MyArxiv
Computation and Language
☆ StepWiser: Stepwise Generative Judges for Wiser Reasoning
As models increasingly leverage multi-step reasoning strategies to solve complex problems, supervising the logical validity of these intermediate steps has become a critical research challenge. Process reward models address this by providing step-by-step feedback, but current approaches have two major drawbacks: they typically function as classifiers without providing explanations, and their reliance on supervised fine-tuning with static datasets limits generalization. Inspired by recent advances, we reframe stepwise reward modeling from a classification task to a reasoning task itself. We thus propose a generative judge that reasons about the policy model's reasoning steps (i.e., meta-reasons), outputting thinking tokens before delivering a final verdict. Our model, StepWiser, is trained by reinforcement learning using relative outcomes of rollouts. We show it provides (i) better judgment accuracy on intermediate steps than existing methods; (ii) can be used to improve the policy model at training time; and (iii) improves inference-time search.
☆ Generative Interfaces for Language Models
Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with humans preferring them in over 70% of cases. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.
comment: Preprint
☆ Evaluating the Evaluators: Are readability metrics good measures of readability?
Plain Language Summarization (PLS) aims to distill complex documents into accessible summaries for non-expert audiences. In this paper, we conduct a thorough survey of PLS literature, and identify that the current standard practice for readability evaluation is to use traditional readability metrics, such as Flesch-Kincaid Grade Level (FKGL). However, despite proven utility in other fields, these metrics have not been compared to human readability judgments in PLS. We evaluate 8 readability metrics and show that most correlate poorly with human judgments, including the most popular metric, FKGL. We then show that Language Models (LMs) are better judges of readability, with the best-performing model achieving a Pearson correlation of 0.56 with human judgments. Extending our analysis to PLS datasets, which contain summaries aimed at non-expert audiences, we find that LMs better capture deeper measures of readability, such as required background knowledge, and lead to different conclusions than the traditional metrics. Based on these findings, we offer recommendations for best practices in the evaluation of plain language summaries. We release our analysis code and survey data.
☆ VibeVoice Technical Report
This report presents VibeVoice, a novel model designed to synthesize long-form speech with multiple speakers by employing next-token diffusion, which is a unified method for modeling continuous data by autoregressively generating latent vectors via diffusion. To enable this, we introduce a novel continuous speech tokenizer that, when compared to the popular Encodec model, improves data compression by 80 times while maintaining comparable performance. The tokenizer effectively preserves audio fidelity while significantly boosting computational efficiency for processing long sequences. Thus, VibeVoice can synthesize long-form speech for up to 90 minutes (in a 64K context window length) with a maximum of 4 speakers, capturing the authentic conversational ``vibe'' and surpassing open-source and proprietary dialogue models.
☆ Demystifying Scientific Problem-Solving in LLMs by Probing Knowledge and Reasoning
Scientific problem solving poses unique challenges for LLMs, requiring both deep domain knowledge and the ability to apply such knowledge through complex reasoning. While automated scientific reasoners hold great promise for assisting human scientists, there is currently no widely adopted holistic benchmark for evaluating scientific reasoning, and few approaches systematically disentangle the distinct roles of knowledge and reasoning in these tasks. To address these gaps, we introduce SciReas, a diverse suite of existing benchmarks for scientific reasoning tasks, and SciReas-Pro, a selective subset that requires more complex reasoning. Our holistic evaluation surfaces insights about scientific reasoning performance that remain hidden when relying on individual benchmarks alone. We then propose KRUX, a probing framework for studying the distinct roles of reasoning and knowledge in scientific tasks. Combining the two, we conduct an in-depth analysis that yields several key findings: (1) Retrieving task-relevant knowledge from model parameters is a critical bottleneck for LLMs in scientific reasoning; (2) Reasoning models consistently benefit from external knowledge added in-context on top of the reasoning enhancement; (3) Enhancing verbalized reasoning improves LLMs' ability to surface task-relevant knowledge. Finally, we conduct a lightweight analysis, comparing our science-focused data composition with concurrent efforts on long CoT SFT, and release SciLit01, a strong 8B baseline for scientific reasoning.
comment: 28 pages, 16 figures
☆ The Ramon Llull's Thinking Machine for Automated Ideation
This paper revisits Ramon Llull's Ars combinatoria - a medieval framework for generating knowledge through symbolic recombination - as a conceptual foundation for building a modern Llull's thinking machine for research ideation. Our approach defines three compositional axes: Theme (e.g., efficiency, adaptivity), Domain (e.g., question answering, machine translation), and Method (e.g., adversarial training, linear attention). These elements represent high-level abstractions common in scientific work - motivations, problem settings, and technical approaches - and serve as building blocks for LLM-driven exploration. We mine elements from human experts or conference papers and show that prompting LLMs with curated combinations produces research ideas that are diverse, relevant, and grounded in current literature. This modern thinking machine offers a lightweight, interpretable tool for augmenting scientific creativity and suggests a path toward collaborative ideation between humans and AI.
comment: 21 pages, 3 figures
☆ Do LVLMs Know What They Know? A Systematic Study of Knowledge Boundary Perception in LVLMs EMNLP2025
Large vision-language models (LVLMs) demonstrate strong visual question answering (VQA) capabilities but are shown to hallucinate. A reliable model should perceive its knowledge boundaries-knowing what it knows and what it does not. This paper investigates LVLMs' perception of their knowledge boundaries by evaluating three types of confidence signals: probabilistic confidence, answer consistency-based confidence, and verbalized confidence. Experiments on three LVLMs across three VQA datasets show that, although LVLMs possess a reasonable perception level, there is substantial room for improvement. Among the three confidences, probabilistic and consistency-based signals are more reliable indicators, while verbalized confidence often leads to overconfidence. To enhance LVLMs' perception, we adapt several established confidence calibration methods from Large Language Models (LLMs) and propose three effective methods. Additionally, we compare LVLMs with their LLM counterparts, finding that jointly processing visual and textual inputs decreases question-answering performance but reduces confidence, resulting in an improved perception level compared to LLMs.
comment: EMNLP2025 Findings
☆ Beyond the Black Box: Integrating Lexical and Semantic Methods in Quantitative Discourse Analysis with BERTopic
Quantitative Discourse Analysis has seen growing adoption with the rise of Large Language Models and computational tools. However, reliance on black box software such as MAXQDA and NVivo risks undermining methodological transparency and alignment with research goals. This paper presents a hybrid, transparent framework for QDA that combines lexical and semantic methods to enable triangulation, reproducibility, and interpretability. Drawing from a case study in historical political discourse, we demonstrate how custom Python pipelines using NLTK, spaCy, and Sentence Transformers allow fine-grained control over preprocessing, lemmatisation, and embedding generation. We further detail our iterative BERTopic modelling process, incorporating UMAP dimensionality reduction, HDBSCAN clustering, and c-TF-IDF keyword extraction, optimised through parameter tuning and multiple runs to enhance topic coherence and coverage. By juxtaposing precise lexical searches with context-aware semantic clustering, we argue for a multi-layered approach that mitigates the limitations of either method in isolation. Our workflow underscores the importance of code-level transparency, researcher agency, and methodological triangulation in computational discourse studies. Code and supplementary materials are available via GitHub.
comment: 5 pages conference paper, 4 tables
☆ Retrieval-Augmented Generation for Natural Language Art Provenance Searches in the Getty Provenance Index
This research presents a Retrieval-Augmented Generation (RAG) framework for art provenance studies, focusing on the Getty Provenance Index. Provenance research establishes the ownership history of artworks, which is essential for verifying authenticity, supporting restitution and legal claims, and understanding the cultural and historical context of art objects. The process is complicated by fragmented, multilingual archival data that hinders efficient retrieval. Current search portals require precise metadata, limiting exploratory searches. Our method enables natural-language and multilingual searches through semantic retrieval and contextual summarization, reducing dependence on metadata structures. We assess RAG's capability to retrieve and summarize auction records using a 10,000-record sample from the Getty Provenance Index - German Sales. The results show this approach provides a scalable solution for navigating art market archives, offering a practical tool for historians and cultural heritage professionals conducting historically sensitive research.
☆ It's All About In-Context Learning! Teaching Extremely Low-Resource Languages to LLMs EMNLP 2025
Extremely low-resource languages, especially those written in rare scripts, as shown in Figure 1, remain largely unsupported by large language models (LLMs). This is due in part to compounding factors such as the lack of training data. This paper delivers the first comprehensive analysis of whether LLMs can acquire such languages purely via in-context learning (ICL), with or without auxiliary alignment signals, and how these methods compare to parameter-efficient fine-tuning (PEFT). We systematically evaluate 20 under-represented languages across three state-of-the-art multilingual LLMs. Our findings highlight the limitation of PEFT when both language and its script are extremely under-represented by the LLM. In contrast, zero-shot ICL with language alignment is impressively effective on extremely low-resource languages, while few-shot ICL or PEFT is more beneficial for languages relatively better represented by LLMs. For LLM practitioners working on extremely low-resource languages, we summarise guidelines grounded by our results on adapting LLMs to low-resource languages, e.g., avoiding fine-tuning a multilingual model on languages of unseen scripts.
comment: Accepted by EMNLP 2025
☆ "Where does it hurt?" -- Dataset and Study on Physician Intent Trajectories in Doctor Patient Dialogues ECAI 2025
In a doctor-patient dialogue, the primary objective of physicians is to diagnose patients and propose a treatment plan. Medical doctors guide these conversations through targeted questioning to efficiently gather the information required to provide the best possible outcomes for patients. To the best of our knowledge, this is the first work that studies physician intent trajectories in doctor-patient dialogues. We use the `Ambient Clinical Intelligence Benchmark' (Aci-bench) dataset for our study. We collaborate with medical professionals to develop a fine-grained taxonomy of physician intents based on the SOAP framework (Subjective, Objective, Assessment, and Plan). We then conduct a large-scale annotation effort to label over 5000 doctor-patient turns with the help of a large number of medical experts recruited using Prolific, a popular crowd-sourcing platform. This large labeled dataset is an important resource contribution that we use for benchmarking the state-of-the-art generative and encoder models for medical intent classification tasks. Our findings show that our models understand the general structure of medical dialogues with high accuracy, but often fail to identify transitions between SOAP categories. We also report for the first time common trajectories in medical dialogue structures that provide valuable insights for designing `differential diagnosis' systems. Finally, we extensively study the impact of intent filtering for medical dialogue summarization and observe a significant boost in performance. We make the codes and data, including annotation guidelines, publicly available at https://github.com/DATEXIS/medical-intent-classification.
comment: Accepted at ECAI 2025
☆ HiPlan: Hierarchical Planning for LLM-Based Agents with Adaptive Global-Local Guidance
Large language model (LLM)-based agents have demonstrated remarkable capabilities in decision-making tasks, but struggle significantly with complex, long-horizon planning scenarios. This arises from their lack of macroscopic guidance, causing disorientation and failures in complex tasks, as well as insufficient continuous oversight during execution, rendering them unresponsive to environmental changes and prone to deviations. To tackle these challenges, we introduce HiPlan, a hierarchical planning framework that provides adaptive global-local guidance to boost LLM-based agents'decision-making. HiPlan decomposes complex tasks into milestone action guides for general direction and step-wise hints for detailed actions. During the offline phase, we construct a milestone library from expert demonstrations, enabling structured experience reuse by retrieving semantically similar tasks and milestones. In the execution phase, trajectory segments from past milestones are dynamically adapted to generate step-wise hints that align current observations with the milestone objectives, bridging gaps and correcting deviations. Extensive experiments across two challenging benchmarks demonstrate that HiPlan substantially outperforms strong baselines, and ablation studies validate the complementary benefits of its hierarchical components.
☆ MovieCORE: COgnitive REasoning in Movies EMNLP'2025
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.
comment: Accepted for EMNLP'2025 Main Conference. Project Page: https://joslefaure.github.io/assets/html/moviecore.html
☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm shifts: From Passive to Proactive, From Context to Memory, and From Imitation to Learning. In this dynamic environment, agents must acquire and distill practical skills and maintain persistent memory to make decisions based on evolving state variables. StuLife provides a comprehensive platform for evaluating lifelong learning capabilities, including memory retention, skill transfer, and self-motivated behavior. Beyond evaluating SOTA LLMs on the StuLife benchmark, we also explore the role of context engineering in advancing AGI.
☆ Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
☆ Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
comment: 25 pages, 9 figures. The AI Intuition Explorer dashboard is available at: https://cyrilliu1974.github.io/github.io/vi.html
☆ The Double-edged Sword of LLM-based Data Reconstruction: Understanding and Mitigating Contextual Vulnerability in Word-level Differential Privacy Text Sanitization CCS 2025
Differentially private text sanitization refers to the process of privatizing texts under the framework of Differential Privacy (DP), providing provable privacy guarantees while also empirically defending against adversaries seeking to harm privacy. Despite their simplicity, DP text sanitization methods operating at the word level exhibit a number of shortcomings, among them the tendency to leave contextual clues from the original texts due to randomization during sanitization $\unicode{x2013}$ this we refer to as $\textit{contextual vulnerability}$. Given the powerful contextual understanding and inference capabilities of Large Language Models (LLMs), we explore to what extent LLMs can be leveraged to exploit the contextual vulnerability of DP-sanitized texts. We expand on previous work not only in the use of advanced LLMs, but also in testing a broader range of sanitization mechanisms at various privacy levels. Our experiments uncover a double-edged sword effect of LLM-based data reconstruction attacks on privacy and utility: while LLMs can indeed infer original semantics and sometimes degrade empirical privacy protections, they can also be used for good, to improve the quality and privacy of DP-sanitized texts. Based on our findings, we propose recommendations for using LLM data reconstruction as a post-processing step, serving to increase privacy protection by thinking adversarially.
comment: 15 pages, 4 figures, 8 tables. Accepted to WPES @ CCS 2025
☆ Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework ECAI 2025
Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.
comment: ECAI 2025 TRUST AI workshop
☆ Affective Polarization across European Parliaments
Affective polarization, characterized by increased negativity and hostility towards opposing groups, has become a prominent feature of political discourse worldwide. Our study examines the presence of this type of polarization in a selection of European parliaments in a fully automated manner. Utilizing a comprehensive corpus of parliamentary speeches from the parliaments of six European countries, we employ natural language processing techniques to estimate parliamentarian sentiment. By comparing the levels of negativity conveyed in references to individuals from opposing groups versus one's own, we discover patterns of affectively polarized interactions. The findings demonstrate the existence of consistent affective polarization across all six European parliaments. Although activity correlates with negativity, there is no observed difference in affective polarization between less active and more active members of parliament. Finally, we show that reciprocity is a contributing mechanism in affective polarization between parliamentarians across all six parliaments.
comment: 6 pages, 4 figures
☆ Empowering Computing Education Researchers Through LLM-Assisted Content Analysis
Computing education research (CER) is often instigated by practitioners wanting to improve both their own and the wider discipline's teaching practice. However, the latter is often difficult as many researchers lack the colleagues, resources, or capacity to conduct research that is generalisable or rigorous enough to advance the discipline. As a result, research methods that enable sense-making with larger volumes of qualitative data, while not increasing the burden on the researcher, have significant potential within CER. In this discussion paper, we propose such a method for conducting rigorous analysis on large volumes of textual data, namely a variation of LLM-assisted content analysis (LACA). This method combines content analysis with the use of large language models, empowering researchers to conduct larger-scale research which they would otherwise not be able to perform. Using a computing education dataset, we illustrate how LACA could be applied in a reproducible and rigorous manner. We believe this method has potential in CER, enabling more generalisable findings from a wider range of research. This, together with the development of similar methods, can help to advance both the practice and research quality of the CER discipline.
comment: 7 pages, 2 figures
☆ ReflectivePrompt: Reflective evolution in autoprompting algorithms
Autoprompting is the process of automatically selecting optimized prompts for language models, which has been gaining popularity with the rapid advancement of prompt engineering, driven by extensive research in the field of large language models (LLMs). This paper presents ReflectivePrompt - a novel autoprompting method based on evolutionary algorithms that employs a reflective evolution approach for more precise and comprehensive search of optimal prompts. ReflectivePrompt utilizes short-term and long-term reflection operations before crossover and elitist mutation to enhance the quality of the modifications they introduce. This method allows for the accumulation of knowledge obtained throughout the evolution process and updates it at each epoch based on the current population. ReflectivePrompt was tested on 33 datasets for classification and text generation tasks using open-access large language models: t-lite-instruct-0.1 and gemma3-27b-it. The method demonstrates, on average, a significant improvement (e.g., 28% on BBH compared to EvoPrompt) in metrics relative to current state-of-the-art approaches, thereby establishing itself as one of the most effective solutions in evolutionary algorithm-based autoprompting.
