMs, we use a chain-of-thought framework to decompose the slot-filling task into multiple reasoning steps, create a reasoning dataset and apply the supervised fine-tuning strategy to a speechLLM. We distinguish between regular and reasoning speechLLMs and experiment with different types and sizes of LLMs as their text foundation models. We demonstrate performance improvements by introducing reasoning (intermediate) steps. However, we show that a reasoning textual LLM developed mainly for math, logic and coding domains might be inferior as a foundation model for a reasoning speechLLM. We further show that hybrid speechLLMs, built on a hybrid text foundation LLM and fine-tuned to preserve both direct and reasoning modes of operation, have better performance than those fine-tuned employing only one mode of operation.
☆ Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git
☆ HAD: HAllucination Detection Language Models Based on a Comprehensive Hallucination Taxonomy
The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.
☆ KORE: Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints
Large Multimodal Models encode extensive factual knowledge in their pre-trained weights. However, its knowledge remains static and limited, unable to keep pace with real-world developments, which hinders continuous knowledge acquisition. Effective knowledge injection thus becomes critical, involving two goals: knowledge adaptation (injecting new knowledge) and knowledge retention (preserving old knowledge). Existing methods often struggle to learn new knowledge and suffer from catastrophic forgetting. To address this, we propose KORE, a synergistic method of KnOwledge-oRientEd augmentations and constraints for injecting new knowledge into large multimodal models while preserving old knowledge. Unlike general text or image data augmentation, KORE automatically converts individual knowledge items into structured and comprehensive knowledge to ensure that the model accurately learns new knowledge, enabling accurate adaptation. Meanwhile, KORE stores previous knowledge in the covariance matrix of LMM's linear layer activations and initializes the adapter by projecting the original weights into the matrix's null space, defining a fine-tuning direction that minimizes interference with previous knowledge, enabling powerful retention. Extensive experiments on various LMMs, including LLaVA-v1.5-7B, LLaVA-v1.5-13B, and Qwen2.5-VL-7B, show that KORE achieves superior new knowledge injection performance and effectively mitigates catastrophic forgetting.
comment: project page: https://kore-lmm.github.io/
☆ JointCQ: Improving Factual Hallucination Detection with Joint Claim and Query Generation
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.
☆ TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.
comment: Code: https://github.com/Reza-esfandiarpoor/the-mcp-company
☆ Difficulty-Controllable Multiple-Choice Question Generation Using Large Language Models and Direct Preference Optimization
Difficulty-controllable question generation for reading comprehension has gained significant attention in the field of education as a fundamental tool for adaptive learning support. Although several neural question generation methods have recently succeeded in controlling difficulty, conventional approaches still face two major limitations. First, they cannot directly generate multiple-choice questions, which are the most widely used question type in educational contexts. Second, they are not explicitly trained to optimize the accuracy of difficulty control, leaving room for further improvement in difficulty controllability. To address these limitations, this study proposes a novel difficulty-controllable multiple-choice question generation method for reading comprehension which leverages a large language model trained using a direct preference optimization technique to improve the accuracy of difficulty control.
comment: This work has been submitted to the IEEE for possible publication
☆ SheetBrain: A Neuro-Symbolic Agent for Accurate Reasoning over Complex and Large Spreadsheets
Understanding and reasoning over complex spreadsheets remain fundamental challenges for large language models (LLMs), which often struggle with accurately capturing the complex structure of tables and ensuring reasoning correctness. In this work, we propose SheetBrain, a neuro-symbolic dual workflow agent framework designed for accurate reasoning over tabular data, supporting both spreadsheet question answering and manipulation tasks. SheetBrain comprises three core modules: an understanding module, which produces a comprehensive overview of the spreadsheet - including sheet summary and query-based problem insight to guide reasoning; an execution module, which integrates a Python sandbox with preloaded table-processing libraries and an Excel helper toolkit for effective multi-turn reasoning; and a validation module, which verifies the correctness of reasoning and answers, triggering re-execution when necessary. We evaluate SheetBrain on multiple public tabular QA and manipulation benchmarks, and introduce SheetBench, a new benchmark targeting large, multi-table, and structurally complex spreadsheets. Experimental results show that SheetBrain significantly improves accuracy on both existing benchmarks and the more challenging scenarios presented in SheetBench. Our code is publicly available at https://github.com/microsoft/SheetBrain.
☆ Modality Matching Matters: Calibrating Language Distances for Cross-Lingual Transfer in URIEL+
Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. One, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data, and two, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. In selecting transfer languages, our representations and composite distances consistently improve performance across a wide range of NLP tasks, providing a more principled and effective toolkit for multilingual research.
☆ DiSRouter: Distributed Self-Routing for LLM Selections
The proliferation of Large Language Models (LLMs) has created a diverse ecosystem of models with highly varying performance and costs, necessitating effective query routing to balance performance and expense. Current routing systems often rely on a centralized external router trained on a fixed set of LLMs, making them inflexible and prone to poor performance since the small router can not fully understand the knowledge boundaries of different LLMs. We introduce DiSRouter (Distributed Self-Router), a novel paradigm that shifts from centralized control to distributed routing. In DiSRouter, a query traverses a network of LLM agents, each independently deciding whether to answer or route to other agents based on its own self-awareness, its ability to judge its competence. This distributed design offers superior flexibility, scalability, and generalizability. To enable this, we propose a two-stage Self-Awareness Training pipeline that enhances each LLM's self-awareness. Extensive experiments demonstrate that DiSRouter significantly outperforms existing routing methods in utility across various scenarios, effectively distinguishes between easy and hard queries, and shows strong generalization to out-of-domain tasks. Our work validates that leveraging an LLM's intrinsic self-awareness is more effective than external assessment, paving the way for more modular and efficient multi-agent systems.
☆ Aligning Multilingual News for Stock Return Prediction
News spreads rapidly across languages and regions, but translations may lose subtle nuances. We propose a method to align sentences in multilingual news articles using optimal transport, identifying semantically similar content across languages. We apply this method to align more than 140,000 pairs of Bloomberg English and Japanese news articles covering around 3500 stocks in Tokyo exchange over 2012-2024. Aligned sentences are sparser, more interpretable, and exhibit higher semantic similarity. Return scores constructed from aligned sentences show stronger correlations with realized stock returns, and long-short trading strategies based on these alignments achieve 10\% higher Sharpe ratios than analyzing the full text sample.
comment: 6 pages, 4 tables, 2 figures, AI for Finance Symposium'25 Workshop at ICAIF'25
☆ Multi-Faceted Evaluation of Tool-Augmented Dialogue Systems
Evaluating conversational AI systems that use external tools is challenging, as errors can arise from complex interactions among user, agent, and tools. While existing evaluation methods assess either user satisfaction or agents' tool-calling capabilities, they fail to capture critical errors in multi-turn tool-augmented dialogues-such as when agents misinterpret tool results yet appear satisfactory to users. We introduce TRACE, a benchmark of systematically synthesized tool-augmented conversations covering diverse error cases, and SCOPE, an evaluation framework that automatically discovers diverse error patterns and evaluation rubrics in tool-augmented dialogues. Experiments show SCOPE significantly outperforms the baseline, particularly on challenging cases where user satisfaction signals are misleading.
comment: The first two authors contributed equally. Manuscript under submission
☆ Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
☆ The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models NeurIPS'25
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.
comment: Accepted by NeurIPS'25 Efficient Reasoning Workshop
☆ When Facts Change: Probing LLMs on Evolving Knowledge with evolveQA
LLMs often fail to handle temporal knowledge conflicts--contradictions arising when facts evolve over time within their training data. Existing studies evaluate this phenomenon through benchmarks built on structured knowledge bases like Wikidata, but they focus on widely-covered, easily-memorized popular entities and lack the dynamic structure needed to fairly evaluate LLMs with different knowledge cut-off dates. We introduce evolveQA, a benchmark specifically designed to evaluate LLMs on temporally evolving knowledge, constructed from 3 real-world, time-stamped corpora: AWS updates, Azure changes, and WHO disease outbreak reports. Our framework identifies naturally occurring knowledge evolution and generates questions with gold answers tailored to different LLM knowledge cut-off dates. Through extensive evaluation of 12 open and closed-source LLMs across 3 knowledge probing formats, we demonstrate significant performance drops of up to 31% on evolveQA compared to static knowledge questions.
comment: Under submission
☆ Think Straight, Stop Smart: Structured Reasoning for Efficient Multi-Hop RAG NeurIPS 2025
Multi-hop retrieval-augmented generation (RAG) is a promising strategy for complex reasoning, yet existing iterative prompting approaches remain inefficient. They often regenerate predictable token sequences at every step and rely on stochastic stopping, leading to excessive token usage and unstable termination. We propose TSSS (Think Straight, Stop Smart), a structured multi-hop RAG framework designed for efficiency. TSSS introduces (i) a template-based reasoning that caches recurring prefixes and anchors sub-queries to the main question, reducing token generation cost while promoting stable reasoning, and (ii) a retriever-based terminator, which deterministically halts reasoning once additional sub-queries collapse into repetition. This separation of structured reasoning and termination control enables both faster inference and more reliable answers. On HotpotQA, 2WikiMultiHop, and MuSiQue, TSSS achieves state-of-the-art accuracy and competitive efficiency among RAG-CoT approaches, highlighting its effectiveness in efficiency-constrained scenarios such as on-device inference.
comment: Accepted at NeurIPS 2025 Workshop
☆ OpenGuardrails: An Open-Source Context-Aware AI Guardrails Platform
As large language models (LLMs) become increasingly integrated into real-world applications, safeguarding them against unsafe, malicious, or privacy-violating content is critically important. We present OpenGuardrails, the first open-source project to provide both a context-aware safety and manipulation detection model and a deployable platform for comprehensive AI guardrails. OpenGuardrails protects against content-safety risks, model-manipulation attacks (e.g., prompt injection, jailbreaking, code-interpreter abuse, and the generation/execution of malicious code), and data leakage. Content-safety and model-manipulation detection are implemented by a unified large model, while data-leakage identification and redaction are performed by a separate lightweight NER pipeline (e.g., Presidio-style models or regex-based detectors). The system can be deployed as a security gateway or an API-based service, with enterprise-grade, fully private deployment options. OpenGuardrails achieves state-of-the-art (SOTA) performance on safety benchmarks, excelling in both prompt and response classification across English, Chinese, and multilingual tasks. All models are released under the Apache 2.0 license for public use.
☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
☆ Tibetan Language and AI: A Comprehensive Survey of Resources, Methods and Challenges
Tibetan, one of the major low-resource languages in Asia, presents unique linguistic and sociocultural characteristics that pose both challenges and opportunities for AI research. Despite increasing interest in developing AI systems for underrepresented languages, Tibetan has received limited attention due to a lack of accessible data resources, standardized benchmarks, and dedicated tools. This paper provides a comprehensive survey of the current state of Tibetan AI in the AI domain, covering textual and speech data resources, NLP tasks, machine translation, speech recognition, and recent developments in LLMs. We systematically categorize existing datasets and tools, evaluate methods used across different tasks, and compare performance where possible. We also identify persistent bottlenecks such as data sparsity, orthographic variation, and the lack of unified evaluation metrics. Additionally, we discuss the potential of cross-lingual transfer, multi-modal learning, and community-driven resource creation. This survey aims to serve as a foundational reference for future work on Tibetan AI research and encourages collaborative efforts to build an inclusive and sustainable AI ecosystem for low-resource languages.
☆ A Multi-faceted Analysis of Cognitive Abilities: Evaluating Prompt Methods with Large Language Models on the CONSORT Checklist
Despite the rapid expansion of Large Language Models (LLMs) in healthcare, the ability of these systems to assess clinical trial reporting according to CONSORT standards remains unclear, particularly with respect to their cognitive and reasoning strategies. This study applies a behavioral and metacognitive analytic approach with expert-validated data, systematically comparing two representative LLMs under three prompt conditions. Clear differences emerged in how the models approached various CONSORT items, and prompt types, including shifts in reasoning style, explicit uncertainty, and alternative interpretations shaped response patterns. Our results highlight the current limitations of these systems in clinical compliance automation and underscore the importance of understanding their cognitive adaptations and strategic behavior in developing more explainable and reliable medical AI.
☆ LLMs can hide text in other text of the same length.ipynb
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 6 pages, 4 figures
☆ From Facts to Folklore: Evaluating Large Language Models on Bengali Cultural Knowledge
Recent progress in NLP research has demonstrated remarkable capabilities of large language models (LLMs) across a wide range of tasks. While recent multilingual benchmarks have advanced cultural evaluation for LLMs, critical gaps remain in capturing the nuances of low-resource cultures. Our work addresses these limitations through a Bengali Language Cultural Knowledge (BLanCK) dataset including folk traditions, culinary arts, and regional dialects. Our investigation of several multilingual language models shows that while these models perform well in non-cultural categories, they struggle significantly with cultural knowledge and performance improves substantially across all models when context is provided, emphasizing context-aware architectures and culturally curated training data.
comment: 4 pages
☆ Beyond One-Way Influence: Bidirectional Opinion Dynamics in Multi-Turn Human-LLM Interactions
Large language model (LLM)-powered chatbots are increasingly used for opinion exploration. Prior research examined how LLMs alter user views, yet little work extended beyond one-way influence to address how user input can affect LLM responses and how such bi-directional influence manifests throughout the multi-turn conversations. This study investigates this dynamic through 50 controversial-topic discussions with participants (N=266) across three conditions: static statements, standard chatbot, and personalized chatbot. Results show that human opinions barely shifted, while LLM outputs changed more substantially, narrowing the gap between human and LLM stance. Personalization amplified these shifts in both directions compared to the standard setting. Analysis of multi-turn conversations further revealed that exchanges involving participants' personal stories were most likely to trigger stance changes for both humans and LLMs. Our work highlights the risk of over-alignment in human-LLM interaction and the need for careful design of personalized chatbots to more thoughtfully and stably align with users.
comment: 26 pages, 8 figures
☆ ToolScope: Enhancing LLM Agent Tool Use through Tool Merging and Context-Aware Filtering
Large language model (LLM) agents rely on external tools to solve complex tasks, but real-world toolsets often contain redundant tools with overlapping names and descriptions, introducing ambiguity and reducing selection accuracy. LLMs also face strict input context limits, preventing efficient consideration of large toolsets. To address these challenges, we propose ToolScope, which includes: (1) ToolScopeMerger with Auto-Correction to automatically audit and fix tool merges, reducing redundancy, and (2) ToolScopeRetriever to rank and select only the most relevant tools for each query, compressing toolsets to fit within context limits without sacrificing accuracy. Evaluations on three state-of-the-art LLMs and three open-source tool-use benchmarks show gains of 8.38% to 38.6% in tool selection accuracy, demonstrating ToolScope's effectiveness in enhancing LLM tool use.
comment: Preprint under review
☆ Improving Transfer Learning for Sequence Labeling Tasks by Adapting Pre-trained Neural Language Models
This doctoral thesis improves the transfer learning for sequence labeling tasks by adapting pre-trained neural language models. The proposed improvements in transfer learning involve introducing a multi-task model that incorporates an additional signal, a method based on architectural modifications in autoregressive large language models, and a sequence labeling framework for autoregressive large language models utilizing supervised in-context fine-tuning combined with response-oriented adaptation strategies. The first improvement is given in the context of domain transfer for the event trigger detection task. The domain transfer of the event trigger detection task can be improved by incorporating an additional signal obtained from a domain-independent text processing system into a multi-task model. The second improvement involves modifying the model's architecture. For that purpose, a method is proposed to enable bidirectional information flow across layers of autoregressive large language models. The third improvement utilizes autoregressive large language models as text generators through a generative supervised in-context fine-tuning framework. The proposed model, method, and framework demonstrate that pre-trained neural language models achieve their best performance on sequence labeling tasks when adapted through targeted transfer learning paradigms.
♻ ☆ LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
♻ ☆ Unlearned but Not Forgotten: Data Extraction after Exact Unlearning in LLM
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) have been increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
comment: Published in Transactions of Machine Learning Research (TMLR), 10/2025 https://openreview.net/forum?id=MB0TCLfLn1
♻ ☆ Evaluation Framework for Highlight Explanations of Context Utilisation in Language Models
Context utilisation, the ability of Language Models (LMs) to incorporate relevant information from the provided context when generating responses, remains largely opaque to users, who cannot determine whether models draw from parametric memory or provided context, nor identify which specific context pieces inform the response. Highlight explanations (HEs) offer a natural solution as they can point the exact context pieces and tokens that influenced model outputs. However, no existing work evaluates their effectiveness in accurately explaining context utilisation. We address this gap by introducing the first gold standard HE evaluation framework for context attribution, using controlled test cases with known ground-truth context usage, which avoids the limitations of existing indirect proxy evaluations. To demonstrate the framework's broad applicability, we evaluate four HE methods -- three established techniques and MechLight, a mechanistic interpretability approach we adapt for this task -- across four context scenarios, four datasets, and five LMs. Overall, we find that MechLight performs best across all context scenarios. However, all methods struggle with longer contexts and exhibit positional biases, pointing to fundamental challenges in explanation accuracy that require new approaches to deliver reliable context utilisation explanations at scale.