☆ ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.
☆ Arrows of Math Reasoning Data Synthesis for Large Language Models: Diversity, Complexity and Correctness
Enhancing the mathematical reasoning of large language models (LLMs) demands high-quality training data, yet conventional methods face critical challenges in scalability, cost, and data reliability. To address these limitations, we propose a novel program-assisted synthesis framework that systematically generates a high-quality mathematical corpus with guaranteed diversity, complexity, and correctness. This framework integrates mathematical knowledge systems and domain-specific tools to create executable programs. These programs are then translated into natural language problem-solution pairs and vetted by a bilateral validation mechanism that verifies solution correctness against program outputs and ensures program-problem consistency. We have generated 12.3 million such problem-solving triples. Experiments demonstrate that models fine-tuned on our data significantly improve their inference capabilities, achieving state-of-the-art performance on several benchmark datasets and showcasing the effectiveness of our synthesis approach.
☆ LLM-based Contrastive Self-Supervised AMR Learning with Masked Graph Autoencoders for Fake News Detection
The proliferation of misinformation in the digital age has led to significant societal challenges. Existing approaches often struggle with capturing long-range dependencies, complex semantic relations, and the social dynamics influencing news dissemination. Furthermore, these methods require extensive labelled datasets, making their deployment resource-intensive. In this study, we propose a novel self-supervised misinformation detection framework that integrates both complex semantic relations using Abstract Meaning Representation (AMR) and news propagation dynamics. We introduce an LLM-based graph contrastive loss (LGCL) that utilizes negative anchor points generated by a Large Language Model (LLM) to enhance feature separability in a zero-shot manner. To incorporate social context, we employ a multi view graph masked autoencoder, which learns news propagation features from social context graph. By combining these semantic and propagation-based features, our approach effectively differentiates between fake and real news in a self-supervised manner. Extensive experiments demonstrate that our self-supervised framework achieves superior performance compared to other state-of-the-art methodologies, even with limited labelled datasets while improving generalizability.
☆ LaTeXTrans: Structured LaTeX Translation with Multi-Agent Coordination
Despite the remarkable progress of modern machine translation (MT) systems on general-domain texts, translating structured LaTeX-formatted documents remains a significant challenge. These documents typically interleave natural language with domain-specific syntax, such as mathematical equations, tables, figures, and cross-references, all of which must be accurately preserved to maintain semantic integrity and compilability. In this paper, we introduce LaTeXTrans, a collaborative multi-agent system designed to address this challenge. LaTeXTrans ensures format preservation, structural fidelity, and terminology consistency through six specialized agents: 1) a Parser that decomposes LaTeX into translation-friendly units via placeholder substitution and syntax filtering; 2) a Translator, Validator, Summarizer, and Terminology Extractor that work collaboratively to ensure context-aware, self-correcting, and terminology-consistent translations; 3) a Generator that reconstructs the translated content into well-structured LaTeX documents. Experimental results demonstrate that LaTeXTrans can outperform mainstream MT systems in both translation accuracy and structural fidelity, offering an effective and practical solution for translating LaTeX-formatted documents.
☆ Controllable Conversational Theme Detection Track at DSTC 12
Conversational analytics has been on the forefront of transformation driven by the advances in Speech and Natural Language Processing techniques. Rapid adoption of Large Language Models (LLMs) in the analytics field has taken the problems that can be automated to a new level of complexity and scale. In this paper, we introduce Theme Detection as a critical task in conversational analytics, aimed at automatically identifying and categorizing topics within conversations. This process can significantly reduce the manual effort involved in analyzing expansive dialogs, particularly in domains like customer support or sales. Unlike traditional dialog intent detection, which often relies on a fixed set of intents for downstream system logic, themes are intended as a direct, user-facing summary of the conversation's core inquiry. This distinction allows for greater flexibility in theme surface forms and user-specific customizations. We pose Controllable Conversational Theme Detection problem as a public competition track at Dialog System Technology Challenge (DSTC) 12 -- it is framed as joint clustering and theme labeling of dialog utterances, with the distinctive aspect being controllability of the resulting theme clusters' granularity achieved via the provided user preference data. We give an overview of the problem, the associated dataset and the evaluation metrics, both automatic and human. Finally, we discuss the participant teams' submissions and provide insights from those. The track materials (data and code) are openly available in the GitHub repository.
comment: DSTC12@SigDial2025; data and code available at https://github.com/amazon-science/dstc12-controllable-conversational-theme-detection
☆ Harnessing Rule-Based Reinforcement Learning for Enhanced Grammatical Error Correction
Grammatical error correction is a significant task in NLP. Traditional methods based on encoder-decoder models have achieved certain success, but the application of LLMs in this field is still underexplored. Current research predominantly relies on supervised fine-tuning to train LLMs to directly generate the corrected sentence, which limits the model's powerful reasoning ability. To address this limitation, we propose a novel framework based on Rule-Based RL. Through experiments on the Chinese datasets, our Rule-Based RL framework achieves \textbf{state-of-the-art }performance, with a notable increase in \textbf{recall}. This result clearly highlights the advantages of using RL to steer LLMs, offering a more controllable and reliable paradigm for future development in GEC.
comment: Code will be released upon publication
☆ ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models
Large language models (LLMs) with chain-of-thought reasoning have demonstrated remarkable problem-solving capabilities, but controlling their computational effort remains a significant challenge for practical deployment. Recent proprietary systems like OpenAI's gpt-oss series have introduced discrete operational modes for intuitive reasoning control, but the open-source community has largely failed to achieve such capabilities. In this paper, we introduce ThinkDial, the first open-recipe end-to-end framework that successfully implements gpt-oss-style controllable reasoning through discrete operational modes. Our system enables seamless switching between three distinct reasoning regimes: High mode (full reasoning capability), Medium mode (50 percent token reduction with <10 percent performance degradation), and Low mode (75 percent token reduction with <15 percent performance degradation). We achieve this through an end-to-end training paradigm that integrates budget-mode control throughout the entire pipeline: budget-mode supervised fine-tuning that embeds controllable reasoning capabilities directly into the learning process, and two-phase budget-aware reinforcement learning with adaptive reward shaping. Extensive experiments demonstrate that ThinkDial achieves target compression-performance trade-offs with clear response length reductions while maintaining performance thresholds. The framework also exhibits strong generalization capabilities on out-of-distribution tasks.
☆ Beyond the Textual: Generating Coherent Visual Options for MCQs EMNLP 2025
Multiple-choice questions (MCQs) play a crucial role in fostering deep thinking and knowledge integration in education. However, previous research has primarily focused on generating MCQs with textual options, but it largely overlooks the visual options. Moreover, generating high-quality distractors remains a major challenge due to the high cost and limited scalability of manual authoring. To tackle these problems, we propose a Cross-modal Options Synthesis (CmOS), a novel framework for generating educational MCQs with visual options. Our framework integrates Multimodal Chain-of-Thought (MCoT) reasoning process and Retrieval-Augmented Generation (RAG) to produce semantically plausible and visually similar answer and distractors. It also includes a discrimination module to identify content suitable for visual options. Experimental results on test tasks demonstrate the superiority of CmOS in content discrimination, question generation and visual option generation over existing methods across various subjects and educational levels.
comment: EMNLP 2025
☆ Answering the Unanswerable Is to Err Knowingly: Analyzing and Mitigating Abstention Failures in Large Reasoning Models
Large reasoning models (LRMs) have shown remarkable progress on complex reasoning tasks. However, some questions posed to LRMs are inherently unanswerable, such as math problems lacking sufficient conditions. We find that LRMs continually fail to provide appropriate abstentions when confronted with these unanswerable questions. In this paper, we systematically analyze, investigate, and resolve this issue for trustworthy AI. We first conduct a detailed analysis of the distinct response behaviors of LRMs when facing unanswerable questions. Then, we show that LRMs possess sufficient cognitive capabilities to recognize the flaws in these questions. However, they fail to exhibit appropriate abstention behavior, revealing a misalignment between their internal cognition and external response. Finally, to resolve this issue, we propose a lightweight, two-stage method that combines cognitive monitoring with inference-time intervention. Experimental results demonstrate that our method significantly improves the abstention rate while maintaining the overall reasoning performance.
☆ Text to Query Plans for Question Answering on Large Tables
Efficient querying and analysis of large tabular datasets remain significant challenges, especially for users without expertise in programming languages like SQL. Text-to-SQL approaches have shown promising performance on benchmark data; however, they inherit SQL's drawbacks, including inefficiency with large datasets and limited support for complex data analyses beyond basic querying. We propose a novel framework that transforms natural language queries into query plans. Our solution is implemented outside traditional databases, allowing us to support classical SQL commands while avoiding SQL's inherent limitations. Additionally, we enable complex analytical functions, such as principal component analysis and anomaly detection, providing greater flexibility and extensibility than traditional SQL capabilities. We leverage LLMs to iteratively interpret queries and construct operation sequences, addressing computational complexity by incrementally building solutions. By executing operations directly on the data, we overcome context length limitations without requiring the entire dataset to be processed by the model. We validate our framework through experiments on both standard databases and large scientific tables, demonstrating its effectiveness in handling extensive datasets and performing sophisticated data analyses.
☆ Chronological Passage Assembling in RAG framework for Temporal Question Answering
Long-context question answering over narrative tasks is challenging because correct answers often hinge on reconstructing a coherent timeline of events while preserving contextual flow in a limited context window. Retrieval-augmented generation (RAG) indexing methods aim to address this challenge by selectively retrieving only necessary document segments. However, narrative texts possess unique characteristics that limit the effectiveness of these existing approaches. Specifically, understanding narrative texts requires more than isolated segments, as the broader context and sequential relationships between segments are crucial for comprehension. To address these limitations, we propose ChronoRAG, a novel RAG framework specialized for narrative texts. This approach focuses on two essential aspects: refining dispersed document information into coherent and structured passages, and preserving narrative flow by explicitly capturing and maintaining the temporal order among retrieved passages. We empirically demonstrate the effectiveness of ChronoRAG through experiments on the NarrativeQA dataset, showing substantial improvements in tasks requiring both factual identification and comprehension of complex sequential relationships, underscoring that reasoning over temporal order is crucial in resolving narrative QA.
comment: 7 pages, 3 figures
☆ CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient Reasoning Data Synthesis Across Dual-System Cognitive Tasks EMNLP 2025
Long chain-of-thought (CoT) prompting helps Large Language Models (LLMs) solve difficult problems, but very long traces often slow or even degrade performance on fast, intuitive "System-1" tasks. We introduce Connector-Aware Compact CoT (CAC-CoT) -- a method that deliberately restricts reasoning to a small, fixed set of connector phrases, steering the model toward concise and well -- structured explanations. Despite its simplicity, our synthetic method with Gemini-2.0-Flash yields a high-quality training quality. CAC-CoT achieves approximately 85% on GSM8K and approximately 40% on GPQA (System-2) while retaining approximately 90% on S1-Bench (System-1). Its reasoning traces average approximately 300 tokens(ART), about one-third the length of baseline traces, delivering higher efficiency without loss of accuracy.
comment: Accepted at EMNLP 2025 findings
☆ M3HG: Multimodal, Multi-scale, and Multi-type Node Heterogeneous Graph for Emotion Cause Triplet Extraction in Conversations ACL 2025
Emotion Cause Triplet Extraction in Multimodal Conversations (MECTEC) has recently gained significant attention in social media analysis, aiming to extract emotion utterances, cause utterances, and emotion categories simultaneously. However, the scarcity of related datasets, with only one published dataset featuring highly uniform dialogue scenarios, hinders model development in this field. To address this, we introduce MECAD, the first multimodal, multi-scenario MECTEC dataset, comprising 989 conversations from 56 TV series spanning a wide range of dialogue contexts. In addition, existing MECTEC methods fail to explicitly model emotional and causal contexts and neglect the fusion of semantic information at different levels, leading to performance degradation. In this paper, we propose M3HG, a novel model that explicitly captures emotional and causal contexts and effectively fuses contextual information at both inter- and intra-utterance levels via a multimodal heterogeneous graph. Extensive experiments demonstrate the effectiveness of M3HG compared with existing state-of-the-art methods. The codes and dataset are available at https://github.com/redifinition/M3HG.
comment: 16 pages, 8 figures. Accepted to Findings of ACL 2025
☆ Beyond Quality: Unlocking Diversity in Ad Headline Generation with Large Language Models
The generation of ad headlines plays a vital role in modern advertising, where both quality and diversity are essential to engage a broad range of audience segments. Current approaches primarily optimize language models for headline quality or click-through rates (CTR), often overlooking the need for diversity and resulting in homogeneous outputs. To address this limitation, we propose DIVER, a novel framework based on large language models (LLMs) that are jointly optimized for both diversity and quality. We first design a semantic- and stylistic-aware data generation pipeline that automatically produces high-quality training pairs with ad content and multiple diverse headlines. To achieve the goal of generating high-quality and diversified ad headlines within a single forward pass, we propose a multi-stage multi-objective optimization framework with supervised fine-tuning (SFT) and reinforcement learning (RL). Experiments on real-world industrial datasets demonstrate that DIVER effectively balances quality and diversity. Deployed on a large-scale content-sharing platform serving hundreds of millions of users, our framework improves advertiser value (ADVV) and CTR by 4.0% and 1.4%.
☆ Bias Mitigation Agent: Optimizing Source Selection for Fair and Balanced Knowledge Retrieval KDD'2025
Large Language Models (LLMs) have transformed the field of artificial intelligence by unlocking the era of generative applications. Built on top of generative AI capabilities, Agentic AI represents a major shift toward autonomous, goal-driven systems that can reason, retrieve, and act. However, they also inherit the bias present in both internal and external information sources. This significantly affects the fairness and balance of retrieved information, and hence reduces user trust. To address this critical challenge, we introduce a novel Bias Mitigation Agent, a multi-agent system designed to orchestrate the workflow of bias mitigation through specialized agents that optimize the selection of sources to ensure that the retrieved content is both highly relevant and minimally biased to promote fair and balanced knowledge dissemination. The experimental results demonstrate an 81.82\% reduction in bias compared to a baseline naive retrieval strategy.
comment: Accepted at KDD'2025 Agent4IR workshop
☆ EMMM, Explain Me My Model! Explainable Machine Generated Text Detection in Dialogues
The rapid adoption of large language models (LLMs) in customer service introduces new risks, as malicious actors can exploit them to conduct large-scale user impersonation through machine-generated text (MGT). Current MGT detection methods often struggle in online conversational settings, reducing the reliability and interpretability essential for trustworthy AI deployment. In customer service scenarios where operators are typically non-expert users, explanation become crucial for trustworthy MGT detection. In this paper, we propose EMMM, an explanation-then-detection framework that balances latency, accuracy, and non-expert-oriented interpretability. Experimental results demonstrate that EMMM provides explanations accessible to non-expert users, with 70\% of human evaluators preferring its outputs, while achieving competitive accuracy compared to state-of-the-art models and maintaining low latency, generating outputs within 1 second. Our code and dataset are open-sourced at https://github.com/AngieYYF/EMMM-explainable-chatbot-detection.
comment: 15 pages
☆ Filtering for Creativity: Adaptive Prompting for Multilingual Riddle Generation in LLMs
Multilingual riddle generation challenges large language models (LLMs) to balance cultural fluency with creative abstraction. Standard prompting strategies -- zero-shot, few-shot, chain-of-thought -- tend to reuse memorized riddles or perform shallow paraphrasing. We introduce Adaptive Originality Filtering (AOF), a prompting framework that filters redundant generations using cosine-based similarity rejection, while enforcing lexical novelty and cross-lingual fidelity. Evaluated across three LLMs and four language pairs, AOF-enhanced GPT-4o achieves \texttt{0.177} Self-BLEU and \texttt{0.915} Distinct-2 in Japanese, signaling improved lexical diversity and reduced redundancy compared to other prompting methods and language pairs. Our findings show that semantic rejection can guide culturally grounded, creative generation without task-specific fine-tuning.
☆ Attention2Probability: Attention-Driven Terminology Probability Estimation for Robust Speech-to-Text System
Recent advances in speech large language models (SLMs) have improved speech recognition and translation in general domains, but accurately generating domain-specific terms or neologisms remains challenging. To address this, we propose Attention2Probability: attention-driven terminology probability estimation for robust speech-to-text system, which is lightweight, flexible, and accurate. Attention2Probability converts cross-attention weights between speech and terminology into presence probabilities, and it further employs curriculum learning to enhance retrieval accuracy. Furthermore, to tackle the lack of data for speech-to-text tasks with terminology intervention, we create and release a new speech dataset with terminology to support future research in this area. Experimental results show that Attention2Probability significantly outperforms the VectorDB method on our test set. Specifically, its maximum recall rates reach 92.57% for Chinese and 86.83% for English. This high recall is achieved with a latency of only 8.71ms per query. Intervening in SLMs' recognition and translation tasks using Attention2Probability-retrieved terms improves terminology accuracy by 6-17%, while revealing that the current utilization of terminology by SLMs has limitations.
comment: 9 pages, 4 figures, 5 tables
☆ Knowing or Guessing? Robust Medical Visual Question Answering via Joint Consistency and Contrastive Learning
In high-stakes medical applications, consistent answering across diverse question phrasings is essential for reliable diagnosis. However, we reveal that current Medical Vision-Language Models (Med-VLMs) exhibit concerning fragility in Medical Visual Question Answering, as their answers fluctuate significantly when faced with semantically equivalent rephrasings of medical questions. We attribute this to two limitations: (1) insufficient alignment of medical concepts, leading to divergent reasoning patterns, and (2) hidden biases in training data that prioritize syntactic shortcuts over semantic understanding. To address these challenges, we construct RoMed, a dataset built upon original VQA datasets containing 144k questions with variations spanning word-level, sentence-level, and semantic-level perturbations. When evaluating state-of-the-art (SOTA) models like LLaVA-Med on RoMed, we observe alarming performance drops (e.g., a 40\% decline in Recall) compared to original VQA benchmarks, exposing critical robustness gaps. To bridge this gap, we propose Consistency and Contrastive Learning (CCL), which integrates two key components: (1) knowledge-anchored consistency learning, aligning Med-VLMs with medical knowledge rather than shallow feature patterns, and (2) bias-aware contrastive learning, mitigating data-specific priors through discriminative representation refinement. CCL achieves SOTA performance on three popular VQA benchmarks and notably improves answer consistency by 50\% on the challenging RoMed test set, demonstrating significantly enhanced robustness. Code will be released.
☆ FALCON: Autonomous Cyber Threat Intelligence Mining with LLMs for IDS Rule Generation
Signature-based Intrusion Detection Systems (IDS) detect malicious activities by matching network or host activity against predefined rules. These rules are derived from extensive Cyber Threat Intelligence (CTI), which includes attack signatures and behavioral patterns obtained through automated tools and manual threat analysis, such as sandboxing. The CTI is then transformed into actionable rules for the IDS engine, enabling real-time detection and prevention. However, the constant evolution of cyber threats necessitates frequent rule updates, which delay deployment time and weaken overall security readiness. Recent advancements in agentic systems powered by Large Language Models (LLMs) offer the potential for autonomous IDS rule generation with internal evaluation. We introduce FALCON, an autonomous agentic framework that generates deployable IDS rules from CTI data in real-time and evaluates them using built-in multi-phased validators. To demonstrate versatility, we target both network (Snort) and host-based (YARA) mediums and construct a comprehensive dataset of IDS rules with their corresponding CTIs. Our evaluations indicate FALCON excels in automatic rule generation, with an average of 95% accuracy validated by qualitative evaluation with 84% inter-rater agreement among multiple cybersecurity analysts across all metrics. These results underscore the feasibility and effectiveness of LLM-driven data mining for real-time cyber threat mitigation.
comment: 11 pages, 5 figures, 4 tables
☆ Tailored Teaching with Balanced Difficulty: Elevating Reasoning in Multimodal Chain-of-Thought via Prompt Curriculum
The effectiveness of Multimodal Chain-of-Thought (MCoT) prompting is often limited by the use of randomly or manually selected examples. These examples fail to account for both model-specific knowledge distributions and the intrinsic complexity of the tasks, resulting in suboptimal and unstable model performance. To address this, we propose a novel framework inspired by the pedagogical principle of "tailored teaching with balanced difficulty". We reframe prompt selection as a prompt curriculum design problem: constructing a well ordered set of training examples that align with the model's current capabilities. Our approach integrates two complementary signals: (1) model-perceived difficulty, quantified through prediction disagreement in an active learning setup, capturing what the model itself finds challenging; and (2) intrinsic sample complexity, which measures the inherent difficulty of each question-image pair independently of any model. By jointly analyzing these signals, we develop a difficulty-balanced sampling strategy that ensures the selected prompt examples are diverse across both dimensions. Extensive experiments conducted on five challenging benchmarks and multiple popular Multimodal Large Language Models (MLLMs) demonstrate that our method yields substantial and consistent improvements and greatly reduces performance discrepancies caused by random sampling, providing a principled and robust approach for enhancing multimodal reasoning.
☆ Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks ICML
Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization and reasoning. We train families of MoE Transformers that systematically vary total parameters, active parameters, and top-$k$ routing while holding the compute budget fixed. For every model we record pre-training loss, downstream task loss, and task accuracy, allowing us to separate the train-test generalization gap from the loss-accuracy gap. Memorization benchmarks improve monotonically with total parameters, mirroring training loss. By contrast, reasoning performance saturates and can even regress despite continued gains in both total parameters and training loss. Altering top-$k$ alone has little effect when active parameters are constant, and classic hyperparameters such as learning rate and initialization modulate the generalization gap in the same direction as sparsity. Neither post-training reinforcement learning (GRPO) nor extra test-time compute rescues the reasoning deficit of overly sparse models. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.
comment: Presented at the Second AI for Math Workshop at ICML
☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
☆ Emotion Omni: Enabling Empathetic Speech Response Generation through Large Language Models ICASSP 2026
With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models simply convert the response content into speech without fully understanding the rich emotional and paralinguistic cues embedded in the user's query. In many cases, the same sentence can have different meanings depending on the emotional expression. Furthermore, emotional understanding is essential for improving user experience in human-machine interaction. Currently, most speech LLMs with empathetic capabilities are trained on massive datasets. This approach requires vast amounts of data and significant computational resources. Therefore, a key challenge lies in how to develop a speech LLM capable of generating empathetic responses with limited data and without the need for large-scale training. To address this challenge, we propose Emotion Omni, a novel model architecture designed to understand the emotional content of user speech input and generate empathetic speech responses. Additionally, we developed a data generation pipeline based on an open-source TTS framework to construct a 200k emotional dialogue dataset, which supports the construction of an empathetic speech assistant. The demos are available at https://w311411.github.io/omni_demo/
comment: 5 pages, 1 figure, submitted to ICASSP 2026
☆ UniC-RAG: Universal Knowledge Corruption Attacks to Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) systems are widely deployed in real-world applications in diverse domains such as finance, healthcare, and cybersecurity. However, many studies showed that they are vulnerable to knowledge corruption attacks, where an attacker can inject adversarial texts into the knowledge database of a RAG system to induce the LLM to generate attacker-desired outputs. Existing studies mainly focus on attacking specific queries or queries with similar topics (or keywords). In this work, we propose UniC-RAG, a universal knowledge corruption attack against RAG systems. Unlike prior work, UniC-RAG jointly optimizes a small number of adversarial texts that can simultaneously attack a large number of user queries with diverse topics and domains, enabling an attacker to achieve various malicious objectives, such as directing users to malicious websites, triggering harmful command execution, or launching denial-of-service attacks. We formulate UniC-RAG as an optimization problem and further design an effective solution to solve it, including a balanced similarity-based clustering method to enhance the attack's effectiveness. Our extensive evaluations demonstrate that UniC-RAG is highly effective and significantly outperforms baselines. For instance, UniC-RAG could achieve over 90% attack success rate by injecting 100 adversarial texts into a knowledge database with millions of texts to simultaneously attack a large set of user queries (e.g., 2,000). Additionally, we evaluate existing defenses and show that they are insufficient to defend against UniC-RAG, highlighting the need for new defense mechanisms in RAG systems.
comment: 21 pages, 4 figures
☆ Breaking the Trade-Off Between Faithfulness and Expressiveness for Large Language Models
Grounding responses in external knowledge represents an effective strategy for mitigating hallucinations in Large Language Models (LLMs). However, current LLMs struggle to seamlessly integrate knowledge while simultaneously maintaining faithfulness (or fidelity) and expressiveness, capabilities that humans naturally possess. This limitation results in outputs that either lack support from external knowledge, thereby compromising faithfulness, or appear overly verbose and unnatural, thus sacrificing expressiveness. In this work, to break the trade-off between faithfulness and expressiveness, we propose Collaborative Decoding (CoDe), a novel approach that dynamically integrates output probabilities generated with and without external knowledge. This integration is guided by distribution divergence and model confidence, enabling the selective activation of relevant and reliable expressions from the model's internal parameters. Furthermore, we introduce a knowledge-aware reranking mechanism that prevents over-reliance on prior parametric knowledge while ensuring proper utilization of provided external information. Through comprehensive experiments, our plug-and-play CoDe framework demonstrates superior performance in enhancing faithfulness without compromising expressiveness across diverse LLMs and evaluation metrics, validating both its effectiveness and generalizability.
☆ Thinking Before You Speak: A Proactive Test-time Scaling Approach
Large Language Models (LLMs) often exhibit deficiencies with complex reasoning tasks, such as maths, which we attribute to the discrepancy between human reasoning patterns and those presented in the LLMs' training data. When dealing with complex problems, humans tend to think carefully before expressing solutions. However, they often do not articulate their inner thoughts, including their intentions and chosen methodologies. Consequently, critical insights essential for bridging reasoning steps may be absent in training data collected from human sources. To bridge this gap, we proposes inserting \emph{insight}s between consecutive reasoning steps, which review the status and initiate the next reasoning steps. Unlike prior prompting strategies that rely on a single or a workflow of static prompts to facilitate reasoning, \emph{insight}s are \emph{proactively} generated to guide reasoning processes. We implement our idea as a reasoning framework, named \emph{Thinking Before You Speak} (TBYS), and design a pipeline for automatically collecting and filtering in-context examples for the generation of \emph{insight}s, which alleviates human labeling efforts and fine-tuning overheads. Experiments on challenging mathematical datasets verify the effectiveness of TBYS. Project website: https://gitee.com/jswrt/TBYS
☆ Beyond Benchmark: LLMs Evaluation with an Anthropomorphic and Value-oriented Roadmap
For Large Language Models (LLMs), a disconnect persists between benchmark performance and real-world utility. Current evaluation frameworks remain fragmented, prioritizing technical metrics while neglecting holistic assessment for deployment. This survey introduces an anthropomorphic evaluation paradigm through the lens of human intelligence, proposing a novel three-dimensional taxonomy: Intelligence Quotient (IQ)-General Intelligence for foundational capacity, Emotional Quotient (EQ)-Alignment Ability for value-based interactions, and Professional Quotient (PQ)-Professional Expertise for specialized proficiency. For practical value, we pioneer a Value-oriented Evaluation (VQ) framework assessing economic viability, social impact, ethical alignment, and environmental sustainability. Our modular architecture integrates six components with an implementation roadmap. Through analysis of 200+ benchmarks, we identify key challenges including dynamic assessment needs and interpretability gaps. It provides actionable guidance for developing LLMs that are technically proficient, contextually relevant, and ethically sound. We maintain a curated repository of open-source evaluation resources at: https://github.com/onejune2018/Awesome-LLM-Eval.
comment: Preprint. Under review
☆ RLMR: Reinforcement Learning with Mixed Rewards for Creative Writing
Large language models are extensively utilized in creative writing applications. Creative writing requires a balance between subjective writing quality (e.g., literariness and emotional expression) and objective constraint following (e.g., format requirements and word limits). Existing reinforcement learning methods struggle to balance these two aspects: single reward strategies fail to improve both abilities simultaneously, while fixed-weight mixed-reward methods lack the ability to adapt to different writing scenarios. To address this problem, we propose Reinforcement Learning with Mixed Rewards (RLMR), utilizing a dynamically mixed reward system from a writing reward model evaluating subjective writing quality and a constraint verification model assessing objective constraint following. The constraint following reward weight is adjusted dynamically according to the writing quality within sampled groups, ensuring that samples violating constraints get negative advantage in GRPO and thus penalized during training, which is the key innovation of this proposed method. We conduct automated and manual evaluations across diverse model families from 8B to 72B parameters. Additionally, we construct a real-world writing benchmark named WriteEval for comprehensive evaluation. Results illustrate that our method achieves consistent improvements in both instruction following (IFEval from 83.36\% to 86.65\%) and writing quality (72.75\% win rate in manual expert pairwise evaluations on WriteEval). To the best of our knowledge, RLMR is the first work to combine subjective preferences with objective verification in online RL training, providing an effective solution for multi-dimensional creative writing optimization.
☆ Scaling Laws for Task-Stratified Knowledge in Post-Training Quantized Large Language Models
Large language models (LLMs) present significant deployment challenges due to their scale, with post-training quantization (PTQ) emerging as a practical compression solution. However, a comprehensive understanding of how PTQ precisely impacts diverse LLM knowledge capabilities remains elusive, and existing scaling laws for quantized models often overlook crucial PTQ-specific parameters and task-specific sensitivities. This paper addresses these gaps by conducting an extensive empirical investigation to establish task-stratified scaling laws. We disentangle LLM knowledge into memorization and utilization capabilities and develop a unified quantitative framework that incorporates model size, effective bit-width, calibration set size, and group size. Our central finding reveals that knowledge memorization exhibits markedly greater sensitivity to variations in effective bit-width, calibration set size, and model size compared to the more robust knowledge utilization. These findings offer a fine-grained understanding of PTQ's impact and provide guidance for developing knowledge-aware quantization strategies that can better preserve targeted cognitive functions.
☆ A New NMT Model for Translating Clinical Texts from English to Spanish ML4H
Translating electronic health record (EHR) narratives from English to Spanish is a clinically important yet challenging task due to the lack of a parallel-aligned corpus and the abundant unknown words contained. To address such challenges, we propose \textbf{NOOV} (for No OOV), a new neural machine translation (NMT) system that requires little in-domain parallel-aligned corpus for training. NOOV integrates a bilingual lexicon automatically learned from parallel-aligned corpora and a phrase look-up table extracted from a large biomedical knowledge resource, to alleviate both the unknown word problem and the word-repeat challenge in NMT, enhancing better phrase generation of NMT systems. Evaluation shows that NOOV is able to generate better translation of EHR with improvement in both accuracy and fluency.
comment: This work was accepted by the Machine Learning for Health (ML4H) Workshop at NeurIPS 2018
☆ What do language models model? Transformers, automata, and the format of thought
What do large language models actually model? Do they tell us something about human capacities, or are they models of the corpus we've trained them on? I give a non-deflationary defence of the latter position. Cognitive science tells us that linguistic capabilities in humans rely supralinear formats for computation. The transformer architecture, by contrast, supports at best a linear formats for processing. This argument will rely primarily on certain invariants of the computational architecture of transformers. I then suggest a positive story about what transformers are doing, focusing on Liu et al. (2022)'s intriguing speculations about shortcut automata. I conclude with why I don't think this is a terribly deflationary story. Language is not (just) a means for expressing inner state but also a kind of 'discourse machine' that lets us make new language given appropriate context. We have learned to use this technology in one way; LLMs have also learned to use it too, but via very different means.