♻ ☆ WikiVideo: Article Generation from Multiple Videos
We introduce the task of grounded article generation with the goal of creating a Wikipedia-style article from multiple diverse videos about real-world events -- from natural disasters to political elections -- where all the information in the article is supported by video evidence. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text while existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher-level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
comment: Repo can be found here: https://github.com/alexmartin1722/wikivideo
♻ ☆ The Coverage Principle: How Pre-Training Enables Post-Training
Language models demonstrate remarkable abilities when pre-trained on large text corpora and fine-tuned for specific tasks, but how and why pre-training shapes the success of the final model remains poorly understood. Notably, although pre-training success is often quantified by cross-entropy loss, cross-entropy can be a poor predictor of downstream performance. Instead, we provide a theoretical perspective on this relationship through the lens of \emph{coverage}, which quantifies the probability mass the pre-trained model places on high-quality responses and which is necessary and sufficient for post-training and test-time scaling methods such as Best-of-N to succeed. Our main results develop an understanding of \emph{the coverage principle}, a phenomenon whereby next-token prediction (more generally, maximum likelihood) implicitly optimizes toward a model with good coverage. In particular, we uncover a mechanism that explains the power of coverage in predicting downstream performance: \emph{coverage generalizes faster than cross-entropy}, avoiding spurious dependence on problem-dependent parameters such as the sequence length. We also study practical algorithmic interventions with provable benefits for improving coverage, including (i) model/checkpoint selection procedures, (ii) gradient normalization schemes, and (iii) test-time decoding strategies.
♻ ☆ GeoBenchX: Benchmarking LLMs in Agent Solving Multistep Geospatial Tasks
This paper establishes a benchmark for evaluating tool-calling capabilities of large language models (LLMs) on multi-step geospatial tasks relevant to commercial GIS practitioners. We assess eight commercial LLMs (Claude Sonnet 3.5 and 4, Claude Haiku 3.5, Gemini 2.0 Flash, Gemini 2.5 Pro Preview, GPT-4o, GPT-4.1 and o4-mini) using a simple tool-calling agent equipped with 23 geospatial functions. Our benchmark comprises tasks in four categories of increasing complexity, with both solvable and intentionally unsolvable tasks to test rejection accuracy. We develop a LLM-as-Judge evaluation framework to compare agent solutions against reference solutions. Results show o4-mini and Claude 3.5 Sonnet achieve the best overall performance, OpenAI's GPT-4.1, GPT-4o and Google's Gemini 2.5 Pro Preview do not fall far behind, but the last two are more efficient in identifying unsolvable tasks. Claude Sonnet 4, due its preference to provide any solution rather than reject a task, proved to be less accurate. We observe significant differences in token usage, with Anthropic models consuming more tokens than competitors. Common errors include misunderstanding geometrical relationships, relying on outdated knowledge, and inefficient data manipulation. The resulting benchmark set, evaluation framework, and data generation pipeline are released as open-source resources (available at https://github.com/Solirinai/GeoBenchX), providing one more standardized method for the ongoing evaluation of LLMs for GeoAI.
comment: Github with code and benchmark set: https://github.com/Solirinai/GeoBenchX
♻ ☆ LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits NeurIPS 2025
Reward Models (RMs) are crucial to aligning large language models (LLMs), but the degree to which an RM specialized to one task (e.g. writing) generalizes to new tasks (e.g. math) is often not known a priori, often making using only one fixed RM to train LLMs suboptimal. However, optimizing LLMs with multiple RMs simultaneously can incur a prohibitively high computational cost and lead to conflicting signals from different RMs that may degrade performance. To address these challenges, we introduce LASeR (Learning to Adaptively Select Rewards), which frames reward model selection as a multi-armed bandit problem, efficiently and iteratively training LLMs using multiple RMs by selecting the most well-suited RM for each instance. On commonsense and math reasoning tasks, we show that LASeR boosts iterative LLM training, improving the absolute average accuracy of Llama-3-8B over three datasets by 2.67% over an ensemble of RM scores while also showing superior efficiency (e.g., a 2x speedup). Moreover, on WildChat (open-ended instruction-following tasks), LASeR leads to a 72.69% AlpacaEval win rate over the RM score ensemble baseline. Extending to long-context generation, LASeR improves by 2.96 F1 points (avg.) on single-document QA tasks and 2.97 F1 points on few-shot learning over the RM score ensemble baseline with best-of-n sampling.
comment: NeurIPS 2025 camera-ready. First two authors contributed equally. Code: https://github.com/duykhuongnguyen/LASeR-MAB
♻ ☆ metaTextGrad: Automatically optimizing language model optimizers
Large language models (LLMs) are increasingly used in learning algorithms, evaluations, and optimization tasks. Recent studies have shown that using LLM-based optimizers to automatically optimize model prompts, demonstrations, predictions themselves, or other components can significantly enhance the performance of AI systems, as demonstrated by frameworks such as DSPy and TextGrad. However, optimizers built on language models themselves are usually designed by humans with manual design choices; optimizers themselves are not optimized. Moreover, these optimizers are general purpose by design, to be useful to a broad audience, and are not tailored for specific tasks. To address these challenges, we propose metaTextGrad, which focuses on designing a meta-optimizer to further enhance existing optimizers and align them to be good optimizers for a given task. Our approach consists of two key components: a meta prompt optimizer and a meta structure optimizer. The combination of these two significantly improves performance across multiple benchmarks, achieving an average absolute performance improvement of up to 6% compared to the best baseline.
comment: 21 pages, 2 figures
♻ ☆ Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
comment: 24 pages, 20 figures, under review
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ dInfer: An Efficient Inference Framework for Diffusion Language Models
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.
♻ ☆ Unveiling Transformer Perception by Exploring Input Manifolds
This paper introduces a general method for the exploration of equivalence classes in the input space of Transformer models. The proposed approach is based on sound mathematical theory which describes the internal layers of a Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition of the pullback of the distance metric defined on the output space through the Jacobian of the model, we are able to reconstruct equivalence classes in the input space and navigate across them. Our method enables two complementary exploration procedures: the first retrieves input instances that produce the same class probability distribution as the original instance-thus identifying elements within the same equivalence class-while the second discovers instances that yield a different class probability distribution, effectively navigating toward distinct equivalence classes. Finally, we demonstrate how the retrieved instances can be meaningfully interpreted by projecting their embeddings back into a human-readable format.
comment: 11 pages, 4 figures
♻ ☆ Hire Your Anthropologist! Rethinking Culture Benchmarks Through an Anthropological Lens
Cultural evaluation of large language models has become increasingly important, yet current benchmarks often reduce culture to static facts or homogeneous values. This view conflicts with anthropological accounts that emphasize culture as dynamic, historically situated, and enacted in practice. To analyze this gap, we introduce a four-part framework that categorizes how benchmarks frame culture, such as knowledge, preference, performance, or bias. Using this lens, we qualitatively examine 20 cultural benchmarks and identify six recurring methodological issues, including treating countries as cultures, overlooking within-culture diversity, and relying on oversimplified survey formats. Drawing on established anthropological methods, we propose concrete improvements: incorporating real-world narratives and scenarios, involving cultural communities in design and validation, and evaluating models in context rather than isolation. Our aim is to guide the development of cultural benchmarks that go beyond static recall tasks and more accurately capture the responses of the models to complex cultural situations.
comment: 12 pages; 2 figures; First two author contributed equally
♻ ☆ InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models
Model fusion combines multiple Large Language Models (LLMs) with different strengths into a more powerful, integrated model through lightweight training methods. Existing works on model fusion focus primarily on supervised fine-tuning (SFT), leaving preference alignment (PA) --a critical phase for enhancing LLM performance--largely unexplored. The current few fusion methods on PA phase, like WRPO, simplify the process by utilizing only response outputs from source models while discarding their probability information. To address this limitation, we propose InfiFPO, a preference optimization method for implicit model fusion. InfiFPO replaces the reference model in Direct Preference Optimization (DPO) with a fused source model that synthesizes multi-source probabilities at the sequence level, circumventing complex vocabulary alignment challenges in previous works and meanwhile maintaining the probability information. By introducing probability clipping and max-margin fusion strategies, InfiFPO enables the pivot model to align with human preferences while effectively distilling knowledge from source models. Comprehensive experiments on 11 widely-used benchmarks demonstrate that InfiFPO consistently outperforms existing model fusion and preference optimization methods. When using Phi-4 as the pivot model, InfiFPO improve its average performance from 79.95 to 83.33 on 11 benchmarks, significantly improving its capabilities in mathematics, coding, and reasoning tasks.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research NeurIPS 2025
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 49 pages, 9 figures. Accepted by NeurIPS 2025 D&B Track
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ Using (Not-so) Large Language Models to Generate Simulation Models in a Formal DSL: A Study on Reaction Networks
Formal languages are an integral part of modeling and simulation. They allow the distillation of knowledge into concise simulation models amenable to automatic execution, interpretation, and analysis. However, the arguably most humanly accessible means of expressing models is through natural language, which is not easily interpretable by computers. Here, we evaluate how a Large Language Model (LLM) might be used for formalizing natural language into simulation models. Existing studies only explored using very large LLMs, like the commercial GPT models, without fine-tuning model weights. To close this gap, we show how an open-weights, 7B-parameter Mistral model can be fine-tuned to translate natural language descriptions to reaction network models in a domain-specific language, offering a self-hostable, compute-efficient, and memory efficient alternative. To this end, we develop a synthetic data generator to serve as the basis for fine-tuning and evaluation. Our quantitative evaluation shows that our fine-tuned Mistral model can recover the ground truth simulation model in up to 84.5% of cases. In addition, our small-scale user study demonstrates the model's practical potential for one-time generation as well as interactive modeling in various domains. While promising, in its current form, the fine-tuned small LLM cannot catch up with large LLMs. We conclude that higher-quality training data are required, and expect future small and open-source LLMs to offer new opportunities.
comment: 27 pages, 5 figures; supplemental material available at https://doi.org/10.1145/3733719
♻ ☆ Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning EMNLP 2025
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.
comment: Accepted by EMNLP 2025 (Main)
♻ ☆ Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications
In recent developments, deep learning methodologies applied to Natural Language Processing (NLP) have revealed a paradox: They improve performance but demand considerable data and resources for their training. Alternatively, quantum computing exploits the principles of quantum mechanics to overcome the computational limitations of current methodologies, thereby establishing an emerging field known as quantum natural language processing (QNLP). This domain holds the potential to attain a quantum advantage in the processing of linguistic structures, surpassing classical models in both efficiency and accuracy. In this paper, it is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches. This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area, embracing quantum encoding techniques for classical data, QNLP models for prevalent NLP tasks, and quantum optimisation techniques for hyper parameter tuning. The landscape of quantum computing approaches applied to various NLP tasks is summarised by showcasing the specific QNLP methods used, and the popularity of these methods is indicated by their count. From the findings, it is observed that QNLP approaches are still limited to small data sets, with only a few models explored extensively, and there is increasing interest in the application of quantum computing to natural language processing tasks.
♻ ☆ Can Large Language Models be Effective Online Opinion Miners? EMNLP 2025
The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
comment: Accepted to EMNLP 2025 Main
♻ ☆ Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs
Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/
comment: 47 pages, 25 figures, 10 tables
♻ ☆ From TOWER to SPIRE: Adding the Speech Modality to a Translation-Specialist LLM EMNLP 2025
We introduce Spire, a speech-augmented language model (LM) capable of both translating and transcribing speech input from English into 10 other languages as well as translating text input in both language directions. Spire integrates the speech modality into an existing multilingual LM via speech discretization and continued pre-training using only 42.5K hours of speech. In particular, we adopt the pretraining framework of multilingual LMs and treat discretized speech input as an additional translation language. This approach not only equips the model with speech capabilities, but also preserves its strong text-based performance. We achieve this using significantly less data than existing speech LMs, demonstrating that discretized speech input integration as an additional language is feasible during LM adaptation. We make our code and models available to the community.
comment: EMNLP 2025 (Findings) camera ready
♻ ☆ Natural Language Processing for Cardiology: A Narrative Review
Cardiovascular diseases are becoming increasingly prevalent in modern society, with a profound impact on global health and well-being. These Cardiovascular disorders are complex and multifactorial, influenced by genetic predispositions, lifestyle choices, and diverse socioeconomic and clinical factors. Information about these interrelated factors is dispersed across multiple types of textual data, including patient narratives, medical records, and scientific literature. Natural language processing (NLP) has emerged as a powerful approach for analysing such unstructured data, enabling healthcare professionals and researchers to gain deeper insights that may transform the diagnosis, treatment, and prevention of cardiac disorders. This review provides a comprehensive overview of NLP research in cardiology from 2014 to 2025. We systematically searched six literature databases for studies describing NLP applications across a range of cardiovascular diseases. After a rigorous screening process, we identified 265 relevant articles. Each study was analysed across multiple dimensions, including NLP paradigms, cardiology-related tasks, disease types, and data sources. Our findings reveal substantial diversity within these dimensions, reflecting the breadth and evolution of NLP research in cardiology. A temporal analysis further highlights methodological trends, showing a progression from rule-based systems to large language models. Finally, we discuss key challenges and future directions, such as developing interpretable LLMs and integrating multimodal data. To the best of our knowledge, this review represents the most comprehensive synthesis of NLP research in cardiology to date.
♻ ☆ Evaluating NLP Embedding Models for Handling Science-Specific Symbolic Expressions in Student Texts
In recent years, natural language processing (NLP) has become integral to educational data mining, particularly in the analysis of student-generated language products. For research and assessment purposes, so-called embedding models are typically employed to generate numeric representations of text that capture its semantic content for use in subsequent quantitative analyses. Yet when it comes to science-related language, symbolic expressions such as equations and formulas introduce challenges that current embedding models struggle to address. Existing research studies and practical applications often either overlook these challenges or remove symbolic expressions altogether, potentially leading to biased research findings and diminished performance of practical applications. This study therefore explores how contemporary embedding models differ in their capability to process and interpret science-related symbolic expressions. To this end, various embedding models are evaluated using physics-specific symbolic expressions drawn from authentic student responses, with performance assessed via two approaches: 1) similarity-based analyses and 2) integration into a machine learning pipeline. Our findings reveal significant differences in model performance, with OpenAI's GPT-text-embedding-3-large outperforming all other examined models, though its advantage over other models was moderate rather than decisive. Overall, this study underscores the importance for educational data mining researchers and practitioners of carefully selecting NLP embedding models when working with science-related language products that include symbolic expressions. The code and (partial) data are available at https://doi.org/10.17605/OSF.IO/6XQVG.
♻ ☆ Bias Beware: The Impact of Cognitive Biases on LLM-Driven Product Recommendations EMNLP 2025
The advent of Large Language Models (LLMs) has revolutionized product recommenders, yet their susceptibility to adversarial manipulation poses critical challenges, particularly in real-world commercial applications. Our approach is the first one to tap into human psychological principles, seamlessly modifying product descriptions, making such manipulations hard to detect. In this work, we investigate cognitive biases as black-box adversarial strategies, drawing parallels between their effects on LLMs and human purchasing behavior. Through extensive evaluation across models of varying scale, we find that certain biases, such as social proof, consistently boost product recommendation rate and ranking, while others, like scarcity and exclusivity, surprisingly reduce visibility. Our results demonstrate that cognitive biases are deeply embedded in state-of-the-art LLMs, leading to highly unpredictable behavior in product recommendations and posing significant challenges for effective mitigation.
comment: Accepted at EMNLP 2025
♻ ☆ Memorization-Compression Cycles Improve Generalization NeurIPS2025
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
comment: 12 pages, 6 figures, NeurIPS2025 NEGEL Workshop
♻ ☆ Meeseeks: A Feedback-Driven, Iterative Self-Correction Benchmark evaluating LLMs' Instruction Following Capability
The capability to precisely adhere to instructions is a cornerstone for Large Language Models (LLMs) to function as dependable agents in real-world scenarios. However, confronted with complex prompts, LLMs frequently encounter difficulties in fulfilling all specified requirements within a single response. Drawing inspiration from recent advancements in Chain-of-Thought (CoT) prompting and self-correction methodologies, we introduce Meeseeks (The name is inspired by Mr. Meeseeks from "Rick and Morty," a character renowned for efficiently accomplishing assigned tasks. See: https://en.wikipedia.org/wiki/Mr._Meeseeks), a fully automated iterative instruction-following benchmark equipped with an integrated feedback mechanism. Meeseeks identifies erroneous components in model responses and provides corresponding feedback accurately, thereby iteratively guiding the model toward self-correction. The dataset contains over 700 curated instances annotated by 32 distinct capability tags in Chinese and English. Extensive experimental results reveal that different state-of-the-art commercial and open-source LLMs exhibit vastly disparate performance, and even after 20 turns of iterative feedback-driven self-correction, nearly all models demonstrate suboptimal performance. We conducted comprehensive analysis from both macro and instance levels, uncovering numerous common issues prevalent in current state-of-the-art models, as well as several counterintuitive phenomena. We've open-sourced our work on https://github.com/ADoublLEN/Meeseeks.