☆ The Mind's Eye: A Multi-Faceted Reward Framework for Guiding Visual Metaphor Generation
Visual metaphor generation is a challenging task that aims to generate an image given an input text metaphor. Inherently, it needs language understanding to bind a source concept with a target concept, in a way that preserves meaning while ensuring visual coherence. We propose a self-evaluating visual metaphor generation framework that focuses on metaphor alignment. Our self-evaluation approach combines existing metrics with our newly proposed metaphor decomposition score and a meaning alignment (MA) metric. Within this setup, we explore two novel approaches: a training-free pipeline that explicitly decomposes prompts into source-target-meaning (S-T-M) mapping for image synthesis, and a complementary training-based pipeline that improves alignment using our proposed self-evaluation reward schema, without any large-scale retraining. On the held-out test set, the training-free approach surpasses strong closed baselines (GPT-4o, Imagen) on decomposition, CLIP, and MA scores, with the training-based approach close behind. We evaluate our framework output using a user-facing study, and observed that participants preferred GPT-4o overall, while our training-free pipeline led open-source methods and edged Imagen on abstract metaphors. Our analyses show S-T-M prompting helps longer or more abstract metaphors, with closed models excelling on short, concrete cases; we also observe sensitivity to sampler settings. Overall, structured prompting and lightweight RL perform metaphor alignment well under modest compute, and remaining gaps to human preference appear driven by aesthetics and sampling.
comment: Under Review
♻ ☆ From Intents to Conversations: Generating Intent-Driven Dialogues with Contrastive Learning for Multi-Turn Classification CIKM 2025
In conversational AI systems, a critical challenge in training effective multi-turn intent classification models lies in the generation of large-scale, domain-specific, multilingual dialogue datasets. In this paper, we introduce Chain-of-Intent, a novel framework that integrates Hidden Markov Models (HMMs) with Large Language Models (LLMs) to generate intent-driven, context-aware dialogues through self-play. Our method first extracts domain-specific intent transition patterns from real-world e-commerce chat logs, which guide the modeling of turn-level dynamics and intent sequences. LLMs are then employed to parameterize the emission probabilities of HMMs, enabling the generation of natural, coherent utterances aligned with predicted intents and dialogue context. We further propose MINT-CL, a multi-task contrastive learning framework for multi-turn intent classification, which improves performance while reducing dependence on large-scale annotated datasets. Empirical results demonstrate that our approach outperforms competitive baselines in both dialogue generation quality and classification accuracy, particularly in multilingual settings. To facilitate future research, we release MINT-E, a comprehensive, multilingual, intent-aware multi-turn dialogue corpus derived from the e-commerce domain. The reproduced source code and dataset are available at https://github.com/junhua/chain-of-intent.
comment: Accepted to Proceedings of CIKM 2025
♻ ☆ Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10\% over Gemini models on single-turn edits, up to 30\% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40\% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability. To facilitate further research and reproducibility, we release FineEdit at https://github.com/StuRinDQB/FineEdit} and https://huggingface.co/datasets/YimingZeng/FineEdit_bench.
♻ ☆ mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation
Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning. However, they remain limited by static training data, susceptibility to hallucinations, and inability to verify claims against up-to-date, external evidence, compromising their performance in dynamic real-world applications. Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms, thereby grounding model outputs in factual, contextually relevant information. Here in this paper, we conduct the first systematic dissection of the multimodal RAG pipeline for LVLMs, explicitly investigating (1) the retrieval phase: on the modality configurations and retrieval strategies, (2) the re-ranking stage: on strategies to mitigate positional biases and improve the relevance of retrieved evidence, and (3) the generation phase: we further investigate how to best integrate retrieved candidates into the final generation process. Finally, we extend to explore a unified agentic framework that integrates re-ranking and generation through self-reflection, enabling LVLMs to select relevant evidence and suppress irrelevant context dynamically. Our full-stack exploration of RAG for LVLMs yields substantial insights, resulting in an average performance boost of 5% without any fine-tuning.
comment: 16 pages
♻ ☆ TL-Training: A Task-Feature-Based Framework for Training Large Language Models in Tool Use EMNLP 2025
Large language models (LLMs) achieve remarkable advancements by leveraging tools to interact with environments, a critical step toward generalized AI. However, the standard supervised fine-tuning (SFT) approach, which relies on large-scale datasets, often overlooks task-specific characteristics in tool use, leading to performance bottlenecks. To address this issue, we analyze three existing LLMs and uncover key insights: training data can inadvertently impede tool-use behavior, token importance is distributed unevenly, and errors in tool calls fall into a small set of categories. Building on these findings, we propose~\emph{TL-Training}, a task-feature-based framework that mitigates the effects of suboptimal training data, dynamically adjusts token weights to prioritize key tokens during SFT, and incorporates a robust reward mechanism tailored to error categories, optimized through proximal policy optimization. We validate TL-Training by training CodeLLaMA-2-7B and evaluating it on four open-source test sets. Our results demonstrate that the LLM trained by our method matches or surpasses both open- and closed-source LLMs in tool-use performance using only 1,217 training data points. Additionally, our method enhances robustness in noisy environments and improves general task performance, offering a scalable and efficient paradigm for tool-use training in LLMs. Code and data are available at https://github.com/Junjie-Ye/TL-Training.
comment: Accepted by EMNLP 2025
♻ ☆ ChatGPT Doesn't Trust Chargers Fans: Guardrail Sensitivity in Context
While the biases of language models in production are extensively documented, the biases of their guardrails have been neglected. This paper studies how contextual information about the user influences the likelihood of an LLM to refuse to execute a request. By generating user biographies that offer ideological and demographic information, we find a number of biases in guardrail sensitivity on GPT-3.5. Younger, female, and Asian-American personas are more likely to trigger a refusal guardrail when requesting censored or illegal information. Guardrails are also sycophantic, refusing to comply with requests for a political position the user is likely to disagree with. We find that certain identity groups and seemingly innocuous information, e.g., sports fandom, can elicit changes in guardrail sensitivity similar to direct statements of political ideology. For each demographic category and even for American football team fandom, we find that ChatGPT appears to infer a likely political ideology and modify guardrail behavior accordingly.
♻ ☆ A Survey on Data Selection for LLM Instruction Tuning
Instruction tuning is a vital step of training large language models (LLMs), so how to enhance the effect of instruction tuning has received increased attention. Existing works indicate that the quality of the dataset is more crucial than the quantity during instruction tuning of LLMs. Therefore, recently a lot of studies focus on exploring the methods of selecting high-quality subset from instruction datasets, aiming to reduce training costs and enhance the instruction-following capabilities of LLMs. This paper presents a comprehensive survey on data selection for LLM instruction tuning. Firstly, we introduce the wildly used instruction datasets. Then, we propose a new taxonomy of the data selection methods and provide a detailed introduction of recent advances, and the evaluation strategies and results of data selection methods are also elaborated in detail. Finally, we emphasize the open challenges and present new frontiers of this task.
comment: Published in JAIR (Vol. 83, Article 32, 2025)
♻ ☆ An Ontology-Driven Graph RAG for Legal Norms: A Hierarchical, Temporal, and Deterministic Approach
Retrieval-Augmented Generation (RAG) systems in the legal domain face a critical challenge: standard, flat-text retrieval is blind to the hierarchical, diachronic, and causal structure of law, leading to anachronistic and unreliable answers. This paper introduces an ontology-driven Graph RAG framework designed to overcome these limitations. We ground our knowledge graph in a formal, LRMoo-inspired model that distinguishes abstract legal Works from their versioned Expressions. We model temporal states as efficient aggregations that reuse the versioned expressions (CTVs) of unchanged components, and we reify legislative events as first-class Action nodes to make causality explicit and queryable. This structured backbone enables a unified, planner-guided query strategy that applies explicit policies to deterministically resolve complex requests for (i) point-in-time retrieval, (ii) hierarchical impact analysis, and (iii) auditable provenance reconstruction. Through a case study on the Brazilian Constitution, we demonstrate how this approach provides a verifiable, temporally-correct substrate for LLMs, enabling higher-order analytical capabilities while drastically reducing the risk of factual errors. The result is a practical framework for building more trustworthy and explainable legal AI systems.
comment: This is a major revision that significantly expands and deepens the original manuscript. While the core ontological model remains the same, this version provides a substantially more rigorous and detailed account of how the framework is applied in practice, particularly within a Retrieval-Augmented Generation (RAG) context
♻ ☆ Exploring the Robustness of Language Models for Tabular Question Answering via Attention Analysis
Large Language Models (LLMs), already shown to ace various unstructured text comprehension tasks, have also remarkably been shown to tackle table (structured) comprehension tasks without specific training. Building on earlier studies of LLMs for tabular tasks, we probe how in-context learning (ICL), model scale, instruction tuning, and domain bias affect Tabular QA (TQA) robustness by testing LLMs, under diverse augmentations and perturbations, on diverse domains: Wikipedia-based $\textbf{WTQ}$, financial $\textbf{TAT-QA}$, and scientific $\textbf{SCITAB}$. Although instruction tuning and larger, newer LLMs deliver stronger, more robust TQA performance, data contamination and reliability issues, especially on $\textbf{WTQ}$, remain unresolved. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and the drops in performance, with sensitivity peaking in the model's middle layers. We highlight the need for improved interpretable methodologies to develop more reliable LLMs for table comprehension. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and performance drops, with sensitivity peaking in the model's middle layers. Based on these findings, we argue for the development of structure-aware self-attention mechanisms and domain-adaptive processing techniques to improve the transparency, generalization, and real-world reliability of LLMs on tabular data.
comment: Accepted TMLR 2025
♻ ☆ Label Set Optimization via Activation Distribution Kurtosis for Zero-shot Classification with Generative Models EMNLP 2025
In-context learning (ICL) performance is highly sensitive to prompt design, yet the impact of class label options (e.g. lexicon or order) in zero-shot classification remains underexplored. This study proposes LOADS (Label set Optimization via Activation Distribution kurtosiS), a post-hoc method for selecting optimal label sets in zero-shot ICL with large language models (LLMs). LOADS is built upon the observations in our empirical analysis, the first to systematically examine how label option design (i.e., lexical choice, order, and elaboration) impacts classification performance. This analysis shows that the lexical choice of the labels in the prompt (such as agree vs. support in stance classification) plays an important role in both model performance and model's sensitivity to the label order. A further investigation demonstrates that optimal label words tend to activate fewer outlier neurons in LLMs' feed-forward networks. LOADS then leverages kurtosis to measure the neuron activation distribution for label selection, requiring only a single forward pass without gradient propagation or labelled data. The LOADS-selected label words consistently demonstrate effectiveness for zero-shot ICL across classification tasks, datasets, models and languages, achieving maximum performance gain from 0.54 to 0.76 compared to the conventional approach of using original dataset label words.
comment: Accepted by EMNLP 2025
♻ ☆ SmartBench: Is Your LLM Truly a Good Chinese Smartphone Assistant?
Large Language Models (LLMs) have become integral to daily life, especially advancing as intelligent assistants through on-device deployment on smartphones. However, existing LLM evaluation benchmarks predominantly focus on objective tasks like mathematics and coding in English, which do not necessarily reflect the practical use cases of on-device LLMs in real-world mobile scenarios, especially for Chinese users. To address these gaps, we introduce SmartBench, the first benchmark designed to evaluate the capabilities of on-device LLMs in Chinese mobile contexts. We analyze functionalities provided by representative smartphone manufacturers and divide them into five categories: text summarization, text Q&A, information extraction, content creation, and notification management, further detailed into 20 specific tasks. For each task, we construct high-quality datasets comprising 50 to 200 question-answer pairs that reflect everyday mobile interactions, and we develop automated evaluation criteria tailored for these tasks. We conduct comprehensive evaluations of on-device LLMs and MLLMs using SmartBench and also assess their performance after quantized deployment on real smartphone NPUs. Our contributions provide a standardized framework for evaluating on-device LLMs in Chinese, promoting further development and optimization in this critical area. Code and data will be available at https://github.com/vivo-ai-lab/SmartBench.
comment: 26 pages
♻ ☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
♻ ☆ SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs EMNLP 2025
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/Lza12a/SKA-Bench.
comment: EMNLP 2025
♻ ☆ LLM-Enhanced Linear Autoencoders for Recommendation CIKM 2025
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. While previous works improved the capability of hallucination detection by measuring uncertainty, they all lack the ability to explain the provenance behind why hallucinations occur, i.e., which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as total score. Experiments show that our method achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and our method is capable of producing token-level uncertainty scores as explanations for the hallucination. Leveraging these scores, we preliminarily find the chaotic pattern of hallucination and showcase its promising usage.
♻ ☆ Truth or Twist? Optimal Model Selection for Reliable Label Flipping Evaluation in LLM-based Counterfactuals
Counterfactual examples are widely employed to enhance the performance and robustness of large language models (LLMs) through counterfactual data augmentation (CDA). However, the selection of the judge model used to evaluate label flipping, the primary metric for assessing the validity of generated counterfactuals for CDA, yields inconsistent results. To decipher this, we define four types of relationships between the counterfactual generator and judge models: being the same model, belonging to the same model family, being independent models, and having an distillation relationship. Through extensive experiments involving two state-of-the-art LLM-based methods, three datasets, four generator models, and 15 judge models, complemented by a user study (n = 90), we demonstrate that judge models with an independent, non-fine-tuned relationship to the generator model provide the most reliable label flipping evaluations. Relationships between the generator and judge models, which are closely aligned with the user study for CDA, result in better model performance and robustness. Nevertheless, we find that the gap between the most effective judge models and the results obtained from the user study remains considerably large. This suggests that a fully automated pipeline for CDA may be inadequate and requires human intervention.
comment: Accepted at INLG 2025, camera-ready version
♻ ☆ Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs
We introduce MMCRICBENCH-3K, a benchmark for Visual Question Answering (VQA) on cricket scorecards, designed to evaluate large vision-language models (LVLMs) on complex numerical and cross-lingual reasoning over semi-structured tabular images. MMCRICBENCH-3K comprises 1,463 synthetically generated scorecard images from ODI, T20, and Test formats, accompanied by 1,500 English QA pairs. It includes two subsets: MMCRICBENCH-E-1.5K, featuring English scorecards, and MMCRICBENCH-H-1.5K, containing visually similar Hindi scorecards, with all questions and answers kept in English to enable controlled cross-script evaluation. The task demands reasoning over structured numerical data, multi-image context, and implicit domain knowledge. Empirical results show that even state-of-the-art LVLMs, such as GPT-4o and Qwen2.5VL, struggle on the English subset despite it being their primary training language and exhibit a further drop in performance on the Hindi subset. This reveals key limitations in structure-aware visual text understanding, numerical reasoning, and cross-lingual generalization. The dataset is publicly available via Hugging Face at https://huggingface.co/datasets/DIALab/MMCricBench, to promote LVLM research in this direction.
♻ ☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
♻ ☆ Debate-to-Detect: Reformulating Misinformation Detection as a Real-World Debate with Large Language Models EMNLP 2025
The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards interpretable misinformation detection. The code will be released publicly after the official publication.
comment: This paper has been accepted to EMNLP 2025 (Main Conference)
♻ ☆ Long-context Language Models Fail in Basic Retrieval Tasks Without Sufficient Reasoning Steps
Long-context language models (LCLMs), characterized by their extensive context window, are becoming popular. However, despite the fact that they are nearly perfect at standard long-context retrieval tasks, our evaluations demonstrate they fail in some basic cases. Later, we find they can be well addressed with a sufficient number of reasoning steps, guided by specific CoT prompts. This result emphasizes the potential necessity of solving specific long-context tasks using long-CoT methods, while previous long-context benchmarks always ignore the necessity of long reasoning for long-context tasks and treat them as direct QA tasks.
comment: Our code is publicly available at https://github.com/yuyijiong/hard_retrieval_for_llm and the datasets is at https://huggingface.co/datasets/yuyijiong/difficult_retrieval
♻ ☆ Weakly-Supervised 3D Visual Grounding based on Visual Language Alignment
Learning to ground natural language queries to target objects or regions in 3D point clouds is quite essential for 3D scene understanding. Nevertheless, existing 3D visual grounding approaches require a substantial number of bounding box annotations for text queries, which is time-consuming and labor-intensive to obtain. In this paper, we propose 3D-VLA, a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment. Our 3D-VLA exploits the superior ability of current large-scale vision-language models (VLMs) on aligning the semantics between texts and 2D images, as well as the naturally existing correspondences between 2D images and 3D point clouds, and thus implicitly constructs correspondences between texts and 3D point clouds with no need for fine-grained box annotations in the training procedure. During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images. To the best of our knowledge, this is the first work to investigate 3D visual grounding in a weakly supervised manner by involving large scale vision-language models, and extensive experiments on ReferIt3D and ScanRefer datasets demonstrate that our 3D-VLA achieves comparable and even superior results over the fully supervised methods.
♻ ☆ Can Pruning Improve Reasoning? Revisiting Long-CoT Compression with Capability in Mind for Better Reasoning
Long chain-of-thought (Long-CoT) reasoning improves accuracy in LLMs, yet its verbose, self-reflective style often hinders effective distillation into small language models (SLMs). We revisit Long-CoT compression through the lens of capability alignment and ask: Can pruning improve reasoning? We propose Prune-on-Logic, a structure-aware framework that transforms Long-CoT into logic graphs and selectively prunes low-utility reasoning steps under self-verification constraints. Through systematic analysis across three pruning strategies - targeting entire chains, core reasoning, and verification - we find that verification pruning consistently improves accuracy while reducing token usage, whereas reasoning or indiscriminate pruning degrades performance. Our study reveals that effective pruning aligns supervision with model capacity rather than merely shortening inputs. Gains hold across tasks, model scales, and CoT capability, with larger models benefiting more from pruning due to richer but more redundant reasoning. Our empirical findings highlight pruning as a structural optimization strategy for aligning CoT reasoning with SLM capacity.
comment: 19 pages,6 figures
♻ ☆ Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning steps exist, we decode multiple tokens per forward pass via a tree-like attention mask within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves up to nearly 100\% speedup in decoding while basically maintaining the answer quality.
comment: Our code is available in https://github.com/yuyijiong/parallel-decoding-in-one-sequence
♻ ☆ Fingerprint Vector: Enabling Scalable and Efficient Model Fingerprint Transfer via Vector Addition
Backdoor-based fingerprinting has emerged as an effective technique for tracing the ownership of large language models. However, in real-world deployment scenarios, developers often instantiate multiple downstream models from a shared base model, and applying fingerprinting to each variant individually incurs prohibitive computational overhead. While inheritance-based approaches -- where fingerprints are embedded into the base model and expected to persist through fine-tuning -- appear attractive, they suffer from three key limitations: late-stage fingerprinting, fingerprint instability, and interference with downstream adaptation. To address these challenges, we propose a novel mechanism called the Fingerprint Vector. Our method first embeds a fingerprint into the base model via backdoor-based fine-tuning, then extracts a task-specific parameter delta as a fingerprint vector by computing the difference between the fingerprinted and clean models. This vector can be directly added to any structurally compatible downstream model, allowing the fingerprint to be transferred post hoc without additional fine-tuning. Extensive experiments show that Fingerprint Vector achieves comparable or superior performance to direct injection across key desiderata. It maintains strong effectiveness across diverse model architectures as well as mainstream downstream variants within the same family. It also preserves harmlessness and robustness in most cases. Even when slight robustness degradation is observed, the impact remains within acceptable bounds and is outweighed by the scalability benefits of our approach.
♻ ☆ SDGO: Self-Discrimination-Guided Optimization for Consistent Safety in Large Language Models EMNLP 2025
Large Language Models (LLMs) excel at various natural language processing tasks but remain vulnerable to jailbreaking attacks that induce harmful content generation. In this paper, we reveal a critical safety inconsistency: LLMs can more effectively identify harmful requests as discriminators than defend against them as generators. This insight inspires us to explore aligning the model's inherent discrimination and generation capabilities. To this end, we propose SDGO (Self-Discrimination-Guided Optimization), a reinforcement learning framework that leverages the model's own discrimination capabilities as a reward signal to enhance generation safety through iterative self-improvement. Our method does not require any additional annotated data or external models during the training phase. Extensive experiments demonstrate that SDGO significantly improves model safety compared to both prompt-based and training-based baselines while maintaining helpfulness on general benchmarks. By aligning LLMs' discrimination and generation capabilities, SDGO brings robust performance against out-of-distribution (OOD) jailbreaking attacks. This alignment achieves tighter coupling between these two capabilities, enabling the model's generation capability to be further enhanced with only a small amount of discriminative samples. Our code and datasets are available at https://github.com/NJUNLP/SDGO.
comment: Accepted by EMNLP 2025 (Main Conference), 15 pages, 4 figures, 6 tables
♻ ☆ sudoLLM: On Multi-role Alignment of Language Models EMNLP 2025
User authorization-based access privileges are a key feature in many safety-critical systems, but have not been extensively studied in the large language model (LLM) realm. In this work, drawing inspiration from such access control systems, we introduce sudoLLM, a novel framework that results in multi-role aligned LLMs, i.e., LLMs that account for, and behave in accordance with, user access rights. sudoLLM injects subtle user-based biases into queries and trains an LLM to utilize this bias signal in order to produce sensitive information if and only if the user is authorized. We present empirical results demonstrating that this approach shows substantially improved alignment, generalization, resistance to prefix-based jailbreaking attacks, and ``fails-closed''. The persistent tension between the language modeling objective and safety alignment, which is often exploited to jailbreak LLMs, is somewhat resolved with the aid of the injected bias signal. Our framework is meant as an additional security layer, and complements existing guardrail mechanisms for enhanced end-to-end safety with LLMs.
comment: Accepted to EMNLP 2025 (findings)
♻ ☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main conference
♻ ☆ Subjective Perspectives within Learned Representations Predict High-Impact Innovation
Existing studies of innovation emphasize the power of social structures to shape innovation capacity. Emerging machine learning approaches, however, enable us to model innovators' personal perspectives and interpersonal innovation opportunities as a function of their prior experience. We theorize and then quantify subjective perspectives and their interaction based on innovator positions within the geometric space of concepts inscribed by dynamic machine-learned language representations. Using data on millions of scientists, inventors, screenplay writers, entrepreneurs, and Wikipedia contributors across their respective creative domains, here we show that measured subjective perspectives predict which ideas individuals and groups will creatively attend to and successfully combine in the future. Across all cases and time periods we examine, when perspective diversity is decomposed as the difference between collaborators' perspectives on their creation, and background diversity as the difference between their experiences, the former consistently anticipates creative achievement while the latter portends its opposite. We analyze a natural experiment and simulate creative collaborations between AI agents designed with various perspective and background diversity, which support our observational findings. We explore mechanisms underlying these findings and identify how successful collaborators leverage common language to weave together diverse experiences obtained through trajectories of prior work. These perspectives converge and provoke one another to innovate. We examine the significance of these findings for team formation and research policy.
comment: 123 pages, 23 figures
♻ ☆ ELSPR: Evaluator LLM Training Data Self-Purification on Non-Transitive Preferences via Tournament Graph Reconstruction
Pairwise evaluation of large language models (LLMs) has become the dominant paradigm for benchmarking open-ended tasks, yet non-transitive preferences, where evaluators prefer A over B, B over C, but C over A, fundamentally undermine ranking reliability. We show that this critical issue stems largely from low-quality data that contains inherently ambiguous preference pairs. To address this challenge, we propose ELSPR, a principled graph-theoretic framework that models pairwise preferences as tournament graphs and systematically identifies problematic training data. ELSPR quantifies non-transitivity through strongly connected components (SCCs) analysis and measures overall preference clarity using a novel normalized directed graph structural entropy metric. Our filtering methodology selectively removes preference data that induce non-transitivity while preserving transitive preferences. Extensive experiments on the AlpacaEval benchmark demonstrate that models fine-tuned on ELSPR-filtered data achieve substantial improvements: a 13.8% reduction in non-transitivity, a 0.088 decrease in structural entropy, and significantly enhanced discriminative power in real-world evaluation systems. Human validation confirms that discarded data exhibit dramatically lower inter-annotator agreement (34.4% vs. 52.6%) and model-human consistency (51.2% vs. 80.6%) compared to cleaned data. These findings establish ELSPR as an effective data self-purification approach for developing more robust, consistent, and human-aligned LLM evaluation systems.
♻ ☆ HateDebias: On the Diversity and Variability of Hate Speech Debiasing
Hate speech frequently appears on social media platforms and urgently needs to be effectively controlled. Alleviating the bias caused by hate speech can help resolve various ethical issues. Although existing research has constructed several datasets for hate speech detection, these datasets seldom consider the diversity and variability of bias, making them far from real-world scenarios. To fill this gap, we propose a benchmark HateDebias to analyze the fairness of models under dynamically evolving environments. Specifically, to meet the diversity of biases, we collect hate speech data with different types of biases from real-world scenarios. To further simulate the variability in the real-world scenarios(i.e., the changing of bias attributes in datasets), we construct a dataset to follow the continuous learning setting and evaluate the detection accuracy of models on the HateDebias, where performance degradation indicates a significant bias toward a specific attribute. To provide a potential direction, we further propose a continual debiasing framework tailored to dynamic bias in real-world scenarios, integrating memory replay and bias information regularization to ensure the fairness of the model. Experiment results on the HateDebias benchmark reveal that our methods achieve improved performance in mitigating dynamic biases in real-world scenarios, highlighting the practicality in real-world applications.
♻ ☆ Collaborative Evaluation of Deepfake Text with Deliberation-Enhancing Dialogue Systems
The proliferation of generative models has presented significant challenges in distinguishing authentic human-authored content from deepfake content. Collaborative human efforts, augmented by AI tools, present a promising solution. In this study, we explore the potential of DeepFakeDeLiBot, a deliberation-enhancing chatbot, to support groups in detecting deepfake text. Our findings reveal that group-based problem-solving significantly improves the accuracy of identifying machine-generated paragraphs compared to individual efforts. While engagement with DeepFakeDeLiBot does not yield substantial performance gains overall, it enhances group dynamics by fostering greater participant engagement, consensus building, and the frequency and diversity of reasoning-based utterances. Additionally, participants with higher perceived effectiveness of group collaboration exhibited performance benefits from DeepFakeDeLiBot. These findings underscore the potential of deliberative chatbots in fostering interactive and productive group dynamics while ensuring accuracy in collaborative deepfake text detection. \textit{Dataset and source code used in this study will be made publicly available upon acceptance of the manuscript.
comment: 15; To appear in ICWSM 2026 (https://www.icwsm.org/2026/)
♻ ☆ Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge CIKM 2025
Log analysis represents a critical sub-domain within AI applications that facilitates automatic approaches to fault and error management of large-scaled software systems, saving labors of traditional manual methods. While existing solutions using large language models (LLMs) show promise, they are limited by a significant domain gap between natural and log languages (the latter contains rich domain-specific tokens such as status codes, IP addresses, resource pathes), which restricts their effectiveness in real-world applications. However, directly adapting general-purpose LLMs to log analysis using raw logs may degrade their performance due to inconsistent token distribution. In this paper, we present a domain adaptation approach that addresses these limitations by integrating interpretable domain knowledge into open-source LLMs through continual pre-training (CPT), which bridges this domain gap by adapting LLMs on interpretable natural texts with log knowledge (instead of raw logs) to reduce distribution discrepancy. To achieve this, we developed NLPLog, a comprehensive dataset containing over 250,000 question-answer pairs on log-related knowledge. Our resulting model, SuperLog, achieves the best performance across four log analysis tasks, with an average accuracy improvement of 12.01% over the second-best model. Ablation study also suggests advantages of domain adaption using interpretable log knowledge over using raw logs.
comment: Accepted by CIKM 2025
♻ ☆ Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings EMNLP 2025
This work stems from an observed limitation of text encoders: embeddings may not be able to recognize fine-grained entities or events within encoded semantics, resulting in failed retrieval even in simple cases. To examine such behaviors, we first introduce a new evaluation dataset, CapRetrieval, in which passages are image captions and queries are phrases targeting entity or event concepts in diverse forms. Zero-shot evaluation suggests that encoders often struggle with these fine-grained matching, regardless of training sources or model size. Aiming for enhancement, we proceed to finetune encoders with our proposed data generation strategies, enabling a small 0.1B encoder to outperform the state-of-the-art 7B model. Within this process, we further uncover the granularity dilemma, a challenge for embeddings to capture fine-grained salience while aligning with overall semantics. Our dataset, code and models in this work are publicly released at https://github.com/lxucs/CapRetrieval.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Dream to Chat: Model-based Reinforcement Learning on Dialogues with User Belief Modeling EMNLP 2025
World models have been widely utilized in robotics, gaming, and auto-driving. However, their applications on natural language tasks are relatively limited. In this paper, we construct the dialogue world model, which could predict the user's emotion, sentiment, and intention, and future utterances. By defining a POMDP, we argue emotion, sentiment and intention can be modeled as the user belief and solved by maximizing the information bottleneck. By this user belief modeling, we apply the model-based reinforcement learning framework to the dialogue system, and propose a framework called DreamCUB. Experiments show that the pretrained dialogue world model can achieve state-of-the-art performances on emotion classification and sentiment identification, while dialogue quality is also enhanced by joint training of the policy, critic and dialogue world model. Further analysis shows that this manner holds a reasonable exploration-exploitation balance and also transfers well to out-of-domain scenarios such as empathetic dialogues.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Large Language Models Badly Generalize across Option Length, Problem Types, and Irrelevant Noun Replacements EMNLP 2025
In this paper, we propose a ``Generalization Stress Test" to assess Large Language Models' (LLMs) generalization ability under slight and controlled perturbations, including option length, problem types, and irrelevant noun replacements. We achieve novel and significant findings that, despite high benchmark scores, LLMs exhibit severe accuracy drops and unexpected biases (e.g., preference for longer distractors) when faced with these minor but content-preserving modifications. For example, Qwen 2.5 1.5B's MMLU score rises from 60 to 89 and drops from 89 to 36 when option lengths are changed without altering the question. Even GPT4o experiences a 25-point accuracy loss when problem types are changed, with a 6-point drop across all three modification categories. These analyses suggest that LLMs rely heavily on superficial cues rather than forming robust, abstract representations that generalize across formats, lexical variations, and irrelevant content shifts.
comment: EMNLP 2025 Main Conference
♻ ☆ CausalSent: Interpretable Sentiment Classification with RieszNet
Despite the overwhelming performance improvements offered by recent natural language processing (NLP) models, the decisions made by these models are largely a black box. Towards closing this gap, the field of causal NLP combines causal inference literature with modern NLP models to elucidate causal effects of text features. We replicate and extend Bansal et al's work on regularizing text classifiers to adhere to estimated effects, focusing instead on model interpretability. Specifically, we focus on developing a two-headed RieszNet-based neural network architecture which achieves better treatment effect estimation accuracy. Our framework, CausalSent, accurately predicts treatment effects in semi-synthetic IMDB movie reviews, reducing MAE of effect estimates by 2-3x compared to Bansal et al's MAE on synthetic Civil Comments data. With an ensemble of validated models, we perform an observational case study on the causal effect of the word "love" in IMDB movie reviews, finding that the presence of the word "love" causes a +2.9% increase in the probability of a positive sentiment.
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge
The remarkable performance of Large Language Models (LLMs) gives rise to``LLM-as-a-Judge'', where LLMs are employed as evaluators for complex tasks. Moreover, it has been widely adopted across fields such as Natural Language Processing (NLP), preference learning, and various specific domains. However, there are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments. Current research on evaluating or mitigating bias in LLM-as-a-Judge predominantly focuses on comparison-based evaluations, while systematic investigations into bias in scoring-based evaluations remain limited. Therefore, we define scoring bias in LLM-as-a-Judge as the scores differ when scoring judge models are bias-related perturbed, and provide a well-designed framework to comprehensively evaluate scoring bias. We augment existing LLM-as-a-Judge benchmarks through data synthesis to construct our evaluation dataset and design multi-faceted evaluation metrics. Our experimental results demonstrate that the scoring stability of existing judge models is disrupted by scoring biases. Further exploratory experiments and discussions provide valuable insights into the design of scoring prompt templates and the mitigation of scoring biases on aspects such as score rubrics, score IDs, and reference answer selection.