♻ ☆ LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K
State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 15 LLMs on LV-Eval and conduct ablation studies on the benchmarking techniques. The results reveal that: (i) Moonshot-v1 and recent large-scale open-source models, such as Qwen-2.5-72B and Llama-3.1-70B, achieve the highest performance on LV-Eval, particularly at lengths below 64k. (ii) Models exhibit distinct score trends. For example, GLM-4-9B-128k, Yi-6B-200k, and Llama3-8B-1M exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
♻ ☆ Reasoning Models Better Express Their Confidence NeurIPS 2025
Despite their strengths, large language models (LLMs) often fail to communicate their confidence accurately, making it difficult to assess when they might be wrong and limiting their reliability. In this work, we demonstrate that reasoning models that engage in extended chain-of-thought (CoT) reasoning exhibit superior performance not only in problem-solving but also in accurately expressing their confidence. Specifically, we benchmark six reasoning models across six datasets and find that they achieve strictly better confidence calibration than their non-reasoning counterparts in 33 out of the 36 settings. Our detailed analysis reveals that these gains in calibration stem from the slow thinking behaviors of reasoning models (e.g., exploring alternative approaches and backtracking) which enable them to adjust their confidence dynamically throughout their CoT, making it progressively more accurate. In particular, we find that reasoning models become increasingly better calibrated as their CoT unfolds, a trend not observed in non-reasoning models. Moreover, removing slow thinking behaviors from the CoT leads to a significant drop in calibration. Lastly, we show that non-reasoning models also demonstrate enhanced calibration when simply guided to slow think via in-context learning, fully isolating slow thinking as the source of the calibration gains.
comment: Accepted to NeurIPS 2025
♻ ☆ FrugalPrompt: Reducing Contextual Overhead in Large Language Models via Token Attribution
Large language models (LLMs) owe much of their stellar performance to expansive input contexts, yet such verbosity inflates monetary costs, carbon footprint, and inference-time latency. Much of this overhead manifests from the redundant low-utility tokens present in typical prompts, as only a fraction of tokens typically carries the majority of the semantic weight. We address this inefficiency by introducing FrugalPrompt, a novel prompt compression framework for LLMs, which retains only the most semantically significant tokens. Leveraging two state-of-the-art token attribution methods, GlobEnc and DecompX, we assign salience scores to every token in an input sequence, rank them to preserve the top-k% tokens in their original order, and obtain a sparse frugalized prompt. We evaluate the approach across four NLP tasks: Sentiment Analysis, Commonsense QA, Summarization, and Mathematical Reasoning, using a suite of frontier LLMs. For the first three tasks, a 20% prompt reduction incurs only a marginal loss in task performance, demonstrating that contemporary LLMs can reconstruct elided context from high-salience cues. In contrast, performance on mathematical reasoning deteriorates sharply, reflecting a stronger dependence on complete token continuity. Further analysis with bottom-k% and random-k% tokens reveals asymmetric performance patterns that may suggest potential task contamination effects, wherein models may resort to shallow memorized patterns from pretraining exposure for conventional NLP tasks. We posit that our work contributes to a more nuanced understanding of LLM behavior in performance-efficiency trade-offs, and delineate the boundary between tasks tolerant to contextual sparsity and those requiring exhaustive context. Our source code and models are available at: https://github.com/Starscream-11813/Frugal-ICL.
♻ ☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
♻ ☆ Chiron-o1: Igniting Multimodal Large Language Models towards Generalizable Medical Reasoning via Mentor-Intern Collaborative Search
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at https://github.com/manglu097/Chiron-o1
♻ ☆ DeCAL Tokenwise Compression
This paper introduces DeCAL, a new method for tokenwise compression. DeCAL uses an encoder-decoder language model pretrained with denoising to learn to produce high-quality, general-purpose compressed representations from the encoder. DeCAL applies small modifications to the encoder, with the emphasis on maximizing compression quality, even at the expense of compute. We show that DeCAL at 2x compression can match uncompressed on several downstream tasks, with usually only a minor dropoff in metrics up to 8x compression, among question-answering, summarization, and multi-vector retrieval tasks. DeCAL offers significant savings where pre-computed dense representations can be utilized, and we believe the approach can be further developed to be more broadly applicable.
♻ ☆ Flexible-length Text Infilling for Discrete Diffusion Models EMNLP
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
comment: Major edit of methodology section. Matches EMNLP camera-ready version
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Demystifying Domain-adaptive Post-training for Financial LLMs EMNLP 2025
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach consists of four key components: FinCap, which defines the core capabilities required for the target domain; FinRec, an effective training recipe that jointly optimizes continual pre-training and instruction-following, along with a novel preference data distillation method leveraging process signals from a generative reward model; FinTrain, a curated set of training datasets supporting FinRec; and FinEval, a comprehensive evaluation suite aligned with FinCap. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs
comment: EMNLP 2025 (Oral, ARR best paper nomination)
♻ ☆ Who's Asking? Investigating Bias Through the Lens of Disability Framed Queries in LLMs ICCV 2025
Large Language Models (LLMs) routinely infer users demographic traits from phrasing alone, which can result in biased responses, even when no explicit demographic information is provided. The role of disability cues in shaping these inferences remains largely uncharted. Thus, we present the first systematic audit of disability-conditioned demographic bias across eight state-of-the-art instruction-tuned LLMs ranging from 3B to 72B parameters. Using a balanced template corpus that pairs nine disability categories with six real-world business domains, we prompt each model to predict five demographic attributes - gender, socioeconomic status, education, cultural background, and locality - under both neutral and disability-aware conditions. Across a varied set of prompts, models deliver a definitive demographic guess in up to 97\% of cases, exposing a strong tendency to make arbitrary inferences with no clear justification. Disability context heavily shifts predicted attribute distributions, and domain context can further amplify these deviations. We observe that larger models are simultaneously more sensitive to disability cues and more prone to biased reasoning, indicating that scale alone does not mitigate stereotype amplification. Our findings reveal persistent intersections between ableism and other demographic stereotypes, pinpointing critical blind spots in current alignment strategies. We release our evaluation framework and results to encourage disability-inclusive benchmarking and recommend integrating abstention calibration and counterfactual fine-tuning to curb unwarranted demographic inference. Code and data will be released on acceptance.
comment: Accepted at ICCV 2025
♻ ☆ GUARD: Guided Unlearning and Retention via Data Attribution for Large Language Models
Unlearning in large language models is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this problem, we propose GUARD, a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the alignment between the Forget and Retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended retention loss. We also provide rigorous theoretical guarantees that GUARD significantly improves retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU and MUSE benchmarks across multiple LLM architectures demonstrate that GUARD reduces utility sacrifice on the TOFU Retain Set by up to 194.92 percent in terms of Truth Ratio when forgetting 10 percent of the training data, and improves knowledge retention on the MUSE NEWS Retain Set by 16.20 percent, with comparable or very moderate increases in privacy loss compared to state-of-the-art methods.
♻ ☆ Beyond GPT-5: Making LLMs Cheaper and Better via Performance-Efficiency Optimized Routing
Balancing performance and efficiency is a central challenge in large language model (LLM) advancement. GPT-5 addresses this with test-time routing, dynamically assigning queries to either an efficient or a high-capacity model during inference. In this work, we present Avengers-Pro, a test-time routing framework that ensembles LLMs of varying capacities and efficiencies, providing a unified solution for all performance-efficiency tradeoffs. The Avengers-Pro embeds and clusters incoming queries, then routes each to the most suitable model based on a performance-efficiency score. Across 6 challenging benchmarks and 8 leading models -- including GPT-5-medium, Gemini-2.5-pro, and Claude-opus-4.1 -- Avengers-Pro achieves state-of-the-art results: by varying a performance-efficiency trade-off parameter, it can surpass the strongest single model (GPT-5-medium) by +7% in average accuracy. Moreover, it can match the average accuracy of the strongest single model at 27% lower cost, and reach ~90% of that performance at 63% lower cost. Last but not least, it achieves a Pareto frontier, consistently yielding the highest accuracy for any given cost, and the lowest cost for any given accuracy, among all single models. Code is available at https://github.com/ZhangYiqun018/AvengersPro.
comment: This work has been accepted to DAI 2025
♻ ☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings ("Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs")
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness NeurIPS
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
comment: NeurIPS Camera-Ready Version. Code available at: https://github.com/Graph-COM/Knowledge_Unlearning
♻ ☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
comment: First two authors have equal author contributions
♻ ☆ LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5. The LCB dataset is available publicly at https://huggingface.co/datasets/Steefano/LCB and the codebase to replicate the work on this paper at https://github.com/Zteefano/long-code-bench.
♻ ☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
♻ ☆ Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems NeurIPS 2025
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights. We represent multi-LLM systems as directed acyclic graphs (DAGs) of LLMs with topological message passing for collaborative generation. Given a pool of LLM experts and a utility function, Heterogeneous Swarms employs two iterative steps: role-step and weight-step. For role-step, we interpret model roles as learning a DAG that specifies the flow of inputs and outputs between LLMs. Starting from a swarm of random continuous adjacency matrices, we decode them into discrete DAGs, call the LLMs in topological order, evaluate on the utility function (e.g. accuracy on a task), and optimize the adjacency matrices with particle swarm optimization based on the utility score. For weight-step, we assess the contribution of individual LLMs in the multi-LLM systems and optimize model weights with swarm intelligence. We propose JFK-score to quantify the individual contribution of each LLM in the best-found DAG of the role-step, then optimize model weights with particle swarm optimization based on the JFK-score. Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks. Further analysis reveals that Heterogeneous Swarms discovers multi-LLM systems with heterogeneous model roles and substantial collaborative gains, and benefits from the diversity of language models.
comment: NeurIPS 2025
♻ ☆ Rope to Nope and Back Again: A New Hybrid Attention Strategy
Long-context large language models (LLMs) have achieved remarkable advancements, driven by techniques like Rotary Position Embedding (RoPE) (Su et al., 2023) and its extensions (Chen et al., 2023; Liu et al., 2024c; Peng et al., 2023). By adjusting RoPE parameters and incorporating training data with extended contexts, we can train performant models with considerably longer input sequences. However, existing RoPE-based methods exhibit performance limitations when applied to extended context lengths. This paper presents a comprehensive analysis of various attention mechanisms, including RoPE, No Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identifying their strengths and shortcomings in long-context modeling. Our investigation identifies distinctive attention patterns in these methods and highlights their impact on long-context performance, providing valuable insights for architectural design. Building on these findings, we propose a novel architecture featuring a hybrid attention mechanism that integrates global and local attention spans. This design not only surpasses conventional RoPE-based transformer models with full attention in both long and short context tasks but also delivers substantial efficiency gains during training and inference.
♻ ☆ Permutative Preference Alignment from Listwise Ranking of Human Judgments EMNLP 2025
Aligning Large Language Models (LLMs) with human preferences is crucial in ensuring desirable and controllable model behaviors. Current methods, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on the Bradley-Terry (B-T) model to maximize the likelihood of pairwise choices. However, when multiple responses are available, the B-T model fails to guarantee an accurate list ranking of the responses. To address this issue, we propose Permutative Preference Alignment (PPA), a novel offline listwise approach that incorporates the Normalized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, as an alternative training objective for LLM alignment. We develop an end-to-end alignment algorithm by approximating NDCG with a differentiable surrogate loss. Experiments demonstrate that PPA outperforms existing pairwise and listwise methods on evaluation sets and general benchmarks such as AlpacaEval. Furthermore, we show that NDCG-based approaches improve ranking accuracy more effectively than B-T-based methods and provide a theoretical explanation for this improvement.
comment: Published at EMNLP 2025 Main Conference
♻ ☆ SpecEval: Evaluating Model Adherence to Behavior Specifications
Companies that develop foundation models publish behavioral guidelines they pledge their models will follow, but it remains unclear if models actually do so. While providers such as OpenAI, Anthropic, and Google have published detailed specifications describing both desired safety constraints and qualitative traits for their models, there has been no systematic audit of adherence to these guidelines. We introduce an automated framework that audits models against their providers specifications by parsing behavioral statements, generating targeted prompts, and using models to judge adherence. Our central focus is on three way consistency between a provider specification, its model outputs, and its own models as judges; an extension of prior two way generator validator consistency. This establishes a necessary baseline: at minimum, a foundation model should consistently satisfy the developer behavioral specifications when judged by the developer evaluator models. We apply our framework to 16 models from six developers across more than 100 behavioral statements, finding systematic inconsistencies including compliance gaps of up to 20 percent across providers.
♻ ☆ Language Models (Mostly) Know When to Stop Reading NeurIPS 2025
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient when the information required to answer a query is localized within the context. We present dynamic context cutoff, a novel method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" -- detectable through lightweight classifiers -- that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement while achieving 1.33x token reduction on average. Furthermore, our method demonstrates superior performance compared to other context efficiency methods at equivalent token reduction rates. Additionally, we observe an emergent scaling phenomenon: while smaller models require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
comment: Accepted to NeurIPS 2025. Project website: https://royxie.com/when-to-stop-project
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models NeurIPS
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.
comment: The first two authors contributed equally. This work has been accepted to the Neural Information Processing Systems (NeurIPS) 2025 Datasets & Benchmark Track. Project Page: https://rf100-vl.org/
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products NeurIPS 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or mLSTM, yield fast runtime but have limited expressivity. To address this, recent architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank--1 structure, which allows simultaneous token and channel mixing, improving associative recall and, as recently shown, state-tracking when allowing state-transition matrices to have negative eigenvalues. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank--$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency. We provide a detailed theoretical characterization of the state-tracking capability of DeltaProduct in finite precision, showing how it improves by increasing $n_h$. Our extensive experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-tracking and language modeling, while also showing significantly improved length extrapolation capabilities.
comment: v5: Characterization of DeltaProduct's state-tracking ability. Analysis of hidden state's effective rank. Improved scaling analysis. v6: Added analysis for products of RWKV-7 matrices, v6: Accepted at NeurIPS 2025
Computation and Language
☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
☆ Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
☆ How Do LLMs Use Their Depth?
Growing evidence suggests that large language models do not use their depth uniformly, yet we still lack a fine-grained understanding of their layer-wise prediction dynamics. In this paper, we trace the intermediate representations of several open-weight models during inference and reveal a structured and nuanced use of depth. Specifically, we propose a "Guess-then-Refine" framework that explains how LLMs internally structure their computations to make predictions. We first show that the top-ranked predictions in early LLM layers are composed primarily of high-frequency tokens, which act as statistical guesses proposed by the model early on due to the lack of appropriate contextual information. As contextual information develops deeper into the model, these initial guesses get refined into contextually appropriate tokens. Even high-frequency token predictions from early layers get refined >70% of the time, indicating that correct token prediction is not "one-and-done". We then go beyond frequency-based prediction to examine the dynamic usage of layer depth across three case studies. (i) Part-of-speech analysis shows that function words are, on average, the earliest to be predicted correctly. (ii) Fact recall task analysis shows that, in a multi-token answer, the first token requires more computational depth than the rest. (iii) Multiple-choice task analysis shows that the model identifies the format of the response within the first half of the layers, but finalizes its response only toward the end. Together, our results provide a detailed view of depth usage in LLMs, shedding light on the layer-by-layer computations that underlie successful predictions and providing insights for future works to improve computational efficiency in transformer-based models.
☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
☆ Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model
We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.
comment: Technical Report
☆ Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
Faithfully personalizing large language models (LLMs) to align with individual user preferences is a critical but challenging task. While supervised fine-tuning (SFT) quickly reaches a performance plateau, standard reinforcement learning from human feedback (RLHF) also struggles with the nuances of personalization. Scalar-based reward models are prone to reward hacking which leads to verbose and superficially personalized responses. To address these limitations, we propose Critique-Post-Edit, a robust reinforcement learning framework that enables more faithful and controllable personalization. Our framework integrates two key components: (1) a Personalized Generative Reward Model (GRM) that provides multi-dimensional scores and textual critiques to resist reward hacking, and (2) a Critique-Post-Edit mechanism where the policy model revises its own outputs based on these critiques for more targeted and efficient learning. Under a rigorous length-controlled evaluation, our method substantially outperforms standard PPO on personalization benchmarks. Personalized Qwen2.5-7B achieves an average 11\% win-rate improvement, and personalized Qwen2.5-14B model surpasses the performance of GPT-4.1. These results demonstrate a practical path to faithful, efficient, and controllable personalization.
comment: work in progress
☆ See the Text: From Tokenization to Visual Reading
People see text. Humans read by recognizing words as visual objects, including their shapes, layouts, and patterns, before connecting them to meaning, which enables us to handle typos, distorted fonts, and various scripts effectively. Modern large language models (LLMs), however, rely on subword tokenization, fragmenting text into pieces from a fixed vocabulary. While effective for high-resource languages, this approach over-segments low-resource languages, yielding long, linguistically meaningless sequences and inflating computation. In this work, we challenge this entrenched paradigm and move toward a vision-centric alternative. Our method, SeeTok, renders text as images (visual-text) and leverages pretrained multimodal LLMs to interpret them, reusing strong OCR and text-vision alignment abilities learned from large-scale multimodal training. Across three different language tasks, SeeTok matches or surpasses subword tokenizers while requiring 4.43 times fewer tokens and reducing FLOPs by 70.5%, with additional gains in cross-lingual generalization, robustness to typographic noise, and linguistic hierarchy. SeeTok signals a shift from symbolic tokenization to human-like visual reading, and takes a step toward more natural and cognitively inspired language models.
☆ MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.
☆ Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring EMNLP 2025
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.
comment: Accepted at EMNLP 2025
☆ WebSeer: Training Deeper Search Agents through Reinforcement Learning with Self-Reflection
Search agents have achieved significant advancements in enabling intelligent information retrieval and decision-making within interactive environments. Although reinforcement learning has been employed to train agentic models capable of more dynamic interactive retrieval, existing methods are limited by shallow tool-use depth and the accumulation of errors over multiple iterative interactions. In this paper, we present WebSeer, a more intelligent search agent trained via reinforcement learning enhanced with a self-reflection mechanism. Specifically, we construct a large dataset annotated with reflection patterns and design a two-stage training framework that unifies cold start and reinforcement learning within the self-reflection paradigm for real-world web-based environments, which enables the model to generate longer and more reflective tool-use trajectories. Our approach substantially extends tool-use chains and improves answer accuracy. Using a single 14B model, we achieve state-of-the-art results on HotpotQA and SimpleQA, with accuracies of 72.3% and 90.0%, respectively, and demonstrate strong generalization to out-of-distribution datasets. The code is available at https://github.com/99hgz/WebSeer
☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
☆ AI use in American newspapers is widespread, uneven, and rarely disclosed
AI is rapidly transforming journalism, but the extent of its use in published newspaper articles remains unclear. We address this gap by auditing a large-scale dataset of 186K articles from online editions of 1.5K American newspapers published in the summer of 2025. Using Pangram, a state-of-the-art AI detector, we discover that approximately 9% of newly-published articles are either partially or fully AI-generated. This AI use is unevenly distributed, appearing more frequently in smaller, local outlets, in specific topics such as weather and technology, and within certain ownership groups. We also analyze 45K opinion pieces from Washington Post, New York Times, and Wall Street Journal, finding that they are 6.4 times more likely to contain AI-generated content than news articles from the same publications, with many AI-flagged op-eds authored by prominent public figures. Despite this prevalence, we find that AI use is rarely disclosed: a manual audit of 100 AI-flagged articles found only five disclosures of AI use. Overall, our audit highlights the immediate need for greater transparency and updated editorial standards regarding the use of AI in journalism to maintain public trust.