♻ ☆ EMO-Reasoning: Benchmarking Emotional Reasoning Capabilities in Spoken Dialogue Systems
Speech emotions play a crucial role in human-computer interaction, shaping engagement and context-aware communication. Despite recent advances in spoken dialogue systems, a holistic system for evaluating emotional reasoning is still lacking. To address this, we introduce EMO-Reasoning, a benchmark for assessing emotional coherence in dialogue systems. It leverages a curated dataset generated via text-to-speech to simulate diverse emotional states, overcoming the scarcity of emotional speech data. We further propose the Cross-turn Emotion Reasoning Score to assess the emotion transitions in multi-turn dialogues. Evaluating seven dialogue systems through continuous, categorical, and perceptual metrics, we show that our framework effectively detects emotional inconsistencies, providing insights for improving current dialogue systems. By releasing a systematic evaluation benchmark, we aim to advance emotion-aware spoken dialogue modeling toward more natural and adaptive interactions.
comment: Accepted at (ASRU 2025) 2025 IEEE Automatic Speech Recognition and Understanding Workshop
♻ ☆ Measuring Sycophancy of Language Models in Multi-turn Dialogues EMNLP 2025
Large Language Models (LLMs) are expected to provide helpful and harmless responses, yet they often exhibit sycophancy--conforming to user beliefs regardless of factual accuracy or ethical soundness. Prior research on sycophancy has primarily focused on single-turn factual correctness, overlooking the dynamics of real-world interactions. In this work, we introduce SYCON Bench, a novel benchmark for evaluating sycophantic behavior in multi-turn, free-form conversational settings. Our benchmark measures how quickly a model conforms to the user (Turn of Flip) and how frequently it shifts its stance under sustained user pressure (Number of Flip). Applying SYCON Bench to 17 LLMs across three real-world scenarios, we find that sycophancy remains a prevalent failure mode. Our analysis shows that alignment tuning amplifies sycophantic behavior, whereas model scaling and reasoning optimization strengthen the model's ability to resist undesirable user views. Reasoning models generally outperform instruction-tuned models but often fail when they over-index on logical exposition instead of directly addressing the user's underlying beliefs. Finally, we evaluate four additional prompting strategies and demonstrate that adopting a third-person perspective reduces sycophancy by up to 63.8% in debate scenario. We release our code and data at https://github.com/JiseungHong/SYCON-Bench.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ DLLMQuant: Quantizing Diffusion-based Large Language Models
Diffusion-based large language models (DLLMs) have shown promise for non-autoregressive text generation, but their deployment is constrained by large model sizes and heavy computational costs. Post-training quantization (PTQ), a widely used method for compressing and accelerating Large Language Models (LLMs), suffers from severe accuracy degradation and reduced generalization performance when directly applied to DLLMs (e.g., AWQ suffers a 16% accuracy drop on LLADA under W4A4). This paper explores how DLLMs' key mechanisms - dynamic masking, iterative generation, bidirectional attention - clash with quantization. We identify three core issues: 1) Iterative generation and dynamic masking ratios lead to distinct token distributions across decoding steps, which are not adequately captured by existing PTQ calibration methods; 2) Quantization errors are accumulated and amplified progressively during iteration in DLLMs, causing quantized models to perform worse as decoding steps progress; 3) Unmasked tokens stabilize while masked remain probabilistic, making overall feature distribution incompatible with existing PTQ methods. To address these issues, we propose DLLMQuant, a PTQ framework tailored for DLLMs, which incorporates three novel techniques: 1) Temporal-Mask Adaptive Sampling (TMAS), a calibration method that accounts for both time and mask factors, with the capacity to capture distributions across timesteps. 2) Interaction-Aware Activation Quantization (IA-AQ), which utilizes bidirectional attention's interaction signals to dynamically allocate quantization resources. 3) Certainty-Guided Quantization (CGQ), which integrates mask status and token scores as key weighting criteria into error compensation, making weight quantization more suitable for DLLMs. Experiments show that DLLMQuant achieves significant performance gains while enhancing efficiency.
comment: 12 pages, 6 figures
♻ ☆ Improving Multilingual Language Models by Aligning Representations through Steering
This paper investigates how Large Language Models (LLMs) represent non-English tokens -- a question that remains underexplored despite recent progress. We propose a lightweight intervention method using representation steering, where a learned vector is added to the residual stream at a single model layer to enhance multilingual performance. Through extensive experiments across seven competitive baselines -- including prompt optimization, supervised fine-tuning (SFT), in-context learning, cross-lingual transfer, and translation-based methods-we show that our approach consistently outperforms most alternatives. In particular, it achieves performance on par with production-grade translation systems while requiring far fewer resources. We further explore the complementarity between our method and SFT, demonstrating that steering offers a direct, efficient way to realign internal representations. These findings underscore the potential of activation-level interventions as a powerful tool for improving the multilingual capabilities of LLMs.
♻ ☆ Less Is More? Examining Fairness in Pruned Large Language Models for Summarising Opinions EMNLP 2025
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Krul: Efficient State Restoration for Multi-turn Conversations with Dynamic Cross-layer KV Sharing
Efficient state restoration in multi-turn conversations with large language models (LLMs) remains a critical challenge, primarily due to the overhead of recomputing or loading full key-value (KV) caches for all historical tokens. To address this, existing approaches compress KV caches across adjacent layers with highly similar attention patterns. However, these methods often apply a fixed compression scheme across all conversations, selecting the same layer pairs for compression without considering conversation-specific attention dynamics. This static strategy overlooks variability in attention pattern similarity across different conversations, which can lead to noticeable accuracy degradation. We present Krul, a multi-turn LLM inference system that enables accurate and efficient KV cache restoration. Krul dynamically selects compression strategies based on attention similarity across layer pairs and uses a recomputation-loading pipeline to restore the KV cache. It introduces three key innovations: 1) a preemptive compression strategy selector to preserve critical context for future conversation turns and selects a customized strategy for the conversation; 2) a token-wise heterogeneous attention similarity estimator to mitigate the attention similarity computation and storage overhead during model generation; 3) a bubble-free restoration scheduler to reduce potential bubbles brought by the imbalance of recomputing and loading stream due to compressed KV caches. Empirical evaluations on real-world tasks demonstrate that Krul achieves a 1.5x-2.68x reduction in time-to-first-token (TTFT) and a 1.33x-2.35x reduction in KV cache storage compared to state-of-the-art methods without compromising generation quality.
Computation and Language
☆ MIRAGE: Scaling Test-Time Inference with Parallel Graph-Retrieval-Augmented Reasoning Chains AAAI 2026
Large reasoning models (LRMs) have shown significant progress in test-time scaling through chain-of-thought prompting. Current approaches like search-o1 integrate retrieval augmented generation (RAG) into multi-step reasoning processes but rely on a single, linear reasoning chain while incorporating unstructured textual information in a flat, context-agnostic manner. As a result, these approaches can lead to error accumulation throughout the reasoning chain, which significantly limits its effectiveness in medical question-answering (QA) tasks where both accuracy and traceability are critical requirements. To address these challenges, we propose MIRAGE (Multi-chain Inference with Retrieval-Augmented Graph Exploration), a novel test-time scalable reasoning framework that performs dynamic multi-chain inference over structured medical knowledge graphs. Specifically, MIRAGE 1) decomposes complex queries into entity-grounded sub-questions, 2) executes parallel inference chains, 3) retrieves evidence adaptively via neighbor expansion and multi-hop traversal, and 4) integrates answers using cross-chain verification to resolve contradictions. Experiments on three medical QA benchmarks (GenMedGPT-5k, CMCQA, and ExplainCPE) show that MIRAGE consistently outperforms GPT-4o, Tree-of-Thought variants, and other retrieval-augmented baselines in both automatic and human evaluations. Additionally, MIRAGE improves interpretability by generating explicit reasoning chains that trace each factual claim to concrete chains within the knowledge graph, making it well-suited for complex medical reasoning scenarios. The code will be available for further research.
comment: 10 pages, 8 figures (including tables), plus appendix. Submitted to AAAI 2026
☆ From BERT to LLMs: Comparing and Understanding Chinese Classifier Prediction in Language Models
Classifiers are an important and defining feature of the Chinese language, and their correct prediction is key to numerous educational applications. Yet, whether the most popular Large Language Models (LLMs) possess proper knowledge the Chinese classifiers is an issue that has largely remain unexplored in the Natural Language Processing (NLP) literature. To address such a question, we employ various masking strategies to evaluate the LLMs' intrinsic ability, the contribution of different sentence elements, and the working of the attention mechanisms during prediction. Besides, we explore fine-tuning for LLMs to enhance the classifier performance. Our findings reveal that LLMs perform worse than BERT, even with fine-tuning. The prediction, as expected, greatly benefits from the information about the following noun, which also explains the advantage of models with a bidirectional attention mechanism such as BERT.
☆ Demographic Biases and Gaps in the Perception of Sexism in Large Language Models
The use of Large Language Models (LLMs) has proven to be a tool that could help in the automatic detection of sexism. Previous studies have shown that these models contain biases that do not accurately reflect reality, especially for minority groups. Despite various efforts to improve the detection of sexist content, this task remains a significant challenge due to its subjective nature and the biases present in automated models. We explore the capabilities of different LLMs to detect sexism in social media text using the EXIST 2024 tweet dataset. It includes annotations from six distinct profiles for each tweet, allowing us to evaluate to what extent LLMs can mimic these groups' perceptions in sexism detection. Additionally, we analyze the demographic biases present in the models and conduct a statistical analysis to identify which demographic characteristics (age, gender) contribute most effectively to this task. Our results show that, while LLMs can to some extent detect sexism when considering the overall opinion of populations, they do not accurately replicate the diversity of perceptions among different demographic groups. This highlights the need for better-calibrated models that account for the diversity of perspectives across different populations.
comment: This work was presented as a poster at the Latin American Meeting in Artificial Intelligence KHIPU 2025, Santiago, Chile, March 10th - 14th 2025, https://khipu.ai/khipu2025/poster-sessions-2025/
☆ Better Language Model-Based Judging Reward Modeling through Scaling Comprehension Boundaries
The emergence of LM-based judging reward modeling, represented by generative reward models, has successfully made reinforcement learning from AI feedback (RLAIF) efficient and scalable. To further advance this paradigm, we propose a core insight: this form of reward modeling shares fundamental formal consistency with natural language inference (NLI), a core task in natural language understanding. This reframed perspective points to a key path for building superior reward models: scaling the model's comprehension boundaries. Pursuing this path, exploratory experiments on NLI tasks demonstrate that the slot prediction masked language models (MLMs) incorporating contextual explanations achieve significantly better performance compared to mainstream autoregressive models. Based on this key finding, we propose ESFP-RM, a two-stage LM-based judging reward model that utilizes an explanation based slot framework for prediction to fully leverage the advantages of MLMs. Extensive experiments demonstrate that in both reinforcement learning from human feedback (RLHF) and out-of-distribution (OOD) scenarios, the ESFP-RM framework delivers more stable and generalizable reward signals compared to generative reward models.
☆ Why Synthetic Isn't Real Yet: A Diagnostic Framework for Contact Center Dialogue Generation
Synthetic transcript generation is critical in contact center domains, where privacy and data scarcity limit model training and evaluation. Unlike prior synthetic dialogue generation work on open-domain or medical dialogues, contact center conversations are goal-oriented, role-asymmetric, and behaviorally complex, featuring disfluencies, ASR noise, and compliance-driven agent actions. In deployments where transcripts are unavailable, standard pipelines still yield derived call attributes such as Intent Summaries, Topic Flow, and QA Evaluation Forms. We leverage these as supervision signals to guide generation. To assess the quality of such outputs, we introduce a diagnostic framework of 18 linguistically and behaviorally grounded metrics for comparing real and synthetic transcripts. We benchmark four language-agnostic generation strategies, from simple prompting to characteristic-aware multi-stage approaches, alongside reference-free baselines. Results reveal persistent challenges: no method excels across all traits, with notable deficits in disfluency, sentiment, and behavioral realism. Our diagnostic tool exposes these gaps, enabling fine-grained evaluation and stress testing of synthetic dialogue across languages.
☆ Exploring the Interplay between Musical Preferences and Personality through the Lens of Language
Music serves as a powerful reflection of individual identity, often aligning with deeper psychological traits. Prior research has established correlations between musical preferences and personality traits, while separate studies have demonstrated that personality is detectable through linguistic analysis. Our study bridges these two research domains by investigating whether individuals' musical preferences are recognizable in their spontaneous language through the lens of the Big Five personality traits (Openness, Conscientiousness, Extroversion, Agreeableness, and Neuroticism). Using a carefully curated dataset of over 500,000 text samples from nearly 5,000 authors with reliably identified musical preferences, we build advanced models to assess personality characteristics. Our results reveal significant personality differences across fans of five musical genres. We release resources for future research at the intersection of computational linguistics, music psychology and personality analysis.
☆ Unraveling the cognitive patterns of Large Language Models through module communities
Large Language Models (LLMs) have reshaped our world with significant advancements in science, engineering, and society through applications ranging from scientific discoveries and medical diagnostics to Chatbots. Despite their ubiquity and utility, the underlying mechanisms of LLM remain concealed within billions of parameters and complex structures, making their inner architecture and cognitive processes challenging to comprehend. We address this gap by adopting approaches to understanding emerging cognition in biology and developing a network-based framework that links cognitive skills, LLM architectures, and datasets, ushering in a paradigm shift in foundation model analysis. The skill distribution in the module communities demonstrates that while LLMs do not strictly parallel the focalized specialization observed in specific biological systems, they exhibit unique communities of modules whose emergent skill patterns partially mirror the distributed yet interconnected cognitive organization seen in avian and small mammalian brains. Our numerical results highlight a key divergence from biological systems to LLMs, where skill acquisition benefits substantially from dynamic, cross-regional interactions and neural plasticity. By integrating cognitive science principles with machine learning, our framework provides new insights into LLM interpretability and suggests that effective fine-tuning strategies should leverage distributed learning dynamics rather than rigid modular interventions.
☆ Leveraging Large Language Models for Accurate Sign Language Translation in Low-Resource Scenarios
Translating natural languages into sign languages is a highly complex and underexplored task. Despite growing interest in accessibility and inclusivity, the development of robust translation systems remains hindered by the limited availability of parallel corpora which align natural language with sign language data. Existing methods often struggle to generalize in these data-scarce environments, as the few datasets available are typically domain-specific, lack standardization, or fail to capture the full linguistic richness of sign languages. To address this limitation, we propose Advanced Use of LLMs for Sign Language Translation (AulSign), a novel method that leverages Large Language Models via dynamic prompting and in-context learning with sample selection and subsequent sign association. Despite their impressive abilities in processing text, LLMs lack intrinsic knowledge of sign languages; therefore, they are unable to natively perform this kind of translation. To overcome this limitation, we associate the signs with compact descriptions in natural language and instruct the model to use them. We evaluate our method on both English and Italian languages using SignBank+, a recognized benchmark in the field, as well as the Italian LaCAM CNR-ISTC dataset. We demonstrate superior performance compared to state-of-the-art models in low-data scenario. Our findings demonstrate the effectiveness of AulSign, with the potential to enhance accessibility and inclusivity in communication technologies for underrepresented linguistic communities.
☆ Improving End-to-End Training of Retrieval-Augmented Generation Models via Joint Stochastic Approximation
Retrieval-augmented generation (RAG) has become a widely recognized paradigm to combine parametric memory with non-parametric memories. An RAG model consists of two serial connecting components (retriever and generator). A major challenge in end-to-end optimization of the RAG model is that marginalization over relevant passages (modeled as discrete latent variables) from a knowledge base is required. Traditional top-K marginalization and variational RAG (VRAG) suffer from biased or high-variance gradient estimates. In this paper, we propose and develop joint stochastic approximation (JSA) based end-to-end training of RAG, which is referred to as JSA-RAG. The JSA algorithm is a stochastic extension of the EM (expectation-maximization) algorithm and is particularly powerful in estimating discrete latent variable models. Extensive experiments are conducted on five datasets for two tasks (open-domain question answering, knowledge-grounded dialogs) and show that JSA-RAG significantly outperforms both vanilla RAG and VRAG. Further analysis shows the efficacy of JSA-RAG from the perspectives of generation, retrieval, and low-variance gradient estimate.