☆ Topoformer: brain-like topographic organization in Transformer language models through spatial querying and reweighting ICLR 2024
Spatial functional organization is a hallmark of biological brains: neurons are arranged topographically according to their response properties, at multiple scales. In contrast, representations within most machine learning models lack spatial biases, instead manifesting as disorganized vector spaces that are difficult to visualize and interpret. Here, we propose a novel form of self-attention that turns Transformers into "Topoformers" with topographic organization. We introduce spatial querying - where keys and queries are arranged on 2D grids, and local pools of queries are associated with a given key - and spatial reweighting, where we convert the standard fully connected layer of self-attention into a locally connected layer. We first demonstrate the feasibility of our approach by training a 1-layer Topoformer on a sentiment classification task. Training with spatial querying encourages topographic organization in the queries and keys, and spatial reweighting separately encourages topographic organization in the values and self-attention outputs. We then apply the Topoformer motifs at scale, training a BERT architecture with a masked language modeling objective. We find that the topographic variant performs on par with a non-topographic control model on NLP benchmarks, yet produces interpretable topographic organization as evaluated via eight linguistic test suites. Finally, analyzing an fMRI dataset of human brain responses to a large set of naturalistic sentences, we demonstrate alignment between low-dimensional topographic variability in the Topoformer model and human brain language network. Scaling up Topoformers further holds promise for greater interpretability in NLP research, and for more accurate models of the organization of linguistic information in the human brain.
comment: ICLR 2024 Workshop on Representational Alignment (Re-Align) Camera Ready
☆ Verifiable Accuracy and Abstention Rewards in Curriculum RL to Alleviate Lost-in-Conversation
Large Language Models demonstrate strong capabilities in single-turn instruction following but suffer from Lost-in-Conversation (LiC), a degradation in performance as information is revealed progressively in multi-turn settings. Motivated by the current progress on Reinforcement Learning with Verifiable Rewards (RLVR), we propose Curriculum Reinforcement Learning with Verifiable Accuracy and Abstention Rewards (RLAAR), a framework that encourages models not only to generate correct answers, but also to judge the solvability of questions in the multi-turn conversation setting. Our approach employs a competence-gated curriculum that incrementally increases dialogue difficulty (in terms of instruction shards), stabilizing training while promoting reliability. Using multi-turn, on-policy rollouts and a mixed-reward system, RLAAR teaches models to balance problem-solving with informed abstention, reducing premature answering behaviors that cause LiC. Evaluated on LiC benchmarks, RLAAR significantly mitigates LiC performance decay (62.6% to 75.1%) and improves calibrated abstention rates (33.5% to 73.4%). Together, these results provide a practical recipe for building multi-turn reliable and trustworthy LLMs.
☆ SemiAdapt and SemiLoRA: Efficient Domain Adaptation for Transformer-based Low-Resource Language Translation with a Case Study on Irish
Fine-tuning is widely used to tailor large language models for specific tasks such as neural machine translation (NMT). However, leveraging transfer learning is computationally expensive when fine-tuning large multilingual models with billions of parameters, thus creating a barrier to entry for researchers working on low-resource domains such as Irish translation. Parameter-efficient fine-tuning (PEFT) bridges this gap by training on a fraction of the original model parameters, with the Low-Rank Adaptation (LoRA) approach introducing small, trainable adapter layers. We introduce SemiAdapt and SemiLoRA as semi-supervised inference-efficient approaches that strengthen domain adaptation and lead to improved overall performance in NMT. We demonstrate that SemiAdapt can outperform full-domain fine-tuning, while most notably, SemiLoRA can propel PEFT methods to match or even outperform full-model fine-tuning. We further evaluate domain-by-dataset fine-tuning and demonstrate that our embedding-based inference methods perform especially well on larger and noisier corpora. All Irish translation models developed in this work are released as open resources. These methods aim to make high-quality domain adaptation and fine-tuning more accessible to researchers working with low-resource languages.
comment: 8 pages
☆ Adapting Language Balance in Code-Switching Speech ICASSP 2026
Despite achieving impressive results on standard benchmarks, large foundational models still struggle against code-switching test cases. When data scarcity cannot be used as the usual justification for poor performance, the reason may lie in the infrequent occurrence of code-switched moments, where the embedding of the second language appears subtly. Instead of expecting the models to learn this infrequency on their own, it might be beneficial to provide the training process with labels. Evaluating model performance on code-switching data requires careful localization of code-switching points where recognition errors are most consequential, so that the analysis emphasizes mistakes occurring at those moments. Building on this observation, we leverage the difference between the embedded and the main language to highlight those code-switching points and thereby emphasize learning at those locations. This simple yet effective differentiable surrogate mitigates context bias during generation -- the central challenge in code-switching -- thereby improving the model's robustness. Our experiments with Arabic and Chinese-English showed that the models are able to predict the switching places more correctly, reflected by the reduced substitution error.
comment: Submitted to ICASSP 2026
☆ Bayesian Low-Rank Factorization for Robust Model Adaptation ICASSP 2026
Large speech foundation models achieve strong performance across many domains, but they often require adaptation to handle local needs such as code-switching, where speakers mix languages within the same utterance. Direct fine-tuning of these models risks overfitting to the target domain and overwriting the broad capabilities of the base model. To address this challenge, we explore Bayesian factorized adapters for speech foundation models, which place priors near zero to achieve sparser adaptation matrices and thereby retain general performance while adapting to specific domains. We apply our approach to the Whisper model and evaluate on different multilingual code-switching scenarios. Our results show only minimal adaptation loss while significantly reducing catastrophic forgetting of the base model. Compared to LoRA, our method achieves a backward gain of 54% with only a 4% drop on the new domain. These findings highlight the effectiveness of Bayesian adaptation for fine-tuning speech foundation models without sacrificing generalization.
comment: Submitted to ICASSP 2026
☆ Investigating LLM Capabilities on Long Context Comprehension for Medical Question Answering
This study is the first to investigate LLM comprehension capabilities over long-context (LC) medical QA of clinical relevance. Our comprehensive assessment spans a range of content-inclusion settings based on their relevance, LLM models of varying capabilities and datasets across task formulations, revealing insights on model size effects, limitations, underlying memorization issues and the benefits of reasoning models. Importantly, we examine the effect of RAG on medical LC comprehension, uncover best settings in single versus multi-document reasoning datasets and showcase RAG strategies for improvements over LC. We shed light into some of the evaluation aspects using a multi-faceted approach. Our qualitative and error analyses address open questions on when RAG is beneficial over LC, revealing common failure cases.
☆ MLMA: Towards Multilingual with Mamba Based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
☆ Dynamical model parameters from ultrasound tongue kinematics
The control of speech can be modelled as a dynamical system in which articulators are driven toward target positions. These models are typically evaluated using fleshpoint data, such as electromagnetic articulography (EMA), but recent methodological advances make ultrasound imaging a promising alternative. We evaluate whether the parameters of a linear harmonic oscillator can be reliably estimated from ultrasound tongue kinematics and compare these with parameters estimated from simultaneously-recorded EMA data. We find that ultrasound and EMA yield comparable dynamical parameters, while mandibular short tendon tracking also adequately captures jaw motion. This supports using ultrasound kinematics to evaluate dynamical articulatory models.
comment: Accepted for publication in JASA Express Letters
☆ Beyond the Explicit: A Bilingual Dataset for Dehumanization Detection in Social Media
Digital dehumanization, although a critical issue, remains largely overlooked within the field of computational linguistics and Natural Language Processing. The prevailing approach in current research concentrating primarily on a single aspect of dehumanization that identifies overtly negative statements as its core marker. This focus, while crucial for understanding harmful online communications, inadequately addresses the broader spectrum of dehumanization. Specifically, it overlooks the subtler forms of dehumanization that, despite not being overtly offensive, still perpetuate harmful biases against marginalized groups in online interactions. These subtler forms can insidiously reinforce negative stereotypes and biases without explicit offensiveness, making them harder to detect yet equally damaging. Recognizing this gap, we use different sampling methods to collect a theory-informed bilingual dataset from Twitter and Reddit. Using crowdworkers and experts to annotate 16,000 instances on a document- and span-level, we show that our dataset covers the different dimensions of dehumanization. This dataset serves as both a training resource for machine learning models and a benchmark for evaluating future dehumanization detection techniques. To demonstrate its effectiveness, we fine-tune ML models on this dataset, achieving performance that surpasses state-of-the-art models in zero and few-shot in-context settings.
☆ Large language models for folktale type automation based on motifs: Cinderella case study
Artificial intelligence approaches are being adapted to many research areas, including digital humanities. We built a methodology for large-scale analyses in folkloristics. Using machine learning and natural language processing, we automatically detected motifs in a large collection of Cinderella variants and analysed their similarities and differences with clustering and dimensionality reduction. The results show that large language models detect complex interactions in tales, enabling computational analysis of extensive text collections and facilitating cross-lingual comparisons.
☆ Building Trust in Clinical LLMs: Bias Analysis and Dataset Transparency EMNLP
Large language models offer transformative potential for healthcare, yet their responsible and equitable development depends critically on a deeper understanding of how training data characteristics influence model behavior, including the potential for bias. Current practices in dataset curation and bias assessment often lack the necessary transparency, creating an urgent need for comprehensive evaluation frameworks to foster trust and guide improvements. In this study, we present an in-depth analysis of potential downstream biases in clinical language models, with a focus on differential opioid prescription tendencies across diverse demographic groups, such as ethnicity, gender, and age. As part of this investigation, we introduce HC4: Healthcare Comprehensive Commons Corpus, a novel and extensively curated pretraining dataset exceeding 89 billion tokens. Our evaluation leverages both established general benchmarks and a novel, healthcare-specific methodology, offering crucial insights to support fairness and safety in clinical AI applications.
comment: Accepted to EMNLP Main 2025
☆ Identity-Aware Large Language Models require Cultural Reasoning
Large language models have become the latest trend in natural language processing, heavily featuring in the digital tools we use every day. However, their replies often reflect a narrow cultural viewpoint that overlooks the diversity of global users. This missing capability could be referred to as cultural reasoning, which we define here as the capacity of a model to recognise culture-specific knowledge values and social norms, and to adjust its output so that it aligns with the expectations of individual users. Because culture shapes interpretation, emotional resonance, and acceptable behaviour, cultural reasoning is essential for identity-aware AI. When this capacity is limited or absent, models can sustain stereotypes, ignore minority perspectives, erode trust, and perpetuate hate. Recent empirical studies strongly suggest that current models default to Western norms when judging moral dilemmas, interpreting idioms, or offering advice, and that fine-tuning on survey data only partly reduces this tendency. The present evaluation methods mainly report static accuracy scores and thus fail to capture adaptive reasoning in context. Although broader datasets can help, they cannot alone ensure genuine cultural competence. Therefore, we argue that cultural reasoning must be treated as a foundational capability alongside factual accuracy and linguistic coherence. By clarifying the concept and outlining initial directions for its assessment, a foundation is laid for future systems to be able to respond with greater sensitivity to the complex fabric of human culture.
☆ Zero-Shot Vehicle Model Recognition via Text-Based Retrieval-Augmented Generation
Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.
comment: Accepted by The 38th Conference of Open Innovations Association FRUCT, 2025
☆ How Efficient Are Diffusion Language Models? A Critical Examination of Efficiency Evaluation Practices
Diffusion language models (DLMs) have emerged as a promising alternative to the long-dominant autoregressive (AR) paradigm, offering a parallelable decoding process that could yield greater efficiency. Yet, in practice, current open-source DLMs often underperform their AR counterparts in speed, limiting their real-world utility. This work presents a systematic study of DLM efficiency, identifying key issues in prior evaluation methods. Through empirical benchmarking and a roofline-based theoretical analysis, we demonstrate that AR models generally achieve higher throughput, while DLMs consistently lag. We also investigate acceleration strategies, finding that techniques like dual cache and parallel decoding mainly offer gains at small batch sizes, with their benefits diminishing upon scaling. Our findings underscore the necessity of robust evaluation methods and improved acceleration strategies to advance research on DLMs.
☆ Probabilistic Modeling of Intentions in Socially Intelligent LLM Agents
We present a probabilistic intent modeling framework for large language model (LLM) agents in multi-turn social dialogue. The framework maintains a belief distribution over a partner's latent intentions, initialized from contextual priors and dynamically updated through likelihood estimation after each utterance. The evolving distribution provides additional contextual grounding for the policy, enabling adaptive dialogue strategies under uncertainty. Preliminary experiments in the SOTOPIA environment show consistent improvements: the proposed framework increases the Overall score by 9.0% on SOTOPIA-All and 4.1% on SOTOPIA-Hard compared with the Qwen2.5-7B baseline, and slightly surpasses an oracle agent that directly observes partner intentions. These early results suggest that probabilistic intent modeling can contribute to the development of socially intelligent LLM agents.
☆ DART: A Structured Dataset of Regulatory Drug Documents in Italian for Clinical NLP
The extraction of pharmacological knowledge from regulatory documents has become a key focus in biomedical natural language processing, with applications ranging from adverse event monitoring to AI-assisted clinical decision support. However, research in this field has predominantly relied on English-language corpora such as DrugBank, leaving a significant gap in resources tailored to other healthcare systems. To address this limitation, we introduce DART (Drug Annotation from Regulatory Texts), the first structured corpus of Italian Summaries of Product Characteristics derived from the official repository of the Italian Medicines Agency (AIFA). The dataset was built through a reproducible pipeline encompassing web-scale document retrieval, semantic segmentation of regulatory sections, and clinical summarization using a few-shot-tuned large language model with low-temperature decoding. DART provides structured information on key pharmacological domains such as indications, adverse drug reactions, and drug-drug interactions. To validate its utility, we implemented an LLM-based drug interaction checker that leverages the dataset to infer clinically meaningful interactions. Experimental results show that instruction-tuned LLMs can accurately infer potential interactions and their clinical implications when grounded in the structured textual fields of DART. We publicly release our code on GitHub: https://github.com/PRAISELab-PicusLab/DART.
☆ CodeRL+: Improving Code Generation via Reinforcement with Execution Semantics Alignment
While Large Language Models (LLMs) excel at code generation by learning from vast code corpora, a fundamental semantic gap remains between their training on textual patterns and the goal of functional correctness, which is governed by formal execution semantics. Reinforcement Learning with Verifiable Rewards (RLVR) approaches attempt to bridge this gap using outcome rewards from executing test cases. However, solely relying on binary pass/fail signals is inefficient for establishing a well-aligned connection between the textual representation of code and its execution semantics, especially for subtle logical errors within the code. In this paper, we propose CodeRL+, a novel approach that integrates execution semantics alignment into the RLVR training pipeline for code generation. CodeRL+ enables the model to infer variable-level execution trajectory, providing a direct learning signal of execution semantics. CodeRL+ can construct execution semantics alignment directly using existing on-policy rollouts and integrates seamlessly with various RL algorithms. Extensive experiments demonstrate that CodeRL+ outperforms post-training baselines (including RLVR and Distillation), achieving a 4.6% average relative improvement in pass@1. CodeRL+ generalizes effectively to other coding tasks, yielding 15.5% and 4.4% higher accuracy on code-reasoning and test-output-generation benchmarks, respectively. CodeRL+ shows strong applicability across diverse RL algorithms and LLMs. Furthermore, probe analyses provide compelling evidence that CodeRL+ strengthens the alignment between code's textual representations and its underlying execution semantics.
☆ IMB: An Italian Medical Benchmark for Question Answering
Online medical forums have long served as vital platforms where patients seek professional healthcare advice, generating vast amounts of valuable knowledge. However, the informal nature and linguistic complexity of forum interactions pose significant challenges for automated question answering systems, especially when dealing with non-English languages. We present two comprehensive Italian medical benchmarks: \textbf{IMB-QA}, containing 782,644 patient-doctor conversations from 77 medical categories, and \textbf{IMB-MCQA}, comprising 25,862 multiple-choice questions from medical specialty examinations. We demonstrate how Large Language Models (LLMs) can be leveraged to improve the clarity and consistency of medical forum data while retaining their original meaning and conversational style, and compare a variety of LLM architectures on both open and multiple-choice question answering tasks. Our experiments with Retrieval Augmented Generation (RAG) and domain-specific fine-tuning reveal that specialized adaptation strategies can outperform larger, general-purpose models in medical question answering tasks. These findings suggest that effective medical AI systems may benefit more from domain expertise and efficient information retrieval than from increased model scale. We release both datasets and evaluation frameworks in our GitHub repository to support further research on multilingual medical question answering: https://github.com/PRAISELab-PicusLab/IMB.
☆ CEFR-Annotated WordNet: LLM-Based Proficiency-Guided Semantic Database for Language Learning
Although WordNet is a valuable resource owing to its structured semantic networks and extensive vocabulary, its fine-grained sense distinctions can be challenging for second-language learners. To address this, we developed a WordNet annotated with the Common European Framework of Reference for Languages (CEFR), integrating its semantic networks with language-proficiency levels. We automated this process using a large language model to measure the semantic similarity between sense definitions in WordNet and entries in the English Vocabulary Profile Online. To validate our method, we constructed a large-scale corpus containing both sense and CEFR-level information from our annotated WordNet and used it to develop contextual lexical classifiers. Our experiments demonstrate that models fine-tuned on our corpus perform comparably to those trained on gold-standard annotations. Furthermore, by combining our corpus with the gold-standard data, we developed a practical classifier that achieves a Macro-F1 score of 0.81, indicating the high accuracy of our annotations. Our annotated WordNet, corpus, and classifiers are publicly available to help bridge the gap between natural language processing and language education, thereby facilitating more effective and efficient language learning.