☆ DiscussLLM: Teaching Large Language Models When to Speak
Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like text, yet they largely operate as reactive agents, responding only when directly prompted. This passivity creates an "awareness gap," limiting their potential as truly collaborative partners in dynamic human discussions. We introduce $\textit{DiscussLLM}$, a framework designed to bridge this gap by training models to proactively decide not just $\textit{what}$ to say, but critically, $\textit{when}$ to speak. Our primary contribution is a scalable two-stage data generation pipeline that synthesizes a large-scale dataset of realistic multi-turn human discussions. Each discussion is annotated with one of five intervention types (e.g., Factual Correction, Concept Definition) and contains an explicit conversational trigger where an AI intervention adds value. By training models to predict a special silent token when no intervention is needed, they learn to remain quiet until a helpful contribution can be made. We explore two architectural baselines: an integrated end-to-end model and a decoupled classifier-generator system optimized for low-latency inference. We evaluate these models on their ability to accurately time interventions and generate helpful responses, paving the way for more situationally aware and proactive conversational AI.
☆ S2Sent: Nested Selectivity Aware Sentence Representation Learning
The combination of Transformer-based encoders with contrastive learning represents the current mainstream paradigm for sentence representation learning. This paradigm is typically based on the hidden states of the last Transformer block of the encoder. However, within Transformer-based encoders, different blocks exhibit varying degrees of semantic perception ability. From the perspective of interpretability, the semantic perception potential of knowledge neurons is modulated by stimuli, thus rational cross-block representation fusion is a direction worth optimizing. To balance the semantic redundancy and loss across block fusion, we propose a sentence representation selection mechanism S\textsuperscript{2}Sent, which integrates a parameterized nested selector downstream of the Transformer-based encoder. This selector performs spatial selection (SS) and nested frequency selection (FS) from a modular perspective. The SS innovatively employs a spatial squeeze based self-gating mechanism to obtain adaptive weights, which not only achieves fusion with low information redundancy but also captures the dependencies between embedding features. The nested FS replaces GAP with different DCT basis functions to achieve spatial squeeze with low semantic loss. Extensive experiments have demonstrated that S\textsuperscript{2}Sent achieves significant improvements over baseline methods with negligible additional parameters and inference latency, while highlighting high integrability and scalability.
☆ HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.
☆ The AI Data Scientist
Imagine decision-makers uploading data and, within minutes, receiving clear, actionable insights delivered straight to their fingertips. That is the promise of the AI Data Scientist, an autonomous Agent powered by large language models (LLMs) that closes the gap between evidence and action. Rather than simply writing code or responding to prompts, it reasons through questions, tests ideas, and delivers end-to-end insights at a pace far beyond traditional workflows. Guided by the scientific tenet of the hypothesis, this Agent uncovers explanatory patterns in data, evaluates their statistical significance, and uses them to inform predictive modeling. It then translates these results into recommendations that are both rigorous and accessible. At the core of the AI Data Scientist is a team of specialized LLM Subagents, each responsible for a distinct task such as data cleaning, statistical testing, validation, and plain-language communication. These Subagents write their own code, reason about causality, and identify when additional data is needed to support sound conclusions. Together, they achieve in minutes what might otherwise take days or weeks, enabling a new kind of interaction that makes deep data science both accessible and actionable.
☆ SentiMM: A Multimodal Multi-Agent Framework for Sentiment Analysis in Social Media
With the increasing prevalence of multimodal content on social media, sentiment analysis faces significant challenges in effectively processing heterogeneous data and recognizing multi-label emotions. Existing methods often lack effective cross-modal fusion and external knowledge integration. We propose SentiMM, a novel multi-agent framework designed to systematically address these challenges. SentiMM processes text and visual inputs through specialized agents, fuses multimodal features, enriches context via knowledge retrieval, and aggregates results for final sentiment classification. We also introduce SentiMMD, a large-scale multimodal dataset with seven fine-grained sentiment categories. Extensive experiments demonstrate that SentiMM achieves superior performance compared to state-of-the-art baselines, validating the effectiveness of our structured approach.
☆ Detecting and Characterizing Planning in Language Models
Modern large language models (LLMs) have demonstrated impressive performance across a wide range of multi-step reasoning tasks. Recent work suggests that LLMs may perform planning - selecting a future target token in advance and generating intermediate tokens that lead towards it - rather than merely improvising one token at a time. However, existing studies assume fixed planning horizons and often focus on single prompts or narrow domains. To distinguish planning from improvisation across models and tasks, we present formal and causally grounded criteria for detecting planning and operationalize them as a semi-automated annotation pipeline. We apply this pipeline to both base and instruction-tuned Gemma-2-2B models on the MBPP code generation benchmark and a poem generation task where Claude 3.5 Haiku was previously shown to plan. Our findings show that planning is not universal: unlike Haiku, Gemma-2-2B solves the same poem generation task through improvisation, and on MBPP it switches between planning and improvisation across similar tasks and even successive token predictions. We further show that instruction tuning refines existing planning behaviors in the base model rather than creating them from scratch. Together, these studies provide a reproducible and scalable foundation for mechanistic studies of planning in LLMs.
comment: 9 pages, 4 figures
☆ Agri-Query: A Case Study on RAG vs. Long-Context LLMs for Cross-Lingual Technical Question Answering
We present a case study evaluating large language models (LLMs) with 128K-token context windows on a technical question answering (QA) task. Our benchmark is built on a user manual for an agricultural machine, available in English, French, and German. It simulates a cross-lingual information retrieval scenario where questions are posed in English against all three language versions of the manual. The evaluation focuses on realistic "needle-in-a-haystack" challenges and includes unanswerable questions to test for hallucinations. We compare nine long-context LLMs using direct prompting against three Retrieval-Augmented Generation (RAG) strategies (keyword, semantic, hybrid), with an LLM-as-a-judge for evaluation. Our findings for this specific manual show that Hybrid RAG consistently outperforms direct long-context prompting. Models like Gemini 2.5 Flash and the smaller Qwen 2.5 7B achieve high accuracy (over 85%) across all languages with RAG. This paper contributes a detailed analysis of LLM performance in a specialized industrial domain and an open framework for similar evaluations, highlighting practical trade-offs and challenges.
☆ Speech-Based Depressive Mood Detection in the Presence of Multiple Sclerosis: A Cross-Corpus and Cross-Lingual Study SP 2025
Depression commonly co-occurs with neurodegenerative disorders like Multiple Sclerosis (MS), yet the potential of speech-based Artificial Intelligence for detecting depression in such contexts remains unexplored. This study examines the transferability of speech-based depression detection methods to people with MS (pwMS) through cross-corpus and cross-lingual analysis using English data from the general population and German data from pwMS. Our approach implements supervised machine learning models using: 1) conventional speech and language features commonly used in the field, 2) emotional dimensions derived from a Speech Emotion Recognition (SER) model, and 3) exploratory speech feature analysis. Despite limited data, our models detect depressive mood in pwMS with moderate generalisability, achieving a 66% Unweighted Average Recall (UAR) on a binary task. Feature selection further improved performance, boosting UAR to 74%. Our findings also highlight the relevant role emotional changes have as an indicator of depressive mood in both the general population and within PwMS. This study provides an initial exploration into generalising speech-based depression detection, even in the presence of co-occurring conditions, such as neurodegenerative diseases.
comment: Accepted at the 8th International Conference on Natural Language and Speech Processing (ICNLSP 2025). To be appeared in the corresponding Proceedings at ACL Anthology
☆ Named Entity Recognition of Historical Text via Large Language Model
Large language models have demonstrated remarkable versatility across a wide range of natural language processing tasks and domains. One such task is Named Entity Recognition (NER), which involves identifying and classifying proper names in text, such as people, organizations, locations, dates, and other specific entities. NER plays a crucial role in extracting information from unstructured textual data, enabling downstream applications such as information retrieval from unstructured text. Traditionally, NER is addressed using supervised machine learning approaches, which require large amounts of annotated training data. However, historical texts present a unique challenge, as the annotated datasets are often scarce or nonexistent, due to the high cost and expertise required for manual labeling. In addition, the variability and noise inherent in historical language, such as inconsistent spelling and archaic vocabulary, further complicate the development of reliable NER systems for these sources. In this study, we explore the feasibility of applying LLMs to NER in historical documents using zero-shot and few-shot prompting strategies, which require little to no task-specific training data. Our experiments, conducted on the HIPE-2022 (Identifying Historical People, Places and other Entities) dataset, show that LLMs can achieve reasonably strong performance on NER tasks in this setting. While their performance falls short of fully supervised models trained on domain-specific annotations, the results are nevertheless promising. These findings suggest that LLMs offer a viable and efficient alternative for information extraction in low-resource or historically significant corpora, where traditional supervised methods are infeasible.
☆ How Quantization Shapes Bias in Large Language Models
This work presents a comprehensive evaluation of how quantization affects model bias, with particular attention to its impact on individual demographic subgroups. We focus on weight and activation quantization strategies and examine their effects across a broad range of bias types, including stereotypes, toxicity, sentiment, and fairness. We employ both probabilistic and generated text-based metrics across nine benchmarks and evaluate models varying in architecture family and reasoning ability. Our findings show that quantization has a nuanced impact on bias: while it can reduce model toxicity and does not significantly impact sentiment, it tends to slightly increase stereotypes and unfairness in generative tasks, especially under aggressive compression. These trends are generally consistent across demographic categories and model types, although their magnitude depends on the specific setting. Overall, our results highlight the importance of carefully balancing efficiency and ethical considerations when applying quantization in practice.
☆ Neither Valid nor Reliable? Investigating the Use of LLMs as Judges
Evaluating natural language generation (NLG) systems remains a core challenge of natural language processing (NLP), further complicated by the rise of large language models (LLMs) that aims to be general-purpose. Recently, large language models as judges (LLJs) have emerged as a promising alternative to traditional metrics, but their validity remains underexplored. This position paper argues that the current enthusiasm around LLJs may be premature, as their adoption has outpaced rigorous scrutiny of their reliability and validity as evaluators. Drawing on measurement theory from the social sciences, we identify and critically assess four core assumptions underlying the use of LLJs: their ability to act as proxies for human judgment, their capabilities as evaluators, their scalability, and their cost-effectiveness. We examine how each of these assumptions may be challenged by the inherent limitations of LLMs, LLJs, or current practices in NLG evaluation. To ground our analysis, we explore three applications of LLJs: text summarization, data annotation, and safety alignment. Finally, we highlight the need for more responsible evaluation practices in LLJs evaluation, to ensure that their growing role in the field supports, rather than undermines, progress in NLG.
comment: Prepared for conference submission
☆ Unseen Speaker and Language Adaptation for Lightweight Text-To-Speech with Adapters SP 2025
In this paper we investigate cross-lingual Text-To-Speech (TTS) synthesis through the lens of adapters, in the context of lightweight TTS systems. In particular, we compare the tasks of unseen speaker and language adaptation with the goal of synthesising a target voice in a target language, in which the target voice has no recordings therein. Results from objective evaluations demonstrate the effectiveness of adapters in learning language-specific and speaker-specific information, allowing pre-trained models to learn unseen speaker identities or languages, while avoiding catastrophic forgetting of the original model's speaker or language information. Additionally, to measure how native the generated voices are in terms of accent, we propose and validate an objective metric inspired by mispronunciation detection techniques in second-language (L2) learners. The paper also provides insights into the impact of adapter placement, configuration and the number of speakers used.
comment: Accepted at IEEE MLSP 2025
☆ A Retail-Corpus for Aspect-Based Sentiment Analysis with Large Language Models SP 2025
Aspect-based sentiment analysis enhances sentiment detection by associating it with specific aspects, offering deeper insights than traditional sentiment analysis. This study introduces a manually annotated dataset of 10,814 multilingual customer reviews covering brick-and-mortar retail stores, labeled with eight aspect categories and their sentiment. Using this dataset, the performance of GPT-4 and LLaMA-3 in aspect based sentiment analysis is evaluated to establish a baseline for the newly introduced data. The results show both models achieving over 85% accuracy, while GPT-4 outperforms LLaMA-3 overall with regard to all relevant metrics.
comment: Accepted at ICNLSP 2025
☆ German4All - A Dataset and Model for Readability-Controlled Paraphrasing in German
The ability to paraphrase texts across different complexity levels is essential for creating accessible texts that can be tailored toward diverse reader groups. Thus, we introduce German4All, the first large-scale German dataset of aligned readability-controlled, paragraph-level paraphrases. It spans five readability levels and comprises over 25,000 samples. The dataset is automatically synthesized using GPT-4 and rigorously evaluated through both human and LLM-based judgments. Using German4All, we train an open-source, readability-controlled paraphrasing model that achieves state-of-the-art performance in German text simplification, enabling more nuanced and reader-specific adaptations. We opensource both the dataset and the model to encourage further research on multi-level paraphrasing
comment: Accepted to INLG 2025
☆ Understanding Subword Compositionality of Large Language Models EMNLP 2025
Large language models (LLMs) take sequences of subwords as input, requiring them to effective compose subword representations into meaningful word-level representations. In this paper, we present a comprehensive set of experiments to probe how LLMs compose subword information, focusing on three key aspects: structural similarity, semantic decomposability, and form retention. Our analysis of the experiments suggests that these five LLM families can be classified into three distinct groups, likely reflecting difference in their underlying composition strategies. Specifically, we observe (i) three distinct patterns in the evolution of structural similarity between subword compositions and whole-word representations across layers; (ii) great performance when probing layer by layer their sensitivity to semantic decompositionality; and (iii) three distinct patterns when probing sensitivity to formal features, e.g., character sequence length. These findings provide valuable insights into the compositional dynamics of LLMs and highlight different compositional pattens in how LLMs encode and integrate subword information.
comment: EMNLP 2025 Main
☆ Debiasing Multilingual LLMs in Cross-lingual Latent Space EMNLP 2025
Debiasing techniques such as SentDebias aim to reduce bias in large language models (LLMs). Previous studies have evaluated their cross-lingual transferability by directly applying these methods to LLM representations, revealing their limited effectiveness across languages. In this work, we therefore propose to perform debiasing in a joint latent space rather than directly on LLM representations. We construct a well-aligned cross-lingual latent space using an autoencoder trained on parallel TED talk scripts. Our experiments with Aya-expanse and two debiasing techniques across four languages (English, French, German, Dutch) demonstrate that a) autoencoders effectively construct a well-aligned cross-lingual latent space, and b) applying debiasing techniques in the learned cross-lingual latent space significantly improves both the overall debiasing performance and cross-lingual transferability.
comment: EMNLP 2025 Main
☆ AMELIA: A Family of Multi-task End-to-end Language Models for Argumentation
Argument mining is a subfield of argumentation that aims to automatically extract argumentative structures and their relations from natural language texts. This paper investigates how a single large language model can be leveraged to perform one or several argument mining tasks. Our contributions are two-fold. First, we construct a multi-task dataset by surveying and converting 19 well-known argument mining datasets from the literature into a unified format. Second, we explore various training strategies using Meta AI's Llama-3.1-8B-Instruct model: (1) fine-tuning on individual tasks, (2) fine-tuning jointly on multiple tasks, and (3) merging models fine-tuned separately on individual tasks. Our experiments show that task-specific fine-tuning significantly improves individual performance across all tasks. Moreover, multi-task fine-tuning maintains strong performance without degradation, suggesting effective transfer learning across related tasks. Finally, we demonstrate that model merging offers a viable compromise: it yields competitive performance while mitigating the computational costs associated with full multi-task fine-tuning.
☆ Feature-Refined Unsupervised Model for Loanword Detection
We propose an unsupervised method for detecting loanwords i.e., words borrowed from one language into another. While prior work has primarily relied on language-external information to identify loanwords, such approaches can introduce circularity and constraints into the historical linguistics workflow. In contrast, our model relies solely on language-internal information to process both native and borrowed words in monolingual and multilingual wordlists. By extracting pertinent linguistic features, scoring them, and mapping them probabilistically, we iteratively refine initial results by identifying and generalizing from emerging patterns until convergence. This hybrid approach leverages both linguistic and statistical cues to guide the discovery process. We evaluate our method on the task of isolating loanwords in datasets from six standard Indo-European languages: English, German, French, Italian, Spanish, and Portuguese. Experimental results demonstrate that our model outperforms baseline methods, with strong performance gains observed when scaling to cross-linguistic data.