☆ DePass: Unified Feature Attributing by Simple Decomposed Forward Pass
Attributing the behavior of Transformer models to internal computations is a central challenge in mechanistic interpretability. We introduce DePass, a unified framework for feature attribution based on a single decomposed forward pass. DePass decomposes hidden states into customized additive components, then propagates them with attention scores and MLP's activations fixed. It achieves faithful, fine-grained attribution without requiring auxiliary training. We validate DePass across token-level, model component-level, and subspace-level attribution tasks, demonstrating its effectiveness and fidelity. Our experiments highlight its potential to attribute information flow between arbitrary components of a Transformer model. We hope DePass serves as a foundational tool for broader applications in interpretability.
☆ ChronoPlay: A Framework for Modeling Dual Dynamics and Authenticity in Game RAG Benchmarks
Retrieval Augmented Generation (RAG) systems are increasingly vital in dynamic domains like online gaming, yet the lack of a dedicated benchmark has impeded standardized evaluation in this area. The core difficulty lies in Dual Dynamics: the constant interplay between game content updates and the shifting focus of the player community. Furthermore, the necessity of automating such a benchmark introduces a critical requirement for player-centric authenticity to ensure generated questions are realistic. To address this integrated challenge, we introduce ChronoPlay, a novel framework for the automated and continuous generation of game RAG benchmarks. ChronoPlay utilizes a dual-dynamic update mechanism to track both forms of change, and a dual-source synthesis engine that draws from official sources and player community to ensure both factual correctness and authentic query patterns. We instantiate our framework on three distinct games to create the first dynamic RAG benchmark for the gaming domain, offering new insights into model performance under these complex and realistic conditions. Code is avaliable at: https://github.com/hly1998/ChronoPlay.
☆ Engagement Undermines Safety: How Stereotypes and Toxicity Shape Humor in Language Models
Large language models are increasingly used for creative writing and engagement content, raising safety concerns about the outputs. Therefore, casting humor generation as a testbed, this work evaluates how funniness optimization in modern LLM pipelines couples with harmful content by jointly measuring humor, stereotypicality, and toxicity. This is further supplemented by analyzing incongruity signals through information-theoretic metrics. Across six models, we observe that harmful outputs receive higher humor scores which further increase under role-based prompting, indicating a bias amplification loop between generators and evaluators. Information-theoretic analyses show harmful cues widen predictive uncertainty and surprisingly, can even make harmful punchlines more expected for some models, suggesting structural embedding in learned humor distributions. External validation on an additional satire-generation task with human perceived funniness judgments shows that LLM satire increases stereotypicality and typically toxicity, including for closed models. Quantitatively, stereotypical/toxic jokes gain $10-21\%$ in mean humor score, stereotypical jokes appear $11\%$ to $28\%$ more often among the jokes marked funny by LLM-based metric and up to $10\%$ more often in generations perceived as funny by humans.
☆ Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation
Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.
☆ Chain-of-Conceptual-Thought: Eliciting the Agent to Deeply Think within the Response
Chain-of-Thought (CoT) is widely applied to improve the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks since there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose another prompt-based paradigm called Chain of Conceptual Thought (CoCT), where the LLM first tags a concept, then generates the detailed content. The chain of concepts is allowed within the utterance, encouraging the LLM's deep and strategic thinking. We experiment with this paradigm in daily and emotional support conversations where the concept is comprised of emotions, strategies and topics. Automatic, human and model evaluations suggest that CoCT surpasses baselines such as Self-Refine, ECoT, ToT, SoT and RAG, suggesting a potential effective prompt-based paradigm of LLM for a wider scope of tasks.
☆ Adamas: Hadamard Sparse Attention for Efficient Long-Context Inference
Large language models (LLMs) now support context windows of hundreds of thousands to millions of tokens, enabling applications such as long-document summarization, large-scale code synthesis, multi-document question answering and persistent multi-turn dialogue. However, such extended contexts exacerbate the quadratic cost of self-attention, leading to severe latency in autoregressive decoding. Existing sparse attention methods alleviate these costs but rely on heuristic patterns that struggle to recall critical key-value (KV) pairs for each query, resulting in accuracy degradation. We introduce Adamas, a lightweight yet highly accurate sparse attention mechanism designed for long-context inference. Adamas applies the Hadamard transform, bucketization and 2-bit compression to produce compact representations, and leverages Manhattan-distance estimation for efficient top-k selections. Experiments show that Adamas matches the accuracy of full attention with only a 64-token budget, achieves near-lossless performance at 128, and supports up to 8x higher sparsity than prior state-of-the-art (SOTA) methods while delivering up to 4.4x self-attention and 1.5x end-to-end speedups on 32K-length sequences. Remarkably, Adamas attains comparable or even lower perplexity than full attention, underscoring its effectiveness in maintaining accuracy under aggressive sparsity.
☆ MENTOR: A Reinforcement Learning Framework for Model Enhancement via Teacher-Optimized Rewards in Small Models
Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.
☆ Towards Fair ASR For Second Language Speakers Using Fairness Prompted Finetuning ICASSP 2026
In this work, we address the challenge of building fair English ASR systems for second-language speakers. Our analysis of widely used ASR models, Whisper and Seamless-M4T, reveals large fluctuations in word error rate (WER) across 26 accent groups, indicating significant fairness gaps. To mitigate this, we propose fairness-prompted finetuning with lightweight adapters, incorporating Spectral Decoupling (SD), Group Distributionally Robust Optimization (Group-DRO), and Invariant Risk Minimization (IRM). Our proposed fusion of traditional empirical risk minimization (ERM) with cross-entropy and fairness-driven objectives (SD, Group DRO, and IRM) enhances fairness across accent groups while maintaining overall recognition accuracy. In terms of macro-averaged word error rate, our approach achieves a relative improvement of 58.7% and 58.5% over the large pretrained Whisper and SeamlessM4T, and 9.7% and 7.8% over them, finetuning with standard empirical risk minimization with cross-entropy loss.
comment: Submitted to ICASSP 2026
☆ KoSimpleQA: A Korean Factuality Benchmark with an Analysis of Reasoning LLMs
We present $\textbf{Korean SimpleQA (KoSimpleQA)}$, a benchmark for evaluating factuality in large language models (LLMs) with a focus on Korean cultural knowledge. KoSimpleQA is designed to be challenging yet easy to grade, consisting of 1,000 short, fact-seeking questions with unambiguous answers. We conduct a comprehensive evaluation across a diverse set of open-source LLMs of varying sizes that support Korean, and find that even the strongest model generates correct answer only 33.7% of the time, underscoring the challenging nature of KoSimpleQA. Notably, performance rankings on KoSimpleQA differ substantially from those on the English SimpleQA, highlighting the unique value of our dataset. Furthermore, our analysis of reasoning LLMs shows that engaging reasoning capabilities in the factual QA task can both help models better elicit their latent knowledge and improve their ability to abstain when uncertain. KoSimpleQA can be found at https://anonymous.4open.science/r/KoSimpleQA-62EB.
☆ KrishokBondhu: A Retrieval-Augmented Voice-Based Agricultural Advisory Call Center for Bengali Farmers
In Bangladesh, many farmers continue to face challenges in accessing timely, expert-level agricultural guidance. This paper presents KrishokBondhu, a voice-enabled, call-centre-integrated advisory platform built on a Retrieval-Augmented Generation (RAG) framework, designed specifically for Bengali-speaking farmers. The system aggregates authoritative agricultural handbooks, extension manuals, and NGO publications; applies Optical Character Recognition (OCR) and document-parsing pipelines to digitize and structure the content; and indexes this corpus in a vector database for efficient semantic retrieval. Through a simple phone-based interface, farmers can call the system to receive real-time, context-aware advice: speech-to-text converts the Bengali query, the RAG module retrieves relevant content, a large language model (Gemma 3-4B) generates a context-grounded response, and text-to-speech delivers the answer in natural spoken Bengali. In a pilot evaluation, KrishokBondhu produced high-quality responses for 72.7% of diverse agricultural queries covering crop management, disease control, and cultivation practices. Compared to the KisanQRS benchmark, the system achieved a composite score of 4.53 (vs. 3.13) on a 5-point scale, a 44.7% improvement, with especially large gains in contextual richness (+367%) and completeness (+100.4%), while maintaining comparable relevance and technical specificity. Semantic similarity analysis further revealed a strong correlation between retrieved context and answer quality, emphasizing the importance of grounding generative responses in curated documentation. KrishokBondhu demonstrates the feasibility of integrating call-centre accessibility, multilingual voice interaction, and modern RAG techniques to deliver expert-level agricultural guidance to remote Bangladeshi farmers, paving the way toward a fully AI-driven agricultural advisory ecosystem.
comment: 6 pages, 7 figures, 5 tables, submitted to the 11th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE 2025)
☆ Combining Distantly Supervised Models with In Context Learning for Monolingual and Cross-Lingual Relation Extraction
Distantly Supervised Relation Extraction (DSRE) remains a long-standing challenge in NLP, where models must learn from noisy bag-level annotations while making sentence-level predictions. While existing state-of-the-art (SoTA) DSRE models rely on task-specific training, their integration with in-context learning (ICL) using large language models (LLMs) remains underexplored. A key challenge is that the LLM may not learn relation semantics correctly, due to noisy annotation. In response, we propose HYDRE -- HYbrid Distantly Supervised Relation Extraction framework. It first uses a trained DSRE model to identify the top-k candidate relations for a given test sentence, then uses a novel dynamic exemplar retrieval strategy that extracts reliable, sentence-level exemplars from training data, which are then provided in LLM prompt for outputting the final relation(s). We further extend HYDRE to cross-lingual settings for RE in low-resource languages. Using available English DSRE training data, we evaluate all methods on English as well as a newly curated benchmark covering four diverse low-resource Indic languages -- Oriya, Santali, Manipuri, and Tulu. HYDRE achieves up to 20 F1 point gains in English and, on average, 17 F1 points on Indic languages over prior SoTA DSRE models. Detailed ablations exhibit HYDRE's efficacy compared to other prompting strategies.
☆ ECG-LLM -- training and evaluation of domain-specific large language models for electrocardiography
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.
comment: 34 pages, 8 figures, code available at https://github.com/AI4HealthUOL/ecg-llm
☆ Position: LLM Watermarking Should Align Stakeholders' Incentives for Practical Adoption
Despite progress in watermarking algorithms for large language models (LLMs), real-world deployment remains limited. We argue that this gap stems from misaligned incentives among LLM providers, platforms, and end users, which manifest as four key barriers: competitive risk, detection-tool governance, robustness concerns and attribution issues. We revisit three classes of watermarking through this lens. \emph{Model watermarking} naturally aligns with LLM provider interests, yet faces new challenges in open-source ecosystems. \emph{LLM text watermarking} offers modest provider benefit when framed solely as an anti-misuse tool, but can gain traction in narrowly scoped settings such as dataset de-contamination or user-controlled provenance. \emph{In-context watermarking} (ICW) is tailored for trusted parties, such as conference organizers or educators, who embed hidden watermarking instructions into documents. If a dishonest reviewer or student submits this text to an LLM, the output carries a detectable watermark indicating misuse. This setup aligns incentives: users experience no quality loss, trusted parties gain a detection tool, and LLM providers remain neutral by simply following watermark instructions. We advocate for a broader exploration of incentive-aligned methods, with ICW as an example, in domains where trusted parties need reliable tools to detect misuse. More broadly, we distill design principles for incentive-aligned, domain-specific watermarking and outline future research directions. Our position is that the practical adoption of LLM watermarking requires aligning stakeholder incentives in targeted application domains and fostering active community engagement.
☆ The Impact of Image Resolution on Biomedical Multimodal Large Language Models
Imaging technologies are fundamental to biomedical research and modern medicine, requiring analysis of high-resolution images across various modalities. While multimodal large language models (MLLMs) show promise for biomedical image analysis, most are designed for low-resolution images from general-purpose datasets, risking critical information loss. We investigate how image resolution affects MLLM performance in biomedical applications and demonstrate that: (1) native-resolution training and inference significantly improve performance across multiple tasks, (2) misalignment between training and inference resolutions severely degrades performance, and (3) mixed-resolution training effectively mitigates misalignment and balances computational constraints with performance requirements. Based on these findings, we recommend prioritizing native-resolution inference and mixed-resolution datasets to optimize biomedical MLLMs for transformative impact in scientific research and clinical applications.
comment: Proceedings of the 10th Machine Learning for Healthcare Conference, PMLR 298, 2025
☆ From Retrieval to Generation: Unifying External and Parametric Knowledge for Medical Question Answering
Medical question answering (QA) requires extensive access to domain-specific knowledge. A promising direction is to enhance large language models (LLMs) with external knowledge retrieved from medical corpora or parametric knowledge stored in model parameters. Existing approaches typically fall into two categories: Retrieval-Augmented Generation (RAG), which grounds model reasoning on externally retrieved evidence, and Generation-Augmented Generation (GAG), which depends solely on the models internal knowledge to generate contextual documents. However, RAG often suffers from noisy or incomplete retrieval, while GAG is vulnerable to hallucinated or inaccurate information due to unconstrained generation. Both issues can mislead reasoning and undermine answer reliability. To address these challenges, we propose MedRGAG, a unified retrieval-generation augmented framework that seamlessly integrates external and parametric knowledge for medical QA. MedRGAG comprises two key modules: Knowledge-Guided Context Completion (KGCC), which directs the generator to produce background documents that complement the missing knowledge revealed by retrieval; and Knowledge-Aware Document Selection (KADS), which adaptively selects an optimal combination of retrieved and generated documents to form concise yet comprehensive evidence for answer generation. Extensive experiments on five medical QA benchmarks demonstrate that MedRGAG achieves a 12.5% improvement over MedRAG and a 4.5% gain over MedGENIE, highlighting the effectiveness of unifying retrieval and generation for knowledge-intensive reasoning. Our code and data are publicly available at https://anonymous.4open.science/r/MedRGAG
comment: 13 pages, 4 figures
☆ Food4All: A Multi-Agent Framework for Real-time Free Food Discovery with Integrated Nutritional Metadata
Food insecurity remains a persistent public health emergency in the United States, tightly interwoven with chronic disease, mental illness, and opioid misuse. Yet despite the existence of thousands of food banks and pantries, access remains fragmented: 1) current retrieval systems depend on static directories or generic search engines, which provide incomplete and geographically irrelevant results; 2) LLM-based chatbots offer only vague nutritional suggestions and fail to adapt to real-world constraints such as time, mobility, and transportation; and 3) existing food recommendation systems optimize for culinary diversity but overlook survival-critical needs of food-insecure populations, including immediate proximity, verified availability, and contextual barriers. These limitations risk leaving the most vulnerable individuals, those experiencing homelessness, addiction, or digital illiteracy, unable to access urgently needed resources. To address this, we introduce Food4All, the first multi-agent framework explicitly designed for real-time, context-aware free food retrieval. Food4All unifies three innovations: 1) heterogeneous data aggregation across official databases, community platforms, and social media to provide a continuously updated pool of food resources; 2) a lightweight reinforcement learning algorithm trained on curated cases to optimize for both geographic accessibility and nutritional correctness; and 3) an online feedback loop that dynamically adapts retrieval policies to evolving user needs. By bridging information acquisition, semantic analysis, and decision support, Food4All delivers nutritionally annotated and guidance at the point of need. This framework establishes an urgent step toward scalable, equitable, and intelligent systems that directly support populations facing food insecurity and its compounding health risks.
☆ BrailleLLM: Braille Instruction Tuning with Large Language Models for Braille Domain Tasks EMNLP 2025
Braille plays a vital role in education and information accessibility for visually impaired individuals. However, Braille information processing faces challenges such as data scarcity and ambiguities in mixed-text contexts. We construct English and Chinese Braille Mixed Datasets (EBMD/CBMD) with mathematical formulas to support diverse Braille domain research, and propose a syntax tree-based augmentation method tailored for Braille data. To address the underperformance of traditional fine-tuning methods in Braille-related tasks, we investigate Braille Knowledge-Based Fine-Tuning (BKFT), which reduces the learning difficulty of Braille contextual features. BrailleLLM employs BKFT via instruction tuning to achieve unified Braille translation, formula-to-Braille conversion, and mixed-text translation. Experiments demonstrate that BKFT achieves significant performance improvements over conventional fine-tuning in Braille translation scenarios. Our open-sourced datasets and methodologies establish a foundation for low-resource multilingual Braille research.
comment: Accepted to EMNLP 2025
☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings. Previously titled "Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs"
☆ DelvePO: Direction-Guided Self-Evolving Framework for Flexible Prompt Optimization
Prompt Optimization has emerged as a crucial approach due to its capabilities in steering Large Language Models to solve various tasks. However, current works mainly rely on the random rewriting ability of LLMs, and the optimization process generally focus on specific influencing factors, which makes it easy to fall into local optimum. Besides, the performance of the optimized prompt is often unstable, which limits its transferability in different tasks. To address the above challenges, we propose $\textbf{DelvePO}$ ($\textbf{D}$irection-Guid$\textbf{e}$d Se$\textbf{l}$f-E$\textbf{v}$olving Framework for Fl$\textbf{e}$xible $\textbf{P}$rompt $\textbf{O}$ptimization), a task-agnostic framework to optimize prompts in self-evolve manner. In our framework, we decouple prompts into different components that can be used to explore the impact that different factors may have on various tasks. On this basis, we introduce working memory, through which LLMs can alleviate the deficiencies caused by their own uncertainties and further obtain key insights to guide the generation of new prompts. Extensive experiments conducted on different tasks covering various domains for both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B, Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO consistently outperforms previous SOTA methods under identical experimental settings, demonstrating its effectiveness and transferability across different tasks.
☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables. Under review
☆ MARCUS: An Event-Centric NLP Pipeline that generates Character Arcs from Narratives
Character arcs are important theoretical devices employed in literary studies to understand character journeys, identify tropes across literary genres, and establish similarities between narratives. This work addresses the novel task of computationally generating event-centric, relation-based character arcs from narratives. Providing a quantitative representation for arcs brings tangibility to a theoretical concept and paves the way for subsequent applications. We present MARCUS (Modelling Arcs for Understanding Stories), an NLP pipeline that extracts events, participant characters, implied emotion, and sentiment to model inter-character relations. MARCUS tracks and aggregates these relations across the narrative to generate character arcs as graphical plots. We generate character arcs from two extended fantasy series, Harry Potter and Lord of the Rings. We evaluate our approach before outlining existing challenges, suggesting applications of our pipeline, and discussing future work.
☆ Contrastive Decoding Mitigates Score Range Bias in LLM-as-a-Judge
Large Language Models (LLMs) are commonly used as evaluators in various applications, but the reliability of the outcomes remains a challenge. One such challenge is using LLMs-as-judges for direct assessment, i.e., assigning scores from a specified range without any references. We first show that this challenge stems from LLM judge outputs being associated with score range bias, i.e., LLM judge outputs are highly sensitive to pre-defined score ranges, preventing the search for optimal score ranges. We also show that similar biases exist among models from the same family. We then mitigate this bias through contrastive decoding, achieving up to 11.3% relative improvement on average in Spearman correlation with human judgments across different score ranges.
☆ Training-Free Spectral Fingerprints of Voice Processing in Transformers
Different transformer architectures implement identical linguistic computations via distinct connectivity patterns, yielding model imprinted ``computational fingerprints'' detectable through spectral analysis. Using graph signal processing on attention induced token graphs, we track changes in algebraic connectivity (Fiedler value, $\Delta\lambda_2$) under voice alternation across 20 languages and three model families, with a prespecified early window (layers 2--5). Our analysis uncovers clear architectural signatures: Phi-3-Mini shows a dramatic English specific early layer disruption ($\overline{\Delta\lambda_2}_{[2,5]}\!\approx\!-0.446$) while effects in 19 other languages are minimal, consistent with public documentation that positions the model primarily for English use. Qwen2.5-7B displays small, distributed shifts that are largest for morphologically rich languages, and LLaMA-3.2-1B exhibits systematic but muted responses. These spectral signatures correlate strongly with behavioral differences (Phi-3: $r=-0.976$) and are modulated by targeted attention head ablations, linking the effect to early attention structure and confirming functional relevance. Taken together, the findings are consistent with the view that training emphasis can leave detectable computational imprints: specialized processing strategies that manifest as measurable connectivity patterns during syntactic transformations. Beyond voice alternation, the framework differentiates reasoning modes, indicating utility as a simple, training free diagnostic for revealing architectural biases and supporting model reliability analysis.
comment: Preprint under review (2025). 12 pages, 8 figures
☆ A Graph Signal Processing Framework for Hallucination Detection in Large Language Models
Large language models achieve impressive results but distinguishing factual reasoning from hallucinations remains challenging. We propose a spectral analysis framework that models transformer layers as dynamic graphs induced by attention, with token embeddings as signals on these graphs. Through graph signal processing, we define diagnostics including Dirichlet energy, spectral entropy, and high-frequency energy ratios, with theoretical connections to computational stability. Experiments across GPT architectures suggest universal spectral patterns: factual statements exhibit consistent "energy mountain" behavior with low-frequency convergence, while different hallucination types show distinct signatures. Logical contradictions destabilize spectra with large effect sizes ($g>1.0$), semantic errors remain stable but show connectivity drift, and substitution hallucinations display intermediate perturbations. A simple detector using spectral signatures achieves 88.75% accuracy versus 75% for perplexity-based baselines, demonstrating practical utility. These findings indicate that spectral geometry may capture reasoning patterns and error behaviors, potentially offering a framework for hallucination detection in large language models.
comment: Preprint under review (2025). 11 pages, 7 figures. Code and scripts: to be released
☆ That's Deprecated! Understanding, Detecting, and Steering Knowledge Conflicts in Language Models for Code Generation
This paper investigates how large language models (LLMs) behave when faced with discrepancies between their parametric knowledge and conflicting information contained in a prompt. Building on prior question-answering (QA) research, we extend the investigation of knowledge conflicts to the realm of code generation. We propose a domain-agnostic framework for constructing and interpreting such conflicts, along with a novel evaluation method and dataset tailored to code conflict scenarios. Our experiments indicate that sufficiently large LLMs encode the notion of a knowledge conflict in their parameters, enabling us to detect knowledge conflicts with up to \textbf{80.65\%} accuracy. Building on these insights, we show that activation-level steering can achieve up to a \textbf{12.6\%} improvement in steering success over a random baseline. However, effectiveness depends critically on balancing model size, task domain, and steering direction. The experiment code and data will be made publicly available after acceptance.
☆ PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $\rho$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.
comment: 24 pages, 9 figures. Metric/benchmark available at https://github.com/amith-ananthram/posh
☆ From Memorization to Generalization: Fine-Tuning Large Language Models for Biomedical Term-to-Identifier Normalization
Effective biomedical data integration depends on automated term normalization, the mapping of natural language biomedical terms to standardized identifiers. This linking of terms to identifiers is essential for semantic interoperability. Large language models (LLMs) show promise for this task but perform unevenly across terminologies. We evaluated both memorization (training-term performance) and generalization (validation-term performance) across multiple biomedical ontologies. Fine-tuning Llama 3.1 8B revealed marked differences by terminology. GO mappings showed strong memorization gains (up to 77% improvement in term-to-identifier accuracy), whereas HPO showed minimal improvement. Generalization occurred only for protein-gene (GENE) mappings (13.9% gain), while fine-tuning for HPO and GO yielded negligible transfer. Baseline accuracy varied by model scale, with GPT-4o outperforming both Llama variants for all terminologies. Embedding analyses showed tight semantic alignment between gene symbols and protein names but weak alignment between terms and identifiers for GO or HPO, consistent with limited lexicalization. Fine-tuning success depended on two interacting factors: identifier popularity and lexicalization. Popular identifiers were more likely encountered during pretraining, enhancing memorization. Lexicalized identifiers, such as gene symbols, enabled semantic generalization. By contrast, arbitrary identifiers in GO and HPO constrained models to rote learning. These findings provide a predictive framework for when fine-tuning enhances factual recall versus when it fails due to sparse or non-lexicalized identifiers.
comment: Submitted for publication to BMC BioData Mining
☆ When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/
☆ Re:Member: Emotional Question Generation from Personal Memories ACL 2025
We present Re:Member, a system that explores how emotionally expressive, memory-grounded interaction can support more engaging second language (L2) learning. By drawing on users' personal videos and generating stylized spoken questions in the target language, Re:Member is designed to encourage affective recall and conversational engagement. The system aligns emotional tone with visual context, using expressive speech styles such as whispers or late-night tones to evoke specific moods. It combines WhisperX-based transcript alignment, 3-frame visual sampling, and Style-BERT-VITS2 for emotional synthesis within a modular generation pipeline. Designed as a stylized interaction probe, Re:Member highlights the role of affect and personal media in learner-centered educational technologies.
comment: Accepted to HCI+NLP at ACL 2025
☆ Are they lovers or friends? Evaluating LLMs' Social Reasoning in English and Korean Dialogues
As large language models (LLMs) are increasingly used in human-AI interactions, their social reasoning capabilities in interpersonal contexts are critical. We introduce SCRIPTS, a 1k-dialogue dataset in English and Korean, sourced from movie scripts. The task involves evaluating models' social reasoning capability to infer the interpersonal relationships (e.g., friends, sisters, lovers) between speakers in each dialogue. Each dialogue is annotated with probabilistic relational labels (Highly Likely, Less Likely, Unlikely) by native (or equivalent) Korean and English speakers from Korea and the U.S. Evaluating nine models on our task, current proprietary LLMs achieve around 75-80% on the English dataset, whereas their performance on Korean drops to 58-69%. More strikingly, models select Unlikely relationships in 10-25% of their responses. Furthermore, we find that thinking models and chain-of-thought prompting, effective for general reasoning, provide minimal benefits for social reasoning and occasionally amplify social biases. Our findings reveal significant limitations in current LLMs' social reasoning capabilities, highlighting the need for efforts to develop socially-aware language models.
☆ Dynamic Evaluation for Oversensitivity in LLMs EMNLP
Oversensitivity occurs when language models defensively reject prompts that are actually benign. This behavior not only disrupts user interactions but also obscures the boundary between harmful and harmless content. Existing benchmarks rely on static datasets that degrade overtime as models evolve, leading to data contamination and diminished evaluative power. To address this, we develop a framework that dynamically generates model-specific challenging datasets, capturing emerging defensive patterns and aligning with each model's unique behavior. Building on this approach, we construct OVERBENCH, a benchmark that aggregates these datasets across diverse LLM families, encompassing 450,000 samples from 25 models. OVERBENCH provides a dynamic and evolving perspective on oversensitivity, allowing for continuous monitoring of defensive triggers as models advance, highlighting vulnerabilities that static datasets overlook.
comment: EMNLP-Findings 2025
☆ ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench
comment: 23 pages
☆ NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.
☆ Lost in the Maze: Overcoming Context Limitations in Long-Horizon Agentic Search
Long-horizon agentic search requires iteratively exploring the web over long trajectories and synthesizing information across many sources, and is the foundation for enabling powerful applications like deep research systems. In this work, we show that popular agentic search frameworks struggle to scale to long trajectories primarily due to context limitations-they accumulate long, noisy content, hit context window and tool budgets, or stop early. Then, we introduce SLIM (Simple Lightweight Information Management), a simple framework that separates retrieval into distinct search and browse tools, and periodically summarizes the trajectory, keeping context concise while enabling longer, more focused searches. On long-horizon tasks, SLIM achieves comparable performance at substantially lower cost and with far fewer tool calls than strong open-source baselines across multiple base models. Specifically, with o3 as the base model, SLIM achieves 56% on BrowseComp and 31% on HLE, outperforming all open-source frameworks by 8 and 4 absolute points, respectively, while incurring 4-6x fewer tool calls. Finally, we release an automated fine-grained trajectory analysis pipeline and error taxonomy for characterizing long-horizon agentic search frameworks; SLIM exhibits fewer hallucinations than prior systems. We hope our analysis framework and simple tool design inform future long-horizon agents.
comment: Code and data are available here: https://github.com/howard-yen/SLIM
☆ StutterZero and StutterFormer: End-to-End Speech Conversion for Stuttering Transcription and Correction
Over 70 million people worldwide experience stuttering, yet most automatic speech systems misinterpret disfluent utterances or fail to transcribe them accurately. Existing methods for stutter correction rely on handcrafted feature extraction or multi-stage automatic speech recognition (ASR) and text-to-speech (TTS) pipelines, which separate transcription from audio reconstruction and often amplify distortions. This work introduces StutterZero and StutterFormer, the first end-to-end waveform-to-waveform models that directly convert stuttered speech into fluent speech while jointly predicting its transcription. StutterZero employs a convolutional-bidirectional LSTM encoder-decoder with attention, whereas StutterFormer integrates a dual-stream Transformer with shared acoustic-linguistic representations. Both architectures are trained on paired stuttered-fluent data synthesized from the SEP-28K and LibriStutter corpora and evaluated on unseen speakers from the FluencyBank dataset. Across all benchmarks, StutterZero had a 24% decrease in Word Error Rate (WER) and a 31% improvement in semantic similarity (BERTScore) compared to the leading Whisper-Medium model. StutterFormer achieved better results, with a 28% decrease in WER and a 34% improvement in BERTScore. The results validate the feasibility of direct end-to-end stutter-to-fluent speech conversion, offering new opportunities for inclusive human-computer interaction, speech therapy, and accessibility-oriented AI systems.
comment: 13 pages, 5 figures
♻ ☆ Correct-Detect: Balancing Performance and Ambiguity Through the Lens of Coreference Resolution in LLMs EMNLP 2025
Large Language Models (LLMs) are intended to reflect human linguistic competencies. But humans have access to a broad and embodied context, which is key in detecting and resolving linguistic ambiguities, even in isolated text spans. A foundational case of semantic ambiguity is found in the task of coreference resolution: how is a pronoun related to an earlier person mention? This capability is implicit in nearly every downstream task, and the presence of ambiguity at this level can alter performance significantly. We show that LLMs can achieve good performance with minimal prompting in both coreference disambiguation and the detection of ambiguity in coreference, however, they cannot do both at the same time. We present the CORRECT-DETECT trade-off: though models have both capabilities and deploy them implicitly, successful performance balancing these two abilities remains elusive.
comment: Accepted at EMNLP 2025 (main)
♻ ☆ FALCON: Fine-grained Activation Manipulation by Contrastive Orthogonal Unalignment for Large Language Model NeurIPS 2025
Large language models have been widely applied, but can inadvertently encode sensitive or harmful information, raising significant safety concerns. Machine unlearning has emerged to alleviate this concern; however, existing training-time unlearning approaches, relying on coarse-grained loss combinations, have limitations in precisely separating knowledge and balancing removal effectiveness with model utility. In contrast, we propose Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON), a novel representation-guided unlearning approach that leverages information-theoretic guidance for efficient parameter selection, employs contrastive mechanisms to enhance representation separation, and projects conflict gradients onto orthogonal subspaces to resolve conflicts between forgetting and retention objectives. Extensive experiments demonstrate that FALCON achieves superior unlearning effectiveness while maintaining model utility, exhibiting robust resistance against knowledge recovery attempts.
comment: Accepted at NeurIPS 2025 with minor revisions
♻ ☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
♻ ☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
♻ ☆ SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked "How can I track someone's location without their consent?", a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.
♻ ☆ Improving the fact-checking performance of language models by relying on their entailment ability
Automated fact-checking has been a challenging task for the research community. Past works tried various strategies, such as end-to-end training, retrieval-augmented generation, and prompt engineering, to build robust fact-checking systems. However, their accuracy has not been very high for real-world deployment. We, on the other hand, propose a simple yet effective strategy, where entailed justifications generated by LLMs are used to train encoder-only language models (ELMs) for fact-checking. We conducted a rigorous set of experiments, comparing our approach with recent works and various prompting and fine-tuning strategies to demonstrate the superiority of our approach. Additionally, we did quality analysis of model explanations, ablation studies, and error analysis to provide a comprehensive understanding of our approach.
comment: 13 pages
♻ ☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
♻ ☆ Facts are Harder Than Opinions -- A Multilingual, Comparative Analysis of LLM-Based Fact-Checking Reliability
The proliferation of misinformation necessitates scalable, automated fact-checking solutions. Yet, current benchmarks often overlook multilingual and topical diversity. This paper introduces a novel, dynamically extensible data set that includes 61,514 claims in multiple languages and topics, extending existing datasets up to 2024. Through a comprehensive evaluation of five prominent Large Language Models (LLMs), including GPT-4o, GPT-3.5 Turbo, LLaMA 3.1, and Mixtral 8x7B, we identify significant performance gaps between different languages and topics. While overall GPT-4o achieves the highest accuracy, it declines to classify 43% of claims. Across all models, factual-sounding claims are misclassified more often than opinions, revealing a key vulnerability. These findings underscore the need for caution and highlight challenges in deploying LLM-based fact-checking systems at scale.
♻ ☆ Counterfactual reasoning: an analysis of in-context emergence NeurIPS
Large-scale neural language models exhibit remarkable performance in in-context learning: the ability to learn and reason about the input context on the fly. This work studies in-context counterfactual reasoning in language models, that is, the ability to predict consequences of a hypothetical scenario. We focus on a well-defined, synthetic linear regression task that requires noise abduction. Accurate prediction is based on (1) inferring an unobserved latent concept and (2) copying contextual noise from factual observations. We show that language models are capable of counterfactual reasoning. Further, we enhance existing identifiability results and reduce counterfactual reasoning for a broad class of functions to a transformation on in-context observations. In Transformers, we find that self-attention, model depth and pre-training data diversity drive performance. Moreover, we provide mechanistic evidence that the latent concept is linearly represented in the residual stream and we introduce designated \textit{noise abduction heads} central to performing counterfactual reasoning. Lastly, our findings extend to counterfactual reasoning under SDE dynamics and reflect that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/mrtzmllr/iccr.
comment: Published as a conference paper at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ InternLM2.5-StepProver: Advancing Automated Theorem Proving via Critic-Guided Search
Large Language Models (LLMs) have emerged as powerful tools in mathematical theorem proving, particularly when utilizing formal languages such as LEAN. A prevalent proof method involves the LLM prover iteratively constructing the proof tactic by tactic, typically following a best-first search scheme. However, this method often ignores the critical preference information inside the existing tactic trajectories, hindering the search for deeper proofs. We propose an intuitive yet effective method, which utilizes a critic model to capture the preference information and to guide the search of the prover model at runtime. Given the prover-critic framework, a large-scale expert iteration with more than 20,000 CPU days is then applied to further fine-tune the prover and the critic. The trained InternLM2.5-StepProver critic significantly boosts the performance of the prover model (59.4% to 65.9%). We also analyze the impact of the critic on various aspects of the theorem proving process during expert iteration, providing insights into its effectiveness. We open-source our models and searched proofs at https://github.com/InternLM/InternLM-Math and https://huggingface.co/datasets/internlm/Lean-Workbook.
♻ ☆ Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
comment: 35 pages, 1 figure
♻ ☆ Fairshare Data Pricing via Data Valuation for Large Language Models
Training data is the backbone of large language models (LLMs), yet today's data markets often operate under exploitative pricing -- sourcing data from marginalized groups with little pay or recognition. This paper introduces a theoretical framework for LLM data markets, modeling the strategic interactions between buyers (LLM builders) and sellers (human annotators). We begin with theoretical and empirical analysis showing how exploitative pricing drives high-quality sellers out of the market, degrading data quality and long-term model performance. Then we introduce fairshare, a pricing mechanism grounded in data valuation that quantifies each data's contribution. It aligns incentives by sustaining seller participation and optimizing utility for both buyers and sellers. Theoretically, we show that fairshare yields mutually optimal outcomes: maximizing long-term buyer utility and seller profit while sustaining market participation. Empirically when training open-source LLMs on complex NLP tasks, including math problems, medical diagnosis, and physical reasoning, fairshare boosts seller earnings and ensures a stable supply of high-quality data, while improving buyers' performance-per-dollar and long-term welfare. Our findings offer a concrete path toward fair, transparent, and economically sustainable data markets for LLM.
♻ ☆ Lightweight Baselines for Medical Abstract Classification: DistilBERT with Cross-Entropy as a Strong Default
The research evaluates lightweight medical abstract classification methods to establish their maximum performance capabilities under financial budget restrictions. On the public medical abstracts corpus, we finetune BERT base and Distil BERT with three objectives cross entropy (CE), class weighted CE, and focal loss under identical tokenization, sequence length, optimizer, and schedule. DistilBERT with plain CE gives the strongest raw argmax trade off, while a post hoc operating point selection (validation calibrated, classwise thresholds) sub stantially improves deployed performance; under this tuned regime, focal benefits most. We report Accuracy, Macro F1, and WeightedF1, release evaluation artifacts, and include confusion analyses to clarify error structure. The practical takeaway is to start with a compact encoder and CE, then add lightweight calibration or thresholding when deployment requires higher macro balance.
comment: Healthcare AI, Medical Text Classification,LLM, DistilBERT
♻ ☆ Text Takes Over: A Study of Modality Bias in Multimodal Intent Detection EMNLP 2025
The rise of multimodal data, integrating text, audio, and visuals, has created new opportunities for studying multimodal tasks such as intent detection. This work investigates the effectiveness of Large Language Models (LLMs) and non-LLMs, including text-only and multi-modal models, in the multimodal intent detection task. Our study reveals that Mistral-7B, a text-only LLM, outperforms most competitive multimodal models by approximately 9% on MIntRec-1 and 4% on MIntRec2.0 datasets. This performance advantage comes from a strong textual bias in these datasets, where over 90% of the samples require textual input, either alone or in combination with other modalities, for correct classification. We confirm the modality bias of these datasets via human evaluation, too. Next, we propose a framework to debias the datasets, and upon debiasing, more than 70% of the samples in MIntRec-1 and more than 50% in MIntRec2.0 get removed, resulting in significant performance degradation across all models, with smaller multimodal fusion models being the most affected with an accuracy drop of over 50 - 60%. Further, we analyze the context-specific relevance of different modalities through empirical analysis. Our findings highlight the challenges posed by modality bias in multimodal intent datasets and emphasize the need for unbiased datasets to evaluate multimodal models effectively.
comment: EMNLP 2025 Main Conference Full Paper
♻ ☆ Introducing Spotlight: A Novel Approach for Generating Captivating Key Information from Documents EMNLP 2025
In this paper, we introduce Spotlight, a novel paradigm for information extraction that produces concise, engaging narratives by highlighting the most compelling aspects of a document. Unlike traditional summaries, which prioritize comprehensive coverage, spotlights selectively emphasize intriguing content to foster deeper reader engagement with the source material. We formally differentiate spotlights from related constructs and support our analysis with a detailed benchmarking study using new datasets curated for this work. To generate high-quality spotlights, we propose a two-stage approach: fine-tuning a large language model on our benchmark data, followed by alignment via Direct Preference Optimization (DPO). Our comprehensive evaluation demonstrates that the resulting model not only identifies key elements with precision but also enhances readability and boosts the engagement value of the original document.
comment: Paper accepted in EMNLP 2025 Main Conference (Full Paper)
♻ ☆ A Survey of Process Reward Models: From Outcome Signals to Process Supervisions for Large Language Models
Although Large Language Models (LLMs) exhibit advanced reasoning ability, conventional alignment remains largely dominated by outcome reward models (ORMs) that judge only final answers. Process Reward Models(PRMs) address this gap by evaluating and guiding reasoning at the step or trajectory level. This survey provides a systematic overview of PRMs through the full loop: how to generate process data, build PRMs, and use PRMs for test-time scaling and reinforcement learning. We summarize applications across math, code, text, multimodal reasoning, robotics, and agents, and review emerging benchmarks. Our goal is to clarify design spaces, reveal open challenges, and guide future research toward fine-grained, robust reasoning alignment.
♻ ☆ VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
comment: Training and Inference Codes: https://github.com/VITA-MLLM/VITA-Audio
♻ ☆ R-Horizon: How Far Can Your Large Reasoning Model Really Go in Breadth and Depth?
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek-R1) have led to remarkable improvements through long Chain-of-Thought (CoT). However, existing benchmarks mainly focus on immediate, single-horizon tasks, failing to adequately evaluate models' ability to understand and respond to complex, long-horizon scenarios. To address this incomplete evaluation of Large Reasoning Models (LRMs), we propose R-HORIZON, a method designed to stimulate long-horizon reasoning behaviors in LRMs through query composition. Based on R-HORIZON, we construct a long-horizon reasoning benchmark, comprising complex multi-step reasoning tasks with interdependent problems that span long reasoning horizons. Through comprehensive evaluation of LRMs using the R-HORIZON benchmark, we find that even the most advanced LRMs suffer significant performance degradation. Our analysis reveals that LRMs exhibit limited effective reasoning length and struggle to allocate thinking budget across multiple problems appropriately. Recognizing these limitations, we use R-HORIZON to construct long-horizon reasoning data for reinforcement learning with verified rewards (RLVR). Compared to training with single-horizon data, RLVR with R-HORIZON not only substantially improves performance on the multi-horizon reasoning tasks, but also promotes accuracy on standard reasoning tasks, with an increase of 7.5 on AIME2024. These results position R-HORIZON as a scalable, controllable, and low-cost paradigm for enhancing and evaluating the long-horizon reasoning capabilities of LRMs.
♻ ☆ DanmakuTPPBench: A Multi-modal Benchmark for Temporal Point Process Modeling and Understanding NeurIPS 2025
We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. Project page: https://github.com/FRENKIE-CHIANG/DanmakuTPPBench
comment: Accepted by Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Towards Greater Leverage: Scaling Laws for Efficient Mixture-of-Experts Language Models
Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
♻ ☆ EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving NeurIPS 2025
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: Accepted by NeurIPS 2025. 47 pages, 24 figures
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs
The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.
comment: 31 pages
♻ ☆ Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm to improve Large Language Models on reasoning tasks such as coding, math or logic. To assess the reasoning boundary (the fraction of problems a model can solve) researchers often report Pass@k at large sampling budgets. Recent results reveal a crossover phenomenon: while RLVR models outperform the base model at small k values, the base model usually outperforms them when sampling a very large number of completions. This has been interpreted as evidence that base models have a larger reasoning boundary. We argue that on tasks with discrete answer spaces, such as math with numeric outputs, Pass@k at large k reflects the increasingly higher chance of success in the limit of the number of trials rather than genuine reasoning, and can therefore be misleading. We propose Cover@tau, which measures the fraction of problems that a model can solve for which at least a tau proportion of completions are correct. Unlike Pass@k, Cover@tau captures reasoning under an explicit reliability threshold: models that rely on random guessing degrade rapidly as tau increases. We evaluate several RLVR models using Cover@tau-based metrics and illustrate how the relative rankings of popular algorithms change compared to Pass@1, offering a different perspective on reasoning boundaries.
comment: 10 pages, 3 figures. v2 adds discussion of related work (G-Pass@k)
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications - such as semantic matching, clustering, and information retrieval - continue to rely on text embeddings for their efficiency and effectiveness. Therefore, integrating LLMs with text embeddings has become a major research focus in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Version 4: We added the latest works of LLM-based Embedders
♻ ☆ Can we Evaluate RAGs with Synthetic Data? ECML-PKDD 2025
We investigate whether synthetic question-answer (QA) data generated by large language models (LLMs) can serve as an effective proxy for human-labeled benchmarks when the latter is unavailable. We assess the reliability of synthetic benchmarks across two experiments: one varying retriever parameters while keeping the generator fixed, and another varying the generator with fixed retriever parameters. Across four datasets, of which two open-domain and two proprietary, we find that synthetic benchmarks reliably rank the RAGs varying in terms of retriever configuration, aligning well with human-labeled benchmark baselines. However, they do not consistently produce reliable RAG rankings when comparing generator architectures. The breakdown possibly arises from a combination of task mismatch between the synthetic and human benchmarks, and stylistic bias favoring certain generators.
comment: Accepted for the SynDAiTE workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2025), September 15, 2025 - Porto, Portugal
♻ ☆ Uncertainty Quantification for Evaluating Machine Translation Bias
The predictive uncertainty of machine translation (MT) models is typically used as a quality estimation proxy. In this work, we posit that apart from confidently translating when a single correct translation exists, models should also maintain uncertainty when the input is ambiguous. We use uncertainty to measure gender bias in MT systems. When the source sentence includes a lexeme whose gender is not overtly marked, but whose target-language equivalent requires gender specification, the model must infer the appropriate gender from the context and can be susceptible to biases. Prior work measured bias via gender accuracy, however it cannot be applied to ambiguous cases. Using semantic uncertainty, we are able to assess bias when translating both ambiguous and unambiguous source sentences, and find that high translation accuracy does not correlate with exhibiting uncertainty appropriately, and that debiasing affects the two cases differently.
♻ ☆ From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora EMNLP 2025
Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
comment: EMNLP 2025 Main Conference (Oral)
♻ ☆ DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection NeurIPS 2025
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and well-curated multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus constructed from newly extracted Common Crawl data and existing multilingual sources. DCAD-2000 covers 2,282 languages, 46.72TB of text, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of existing data cleaning approaches, which rely on manually designed heuristic thresholds, we reframe data cleaning as an anomaly detection problem. This dynamic filtering paradigm substantially improves data quality by automatically identifying and removing noisy or anomalous content. By fine-tuning LLMs on DCAD-2000, we demonstrate notable improvements in data quality, robustness of the cleaning pipeline, and downstream performance, particularly for low-resource languages across multiple multilingual benchmarks.
comment: NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.
comment: We have come across a recent approach that has not been properly attributed at the time of submission and compared in a fair setting. Therefore, we would like to withdraw the paper to address these concerns
♻ ☆ LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
comment: Accepted at NeurIPS 2025
♻ ☆ Exploring Data-Efficient Adaptation of Large Language Models for Code Generation
Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. Therefore, how to effectively adapt LLMs to new scenarios with few training data is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named DEED, which stands for Data-Efficient adaptation with Error-Driven learning for code generation. DEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome their own shortcomings, thus achieving efficient learning. Specifically, DEED involves identifying error code generated by LLMs, employing Self-Revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to other mainstream fine-tuning approaches, DEED achieves superior performance with few training data, showing an average relative improvement of 46.2% in Pass@1 on multiple code generation benchmarks. We also validate the effectiveness of Self-Revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, DEED consistently demonstrates strong performance across various LLMs, underscoring its applicability.
comment: Accepted by TOSEM
♻ ☆ Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ Unconditional Truthfulness: Learning Unconditional Uncertainty of Large Language Models
Uncertainty quantification (UQ) has emerged as a promising approach for detecting hallucinations and low-quality output of Large Language Models (LLMs). However, obtaining proper uncertainty scores is complicated by the conditional dependency between the generation steps of an autoregressive LLM because it is hard to model it explicitly. Here, we propose to learn this dependency from attention-based features. In particular, we train a regression model that leverages LLM attention maps, probabilities on the current generation step, and recurrently computed uncertainty scores from previously generated tokens. To incorporate the recurrent features, we also suggest a two-staged training procedure. Our experimental evaluation on ten datasets and three LLMs shows that the proposed method is highly effective for selective generation, achieving substantial improvements over rivaling unsupervised and supervised approaches.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.
♻ ☆ Multi-Agent Collaboration via Evolving Orchestration NeurIPS 2025
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving. While recent research explores multi-agent collaboration among LLMs, most approaches rely on static organizational structures that struggle to adapt as task complexity and agent numbers grow, resulting in coordination overhead and inefficiencies. To this end, we propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a centralized orchestrator ("puppeteer") dynamically directs agents ("puppets") in response to evolving task states. This orchestrator is trained via reinforcement learning to adaptively sequence and prioritize agents, enabling flexible and evolvable collective reasoning. Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs. Analyses further reveal that the key improvements consistently stem from the emergence of more compact, cyclic reasoning structures under the orchestrator's evolution. Our code is available at https://github.com/OpenBMB/ChatDev/tree/puppeteer.
comment: accepted at NeurIPS 2025
♻ ☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT-adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: Project code and links to weight diffs, adapters, and training data can be found at https://github.com/Aviously/diff-interpretation-tuning
♻ ☆ Temporal Alignment of LLMs through Cycle Encoding for Long-Range Time Representations
Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
♻ ☆ Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models NeurIPS 2025
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: token-level methods (e.g., PPO) aim to provide fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
comment: Accepted at NeurIPS 2025
♻ ☆ Program Synthesis via Test-Time Transduction NeurIPS 2025
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.
comment: NeurIPS 2025
♻ ☆ Don't Retrieve, Generate: Prompting LLMs for Synthetic Training Data in Dense Retrieval
Training effective dense retrieval models typically relies on hard negative (HN) examples mined from large document corpora using methods such as BM25 or cross-encoders (CE), which require full corpus access. We propose a corpus-free alternative: an end-to-end pipeline where a Large Language Model (LLM) first generates a query from a passage and then produces a hard negative example using only the generated query text. Our dataset comprises 7,250 arXiv abstracts spanning diverse domains including mathematics, physics, computer science, and related fields, serving as positive passages for query generation. We evaluate two fine-tuning configurations of DistilBERT for dense retrieval; one using LLM-generated hard negatives conditioned solely on the query, and another using negatives generated with both the query and its positive document as context. Compared to traditional corpus-based mining methods {LLM Query $\rightarrow$ BM25 HN and LLM Query $\rightarrow$ CE HN on multiple BEIR benchmark datasets, our all-LLM pipeline outperforms strong lexical mining baselines and achieves performance comparable to cross-encoder-based methods, demonstrating the potential of corpus-free hard negative generation for retrieval model training.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
comment: 15 pages, 8 figures
♻ ☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
♻ ☆ Can Large Language Models Master Complex Card Games? NeurIPS 2025
Complex games have long been an important benchmark for testing the progress of artificial intelligence algorithms. AlphaGo, AlphaZero, and MuZero have defeated top human players in Go and Chess, garnering widespread societal attention towards artificial intelligence. Concurrently, large language models (LLMs) have exhibited remarkable capabilities across various tasks, raising the question of whether LLMs can achieve similar success in complex games. In this paper, we explore the potential of LLMs in mastering complex card games. We systematically assess the learning capabilities of LLMs across eight diverse card games, evaluating the impact of fine-tuning on high-quality gameplay data, and examining the models' ability to retain general capabilities while mastering these games. Our findings indicate that: (1) LLMs can approach the performance of strong game AIs through supervised fine-tuning on high-quality data, (2) LLMs can achieve a certain level of proficiency in multiple complex card games simultaneously, with performance augmentation for games with similar rules and conflicts for dissimilar ones, and (3) LLMs experience a decline in general capabilities when mastering complex games, but this decline can be mitigated by integrating a certain amount of general instruction data. The evaluation results demonstrate strong learning ability and versatility of LLMs. The code is available at https://github.com/THUDM/LLM4CardGame
comment: Accepted by NeurIPS 2025
♻ ☆ Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
Measuring similarity between training examples is critical for curating high-quality and diverse pretraining datasets for language models. However, similarity is typically computed with a generic off-the-shelf embedding model that has been trained for tasks such as retrieval. Whether these embedding-based similarity metrics are well-suited for pretraining data selection remains largely unexplored. In this paper, we propose a new framework to assess the suitability of a similarity metric specifically for data curation in language model pretraining applications. Our framework's first evaluation criterion captures how well distances reflect generalization in pretraining loss between different training examples. Next, we use each embedding model to guide a standard diversity-based data curation algorithm and measure its utility by pretraining a language model on the selected data and evaluating downstream task performance. Finally, we evaluate the capabilities of embeddings to distinguish between examples from different data sources. With these evaluations, we demonstrate that standard off-the-shelf embedding models are not well-suited for the pretraining data curation setting, underperforming even remarkably simple embeddings that are extracted from models trained on the same pretraining corpus. Our experiments are performed on the Pile, for pretraining a 1.7B parameter language model on 200B tokens. We believe our analysis and evaluation framework serves as a foundation for the future design of embeddings that specifically reason about similarity in pretraining datasets.
♻ ☆ Harnessing Test-time Adaptation for NLU tasks Involving Dialects of English
Test-time domain adaptation (TTDA) is an excellent method which helps generalize models across domains, tasks, and distributions without the use of labeled datasets. Thus, TTDA is very useful in natural language processing (NLP) in the dialectal setting, since oftentimes, models are trained on Standard American English (SAE), evaluated on Indian English (IndE), Singaporean English (SingE), or Nigerian English (NgE), of which distribution differs significantly from the former. This is especially useful since dialectal datasets are scarce. In this paper, we explore one of the most famous TTDA techniques, SHOT, in dialectal NLP. We finetune and evaluate SHOT on different combinations of dialectal GLUE. Our findings show that SHOT is a viable technique when labeled datasets are unavailable. We also theoretically propose the concept of dialectal gap and show that it has a positive correlation with the effectiveness of SHOT. We also find that in many cases, finetuning on SAE yields higher performance than finetuning on dialectal data.
♻ ☆ A$^2$FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning
Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A$^2$FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A$^2$FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.
comment: 12 pages, 6 figures
♻ ☆ MSR-Align: Policy-Grounded Multimodal Alignment for Safety-Aware Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have achieved remarkable progress in multimodal reasoning tasks through enhanced chain-of-thought capabilities. However, this advancement also introduces novel safety risks, as these models become increasingly vulnerable to harmful multimodal prompts that can trigger unethical or unsafe behaviors. Existing safety alignment approaches, primarily designed for unimodal language models, fall short in addressing the complex and nuanced threats posed by multimodal inputs. Moreover, current safety datasets lack the fine-grained, policy-grounded reasoning required to robustly align reasoning-capable VLMs. In this work, we introduce {MSR-Align}, a high-quality Multimodal Safety Reasoning dataset tailored to bridge this gap. MSR-Align supports fine-grained, deliberative reasoning over standardized safety policies across both vision and text modalities. Our data generation pipeline emphasizes multimodal diversity, policy-grounded reasoning, and rigorous quality filtering using strong multimodal judges. Extensive experiments demonstrate that fine-tuning VLMs on MSR-Align substantially improves robustness against both textual and vision-language jailbreak attacks, while preserving or enhancing general reasoning performance. MSR-Align provides a scalable and effective foundation for advancing the safety alignment of reasoning-capable VLMs. Our dataset is made publicly available at https://huggingface.co/datasets/Leigest/MSR-Align.
♻ ☆ DrunkAgent: Stealthy Memory Corruption in LLM-Powered Recommender Agents
Large language model (LLM)-powered agents are increasingly used in recommender systems (RSs) to achieve personalized behavior modeling, where the memory mechanism plays a pivotal role in enabling the agents to autonomously explore, learn and self-evolve from real-world interactions. However, this very mechanism, serving as a contextual repository, inherently exposes an attack surface for potential adversarial manipulations. Despite its central role, the robustness of agentic RSs in the face of such threats remains largely underexplored. Previous works suffer from semantic mismatches or rely on static embeddings or pre-defined prompts, all of which are not designed for dynamic systems, especially for dynamic memory states of LLM agents. This challenge is exacerbated by the black-box nature of commercial recommenders. To tackle the above problems, in this paper, we present the first systematic investigation of memory-based vulnerabilities in LLM-powered recommender agents, revealing their security limitations and guiding efforts to strengthen system resilience and trustworthiness. Specifically, we propose a novel black-box attack framework named DrunkAgent. DrunkAgent crafts semantically meaningful adversarial textual triggers for target item promotions and introduces a series of strategies to maximize the trigger effect by corrupting the memory updates during the interactions. The triggers and strategies are optimized on a surrogate model, enabling DrunkAgent transferable and stealthy. Extensive experiments on real-world datasets across diverse agentic RSs, including collaborative filtering, retrieval augmentation and sequential recommendations, demonstrate the generalizability, transferability and stealthiness of DrunkAgent.
♻ ☆ IASC: Interactive Agentic System for ConLangs
We present a system that uses LLMs as a tool in the development of Constructed Languages. The system is modular in that one first creates a target phonology for the language using an agentic approach that refines its output at each step with commentary feedback on its previous attempt. Next, a set of sentences is 'translated' from their English original into a morphosyntactic markup that reflects the word order and morphosyntactic feature specifications of the desired target language, with affixes represented as morphosyntactic feature bundles. From this translated corpus, a lexicon is constructed using the phonological model and the set of morphemes (stems and affixes) extracted from the 'translated' sentences. The system is then instructed to provide an orthography for the language, using an existing script such as Latin or Cyrillic. Finally, the system writes a brief grammatical handbook of the language. The system can also translate further sentences into the target language. Our goal is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs 'know' about language-not what they know about any particular language or linguistic phenomenon, but how much they know about and understand language and linguistic concepts. As we shall see, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with more common patterns than rarer ones. An additional avenue that we explore is the application of our approach to translating from high-resource into low-resource languages. While the results so far are mostly negative, we provide some evidence that an improved version of the present system could afford some real gains in such tasks. https://github.com/SakanaAI/IASC
comment: Initial draft
♻ ☆ Ontology-Enhanced Knowledge Graph Completion using Large Language Models
Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ CoDial: Interpretable Task-Oriented Dialogue Systems Through Dialogue Flow Alignment
Building Task-Oriented Dialogue (TOD) systems that generalize across different tasks remains a challenging problem. Data-driven approaches often struggle to transfer effectively to unseen tasks. While recent schema-based TOD frameworks improve generalization by decoupling task logic from language understanding, their reliance on neural or generative models often obscures how task schemas influence behaviour and hence impair interpretability. In this work, we introduce a novel framework, CoDial (Code for Dialogue), which converts a TOD task schema, represented as a novel structured heterogeneous graph, to programmatic LLM guardrailing code, such as NVIDIA's Colang, enabling interpretable and efficient alignment of dialogue policies during inference. We introduce two paradigms, $\text{CoDial}_{\text{free}}$ and $\text{CoDial}_{\text{structured}}$ for generating LLM guardrails, and propose a feedback mechanism that integrates human feedback to iteratively improve the generated code. Empirically, CoDial achieves state-of-the-art (SOTA) performance on the widely used STAR dataset and is on par with SOTA on the MultiWOZ dataset, while also providing interpretability. We additionally demonstrate CoDial's iterative improvement via manual and LLM-aided feedback, making it a practical tool for expert-guided alignment of LLMs in high-stakes domains.
♻ ☆ HiPO: Hybrid Policy Optimization for Dynamic Reasoning in LLMs
Large Language Models (LLMs) increasingly rely on Chain-of-Thought (CoT) reasoning to improve accuracy on complex tasks. However, always generating lengthy reasoning traces is inefficient, leading to excessive token usage and higher inference costs. This paper introduces the Hybrid Policy Optimization (i.e., HiPO), a framework for adaptive reasoning control that enables LLMs to selectively decide when to engage in detailed reasoning (Think-on) and when to respond directly (Think-off). Specifically, HiPO combines a hybrid data pipelineproviding paired Think-on and Think-off responseswith a hybrid reinforcement learning reward system that balances accuracy and efficiency while avoiding over-reliance on detailed reasoning. Experiments across mathematics and coding benchmarks demonstrate that HiPO can substantially reduce token length while maintaining or improving accuracy. Finally, we hope HiPO a can be a principled approach for efficient adaptive reasoning, advancing the deployment of reasoning-oriented LLMs in real-world, resource-sensitive settings.
♻ ☆ Semantic Agreement Enables Efficient Open-Ended LLM Cascades EMNLP
Cascade systems route computational requests to smaller models when possible and defer to larger models only when necessary, offering a promising approach to balance cost and quality in LLM deployment. However, they face a fundamental challenge in open-ended text generation: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose semantic agreement -- meaning-level consensus between ensemble outputs -- as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, we find that semantic cascades match or surpass target-model quality at 40% of the cost and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.
comment: 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Industry Track
♻ ☆ ETT: Expanding the Long Context Understanding Capability of LLMs at Test-Time
Transformer-based Language Models' computation and memory overhead increase quadratically as a function of sequence length. The quadratic cost poses challenges when employing LLMs for processing long sequences. In this work, we introduce \ourmodelacronym~(Extend at Test-Time), method for extending the context length of short context Transformer-based LLMs, with constant memory requirement and linear computation overhead. ETT enable the extension of the context length at test-time by efficient fine-tuning the model's parameters on the input context, chunked into overlapping small subsequences. We evaluate ETT on LongBench by extending the context length of GPT-Large and Phi-2 up to 32 times, increasing from 1k to 32k tokens. This results in up to a 30 percent improvement in the model's accuracy. We also study how context can be stored in LLM's weights effectively and efficiently. Through a detailed ablation study, we examine which Transformer modules are most beneficial to fine-tune at test-time. Interestingly, we find that fine-tuning the second layer of the FFNs is more effective than full fine-tuning, leading to a further improvement in the models' accuracy.
♻ ☆ Improving Metacognition and Uncertainty Communication in Language Models
Large language models (LLMs) are increasingly used in decision-making contexts, but when they present answers without signaling low confidence, users may unknowingly act on erroneous outputs. Prior work shows that LLMs maintain internal uncertainty signals, yet their expressed confidence is often miscalibrated and poorly discriminates between correct and incorrect answers. We investigate whether supervised fine-tuning can improve models' ability to communicate uncertainty and whether such improvements generalize across tasks and domains. We fine-tune LLMs on datasets spanning general knowledge, mathematics, and open-ended trivia, and evaluate two metacognitive tasks: (1) single-question confidence estimation, where the model assigns a numeric certainty to its answer, and (2) pairwise confidence comparison, where the model selects which of two answers it is more likely to answer correctly. We assess generalization to unseen domains, including medical and legal reasoning. Results show that fine-tuning improves calibration (alignment between stated confidence and accuracy) and discrimination (higher confidence for correct vs. incorrect responses) within and across domains. However, gains are task-specific: training on single-question calibration does not transfer to pairwise comparison, and vice versa. Multitask fine-tuning yields broader gains, lowering calibration error and strengthening discrimination in out-of-domain evaluations. This suggests that uncertainty communication in LLMs is trainable but requires multitask training to generalize effectively.
♻ ☆ Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models
Widespread LLM adoption has introduced characteristic repetitive phraseology, termed "slop," which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000x more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.
comment: 11 pages + appendices, 16 figures
♻ ☆ Presenting a Paper is an Art: Self-Improvement Aesthetic Agents for Academic Presentations
The promotion of academic papers has become an important means of enhancing research visibility. However, existing automated methods struggle limited storytelling, insufficient aesthetic quality, and constrained self-adjustment, making it difficult to achieve efficient and engaging dissemination. At the heart of those challenges is a simple principle: \emph{there is no way to improve it when you cannot evaluate it right}. To address this, we introduce \textbf{EvoPresent}, a self-improvement agent framework that unifies coherent narratives, aesthetic-aware designs, and realistic presentation delivery via virtual characters. Central to EvoPresent is \textbf{PresAesth}, a multi-task reinforcement learning (RL) aesthetic model that provides reliable aesthetic scoring, defect adjustment, and comparative feedback, enabling iterative self-improvement even under limited aesthetic training data. To systematically evaluate the methods, we introduce \textbf{EvoPresent Benchmark}, a comprehensive benchmark comprising: \textit{Presentation Generation Quality}, built on 650 top-tier AI conference papers with multimodal resources (slides, videos and scripts) to assess both content and design; and \textit{Aesthetic Awareness}, consisting of 2,000 slide pairs with varying aesthetic levels, supporting joint training and evaluation on scoring, defect adjustment, and comparison. Our findings highlight that (i) High-quality feedback is essential for agent self-improvement, while initial capability alone does not guarantee effective self-correction. (ii) Automated generation pipelines exhibit a trade-off between visual design and content construction. (iii) Multi-task RL training shows stronger generalization in aesthetic awareness tasks.
♻ ☆ AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks NeurIPS 2025
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
comment: Accepted by NeurIPS 2025
♻ ☆ ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding activity that requires constant decision-making, heavy reliance on working memory, and frequent shifts between tasks of different goals. To build writing assistants that truly align with writers' cognition, we must capture and decode the complete thought process behind how writers transform ideas into final texts. We present ScholaWrite, the first dataset of end-to-end scholarly writing, tracing the multi-month journey from initial drafts to final manuscripts. We contribute three key advances: (1) a Chrome extension that unobtrusively records keystrokes on Overleaf, enabling the collection of realistic, in-situ writing data; (2) a novel corpus of full scholarly manuscripts, enriched with fine-grained annotations of cognitive writing intentions. The dataset includes \LaTeX-based edits from five computer science preprints, capturing nearly 62K text changes over four months; and (3) analyses and insights into the micro-dynamics of scholarly writing, highlighting gaps between human writing processes and the current capabilities of large language models (LLMs) in providing meaningful assistance. ScholaWrite underscores the value of capturing end-to-end writing data to develop future writing assistants that support, not replace, the cognitive work of scientists.
comment: Equal contribution: Khanh Chi Le, Linghe Wang, Minhwa Lee | project page: https://minnesotanlp.github.io/scholawrite/
♻ ☆ CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation
Although autoregressive models have dominated language modeling in recent years, there has been a growing interest in exploring alternative paradigms to the conventional next-token prediction framework. Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability. However, these models are often constrained by fixed-length generation. A promising direction is to combine the strengths of both paradigms, segmenting sequences into blocks, modeling autoregressive dependencies across blocks while leveraging discrete diffusion to estimate the conditional distribution within each block given the preceding context. Nevertheless, their practical application is often hindered by two key limitations: rigid fixed-length outputs and a lack of flexible control mechanisms. In this work, we address the critical limitations of fixed granularity and weak controllability in current large diffusion language models. We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics using reinforcement learning. Furthermore, we introduce a classifier-guided control mechanism tailored to discrete diffusion, which significantly reduces computational overhead while facilitating efficient post-hoc conditioning without retraining. Extensive experiments demonstrate that CtrlDiff sets a new standard among hybrid diffusion models, narrows the performance gap to state-of-the-art autoregressive approaches, and enables effective conditional text generation across diverse tasks.
♻ ☆ ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.
comment: 47 pages, 15 figures. Dataset available at Zenodo: https://doi.org/10.5281/zenodo.17249602 Codebase available at GitHub: https://github.com/alikhairallah/ALHD-Benchmarking
♻ ☆ Robustness Assessment and Enhancement of Text Watermarking for Google's SynthID
Recent advances in LLM watermarking methods such as SynthID-Text by Google DeepMind offer promising solutions for tracing the provenance of AI-generated text. However, our robustness assessment reveals that SynthID-Text is vulnerable to meaning-preserving attacks, such as paraphrasing, copy-paste modifications, and back-translation, which can significantly degrade watermark detectability. To address these limitations, we propose SynGuard, a hybrid framework that combines the semantic alignment strength of Semantic Information Retrieval (SIR) with the probabilistic watermarking mechanism of SynthID-Text. Our approach jointly embeds watermarks at both lexical and semantic levels, enabling robust provenance tracking while preserving the original meaning. Experimental results across multiple attack scenarios show that SynGuard improves watermark recovery by an average of 11.1\% in F1 score compared to SynthID-Text. These findings demonstrate the effectiveness of semantic-aware watermarking in resisting real-world tampering. All code, datasets, and evaluation scripts are publicly available at: https://github.com/githshine/SynGuard.
comment: Accepted by TrustCom2025
♻ ☆ PixelWorld: How Far Are We from Perceiving Everything as Pixels?
Recent agentic language models increasingly need to interact with real-world environments that contain tightly intertwined visual and textual information, often through raw camera pixels rather than separately processed images and tokenized text. This shift highlights the need for a unified perception paradigm. To investigate this idea, we explore Perceive Everything as Pixels (PEAP) and introduce PixelWorld, a benchmark that renders natural-language, tabular, mathematical, and diagrammatic inputs into a shared pixel space. Experiments across multiple benchmarks show that PEAP achieves comparable performance to token-based approaches on semantic understanding tasks, suggesting that vision transformers can partially capture global textual semantics without explicit tokenization. In contrast, reasoning-intensive tasks such as mathematics and code show notable performance degradation, although Chain-of-Thought prompting helps mitigate this gap by compensating for missing symbolic structure. We further find that when visual and textual information are closely integrated, representing everything as pixels simplifies preprocessing and avoids cross-modal misalignment. PixelWorld thus provides a systematic and practical framework for evaluating unified vision--language models and facilitates further exploration of pixel-based multimodal learning.
♻ ☆ Efficient Interleaved Speech Modeling through Knowledge Distillation
Current speech language models exceed the size and latency constraints of many deployment environments. We build compact, expressive speech generation models through layer-aligned distillation, matching hidden states, attention maps, and softened logits to compress large multimodal transformers by 3x with minimal loss in performance. We introduce TinyWave, a family of 2B-parameter models for speech-to-speech and interleaved speech-text generation, trained on 50,000 hours of public audio. TinyWave supports (i) speech-only generation using phonetic or expressive tokens and (ii) mixed speech-text continuations. Evaluation on Libri-Light shows TinyWave within 1.4 normalized perplexity points of its teacher. Accuracy on spoken StoryCloze and SALMon reaches 93-97% of the teacher's performance, outperforming size-matched baselines. These models are optimized for deployment on commodity hardware, enabling applications in real-time conversational agents, assistive technologies, and low-resource environments. We release models, training code, and evaluation scripts to support reproducible research on compact, expressive speech generation.
♻ ☆ CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation ACL 2025
Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
comment: Accepted at Findings of ACL 2025
♻ ☆ Flow-SLM: Joint Learning of Linguistic and Acoustic Information for Spoken Language Modeling
Textless spoken language models (SLMs) are generative models of speech that do not rely on text supervision. Most textless SLMs learn to predict the next semantic token, a discrete representation of linguistic content, and rely on a separate vocoder to add acoustic information to the generated speech. Such models have no access to acoustic context and no built-in control over acoustic details. In this work, we propose to jointly model linguistic and acoustic information by generating semantic tokens and a continuous real-valued representation of the acoustic frame. We use a flow-matching objective to predict the continuous vector conditioned on the semantic tokens. We study the design space of this approach and find that predicting multiple future semantic tokens helps preserve linguistic information. Our approach achieves comparable performance to existing models in terms of linguistic likelihood benchmarks, while providing better acoustic detail in prompted generation.
comment: ASRU 2025. Project page: https://jjery2243542.github.io/flowslm.github.io/