☆ Information availability in different languages and various technological constraints related to multilinguism on the Internet
The usage of Internet has grown exponentially over the last two decades. The number of Internet users has grown from 16 Million to 1650 Million from 1995 to 2010. It has become a major repository of information catering almost every area. Since the Internet has its origin in USA which is English speaking country there is huge dominance of English on the World Wide Web. Although English is a globally acceptable language, still there is a huge population in the world which is not able to access the Internet due to language constraints. It has been estimated that only 20-25% of the world population speaks English as a native language. More and more people are accessing the Internet nowadays removing the cultural and linguistic barriers and hence there is a high growth in the number of non-English speaking users over the last few years on the Internet. Although many solutions have been provided to remove the linguistic barriers, still there is a huge gap to be filled. This paper attempts to analyze the need of information availability in different languages and the various technological constraints related to multi-linguism on the Internet.
comment: International Journal of Computer Applications
☆ Evaluating the Representation of Vowels in Wav2Vec Feature Extractor: A Layer-Wise Analysis Using MFCCs
Automatic Speech Recognition has advanced with self-supervised learning, enabling feature extraction directly from raw audio. In Wav2Vec, a CNN first transforms audio into feature vectors before the transformer processes them. This study examines CNN-extracted information for monophthong vowels using the TIMIT corpus. We compare MFCCs, MFCCs with formants, and CNN activations by training SVM classifiers for front-back vowel identification, assessing their classification accuracy to evaluate phonetic representation.
☆ Pandora: Leveraging Code-driven Knowledge Transfer for Unified Structured Knowledge Reasoning
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods rely on task-specific strategies or bespoke representations, which hinder their ability to dismantle barriers between different SKR tasks, thereby constraining their overall performance in cross-task scenarios. In this paper, we introduce \textsc{Pandora}, a novel USKR framework that addresses the limitations of existing methods by leveraging two key innovations. First, we propose a code-based unified knowledge representation using \textsc{Python}'s \textsc{Pandas} API, which aligns seamlessly with the pre-training of LLMs. This representation facilitates a cohesive approach to handling different structured knowledge sources. Building on this foundation, we employ knowledge transfer to bolster the unified reasoning process of LLMs by automatically building cross-task memory. By adaptively correcting reasoning using feedback from code execution, \textsc{Pandora} showcases impressive unified reasoning capabilities. Extensive experiments on six widely used benchmarks across three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified reasoning frameworks and competes effectively with task-specific methods.
☆ Designing Practical Models for Isolated Word Visual Speech Recognition
Visual speech recognition (VSR) systems decode spoken words from an input sequence using only the video data. Practical applications of such systems include medical assistance as well as human-machine interactions. A VSR system is typically employed in a complementary role in cases where the audio is corrupt or not available. In order to accurately predict the spoken words, these architectures often rely on deep neural networks in order to extract meaningful representations from the input sequence. While deep architectures achieve impressive recognition performance, relying on such models incurs significant computation costs which translates into increased resource demands in terms of hardware requirements and results in limited applicability in real-world scenarios where resources might be constrained. This factor prevents wider adoption and deployment of speech recognition systems in more practical applications. In this work, we aim to alleviate this issue by developing architectures for VSR that have low hardware costs. Following the standard two-network design paradigm, where one network handles visual feature extraction and another one utilizes the extracted features to classify the entire sequence, we develop lightweight end-to-end architectures by first benchmarking efficient models from the image classification literature, and then adopting lightweight block designs in a temporal convolution network backbone. We create several unified models with low resource requirements but strong recognition performance. Experiments on the largest public database for English words demonstrate the effectiveness and practicality of our developed models. Code and trained models will be made publicly available.
comment: Double-column format, 13 pages with references, 2 figures
☆ ILRe: Intermediate Layer Retrieval for Context Compression in Causal Language Models
Large Language Models (LLMs) have demonstrated success across many benchmarks. However, they still exhibit limitations in long-context scenarios, primarily due to their short effective context length, quadratic computational complexity, and high memory overhead when processing lengthy inputs. To mitigate these issues, we introduce a novel context compression pipeline, called Intermediate Layer Retrieval (ILRe), which determines one intermediate decoder layer offline, encodes context by streaming chunked prefill only up to that layer, and recalls tokens by the attention scores between the input query and full key cache in that specified layer. In particular, we propose a multi-pooling kernels allocating strategy in the token recalling process to maintain the completeness of semantics. Our approach not only reduces the prefilling complexity from $O(L^2)$ to $O(L)$, but also achieves performance comparable to or better than the full context in the long context scenarios. Without additional post training or operator development, ILRe can process a single $1M$ tokens request in less than half a minute (speedup $\approx 180\times$) and scores RULER-$1M$ benchmark of $\approx 79.8$ with model Llama-3.1-UltraLong-8B-1M-Instruct on a Huawei Ascend 910B NPU.
☆ Speech Discrete Tokens or Continuous Features? A Comparative Analysis for Spoken Language Understanding in SpeechLLMs EMNLP 2025
With the rise of Speech Large Language Models (SpeechLLMs), two dominant approaches have emerged for speech processing: discrete tokens and continuous features. Each approach has demonstrated strong capabilities in audio-related processing tasks. However, the performance gap between these two paradigms has not been thoroughly explored. To address this gap, we present a fair comparison of self-supervised learning (SSL)-based discrete and continuous features under the same experimental settings. We evaluate their performance across six spoken language understanding-related tasks using both small and large-scale LLMs (Qwen1.5-0.5B and Llama3.1-8B). We further conduct in-depth analyses, including efficient comparison, SSL layer analysis, LLM layer analysis, and robustness comparison. Our findings reveal that continuous features generally outperform discrete tokens in various tasks. Each speech processing method exhibits distinct characteristics and patterns in how it learns and processes speech information. We hope our results will provide valuable insights to advance spoken language understanding in SpeechLLMs.
comment: Accepted to EMNLP 2025 Main Conference
☆ Beyond Demographics: Enhancing Cultural Value Survey Simulation with Multi-Stage Personality-Driven Cognitive Reasoning EMNLP 2025
Introducing MARK, the Multi-stAge Reasoning frameworK for cultural value survey response simulation, designed to enhance the accuracy, steerability, and interpretability of large language models in this task. The system is inspired by the type dynamics theory in the MBTI psychological framework for personality research. It effectively predicts and utilizes human demographic information for simulation: life-situational stress analysis, group-level personality prediction, and self-weighted cognitive imitation. Experiments on the World Values Survey show that MARK outperforms existing baselines by 10% accuracy and reduces the divergence between model predictions and human preferences. This highlights the potential of our framework to improve zero-shot personalization and help social scientists interpret model predictions.
comment: 23 pages, 6 figures, accepted to EMNLP 2025 main
☆ DRQA: Dynamic Reasoning Quota Allocation for Controlling Overthinking in Reasoning Large Language Models
Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-R1, have recently demonstrated remarkable capabilities by performing structured and multi-step reasoning. However, recent studies reveal that RLLMs often suffer from overthinking, i.e., producing unnecessarily lengthy reasoning chains even for simple questions, leading to excessive token consumption and computational inefficiency. Interestingly, we observe that when processing multiple questions in batch mode, RLLMs exhibit more resource-efficient behavior by dynamically compressing reasoning steps for easier problems, due to implicit resource competition. Inspired by this, we propose Dynamic Reasoning Quota Allocation (DRQA), a novel method that transfers the benefits of resource competition from batch processing to single-question inference. Specifically, DRQA leverages batch-generated preference data and reinforcement learning to train the model to allocate reasoning resources adaptively. By encouraging the model to internalize a preference for responses that are both accurate and concise, DRQA enables it to generate concise answers for simple questions while retaining sufficient reasoning depth for more challenging ones. Extensive experiments on a wide range of mathematical and scientific reasoning benchmarks demonstrate that DRQA significantly reduces token usage while maintaining, and in many cases improving, answer accuracy. By effectively mitigating the overthinking problem, DRQA offers a promising direction for more efficient and scalable deployment of RLLMs, and we hope it inspires further exploration into fine-grained control of reasoning behaviors.
☆ Zero-shot Context Biasing with Trie-based Decoding using Synthetic Multi-Pronunciation SC 2025
Contextual automatic speech recognition (ASR) systems allow for recognizing out-of-vocabulary (OOV) words, such as named entities or rare words. However, it remains challenging due to limited training data and ambiguous or inconsistent pronunciations. In this paper, we propose a synthesis-driven multi-pronunciation contextual biasing method that performs zero-shot contextual ASR on a pretrained Whisper model. Specifically, we leverage text-to-speech (TTS) systems to synthesize diverse speech samples containing each target rare word, and then use the pretrained Whisper model to extract multiple predicted pronunciation variants. These variant token sequences are compiled into a prefix-trie, which assigns rewards to beam hypotheses in a shallow-fusion manner during beam-search decoding. After which, any recognized variant is mapped back to the original rare word in the final transcription. The evaluation results on the Librispeech dataset show that our method reduces biased word error rate (WER) by 42% on test-clean and 43% on test-other while maintaining unbiased WER essentially unchanged.
comment: Accepted to APSIPA ASC 2025
☆ Proximal Supervised Fine-Tuning
Supervised fine-tuning (SFT) of foundation models often leads to poor generalization, where prior capabilities deteriorate after tuning on new tasks or domains. Inspired by trust-region policy optimization (TRPO) and proximal policy optimization (PPO) in reinforcement learning (RL), we propose Proximal SFT (PSFT). This fine-tuning objective incorporates the benefits of trust-region, effectively constraining policy drift during SFT while maintaining competitive tuning. By viewing SFT as a special case of policy gradient methods with constant positive advantages, we derive PSFT that stabilizes optimization and leads to generalization, while leaving room for further optimization in subsequent post-training stages. Experiments across mathematical and human-value domains show that PSFT matches SFT in-domain, outperforms it in out-of-domain generalization, remains stable under prolonged training without causing entropy collapse, and provides a stronger foundation for the subsequent optimization.
☆ Speculating LLMs' Chinese Training Data Pollution from Their Tokens
Tokens are basic elements in the datasets for LLM training. It is well-known that many tokens representing Chinese phrases in the vocabulary of GPT (4o/4o-mini/o1/o3/4.5/4.1/o4-mini) are indicating contents like pornography or online gambling. Based on this observation, our goal is to locate Polluted Chinese (PoC) tokens in LLMs and study the relationship between PoC tokens' existence and training data. (1) We give a formal definition and taxonomy of PoC tokens based on the GPT's vocabulary. (2) We build a PoC token detector via fine-tuning an LLM to label PoC tokens in vocabularies by considering each token's both semantics and related contents from the search engines. (3) We study the speculation on the training data pollution via PoC tokens' appearances (token ID). Experiments on GPT and other 23 LLMs indicate that tokens widely exist while GPT's vocabulary behaves the worst: more than 23% long Chinese tokens (i.e., a token with more than two Chinese characters) are either porn or online gambling. We validate the accuracy of our speculation method on famous pre-training datasets like C4 and Pile. Then, considering GPT-4o, we speculate that the ratio of "Yui Hatano" related webpages in GPT-4o's training data is around 0.5%.
☆ ISACL: Internal State Analyzer for Copyrighted Training Data Leakage
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) but pose risks of inadvertently exposing copyrighted or proprietary data, especially when such data is used for training but not intended for distribution. Traditional methods address these leaks only after content is generated, which can lead to the exposure of sensitive information. This study introduces a proactive approach: examining LLMs' internal states before text generation to detect potential leaks. By using a curated dataset of copyrighted materials, we trained a neural network classifier to identify risks, allowing for early intervention by stopping the generation process or altering outputs to prevent disclosure. Integrated with a Retrieval-Augmented Generation (RAG) system, this framework ensures adherence to copyright and licensing requirements while enhancing data privacy and ethical standards. Our results show that analyzing internal states effectively mitigates the risk of copyrighted data leakage, offering a scalable solution that fits smoothly into AI workflows, ensuring compliance with copyright regulations while maintaining high-quality text generation. The implementation is available on GitHub.\footnote{https://github.com/changhu73/Internal_states_leakage}
☆ CEIDM: A Controlled Entity and Interaction Diffusion Model for Enhanced Text-to-Image Generation
In Text-to-Image (T2I) generation, the complexity of entities and their intricate interactions pose a significant challenge for T2I method based on diffusion model: how to effectively control entity and their interactions to produce high-quality images. To address this, we propose CEIDM, a image generation method based on diffusion model with dual controls for entity and interaction. First, we propose an entity interactive relationships mining approach based on Large Language Models (LLMs), extracting reasonable and rich implicit interactive relationships through chain of thought to guide diffusion models to generate high-quality images that are closer to realistic logic and have more reasonable interactive relationships. Furthermore, We propose an interactive action clustering and offset method to cluster and offset the interactive action features contained in each text prompts. By constructing global and local bidirectional offsets, we enhance semantic understanding and detail supplementation of original actions, making the model's understanding of the concept of interactive "actions" more accurate and generating images with more accurate interactive actions. Finally, we design an entity control network which generates masks with entity semantic guidance, then leveraging multi-scale convolutional network to enhance entity feature and dynamic network to fuse feature. It effectively controls entities and significantly improves image quality. Experiments show that the proposed CEIDM method is better than the most representative existing methods in both entity control and their interaction control.
☆ Talking to Robots: A Practical Examination of Speech Foundation Models for HRI Applications
Automatic Speech Recognition (ASR) systems in real-world settings need to handle imperfect audio, often degraded by hardware limitations or environmental noise, while accommodating diverse user groups. In human-robot interaction (HRI), these challenges intersect to create a uniquely challenging recognition environment. We evaluate four state-of-the-art ASR systems on eight publicly available datasets that capture six dimensions of difficulty: domain-specific, accented, noisy, age-variant, impaired, and spontaneous speech. Our analysis demonstrates significant variations in performance, hallucination tendencies, and inherent biases, despite similar scores on standard benchmarks. These limitations have serious implications for HRI, where recognition errors can interfere with task performance, user trust, and safety.
comment: Accepted at the workshop on Foundation Models for Social Robotics (FoMoSR) at ICSR 2025
☆ SMITE: Enhancing Fairness in LLMs through Optimal In-Context Example Selection via Dynamic Validation
Large Language Models (LLMs) are widely used for downstream tasks such as tabular classification, where ensuring fairness in their outputs is critical for inclusivity, equal representation, and responsible AI deployment. This study introduces a novel approach to enhancing LLM performance and fairness through the concept of a dynamic validation set, which evolves alongside the test set, replacing the traditional static validation approach. We also propose an iterative algorithm, SMITE, to select optimal in-context examples, with each example set validated against its corresponding dynamic validation set. The in-context set with the lowest total error is used as the final demonstration set. Our experiments across four different LLMs show that our proposed techniques significantly improve both predictive accuracy and fairness compared to baseline methods. To our knowledge, this is the first study to apply dynamic validation in the context of in-context learning for LLMs.
☆ Layerwise Importance Analysis of Feed-Forward Networks in Transformer-based Language Models
This study investigates the layerwise importance of feed-forward networks (FFNs) in Transformer-based language models during pretraining. We introduce an experimental approach that, while maintaining the total parameter count, increases the FFN dimensions in some layers and completely removes the FFNs from other layers. Furthermore, since our focus is on the importance of FFNs during pretraining, we train models from scratch to examine whether the importance of FFNs varies depending on their layer positions, rather than using publicly available pretrained models as is frequently done. Through comprehensive evaluations of models with varying sizes (285M, 570M, and 1.2B parameters) and layer counts (12, 24, and 40 layers), we demonstrate that concentrating FFNs in 70% of the consecutive middle layers consistently outperforms standard configurations for multiple downstream tasks.
comment: Accepted to COLM 2025
☆ How Do LLM-Generated Texts Impact Term-Based Retrieval Models?
As more content generated by large language models (LLMs) floods into the Internet, information retrieval (IR) systems now face the challenge of distinguishing and handling a blend of human-authored and machine-generated texts. Recent studies suggest that neural retrievers may exhibit a preferential inclination toward LLM-generated content, while classic term-based retrievers like BM25 tend to favor human-written documents. This paper investigates the influence of LLM-generated content on term-based retrieval models, which are valued for their efficiency and robust generalization across domains. Our linguistic analysis reveals that LLM-generated texts exhibit smoother high-frequency and steeper low-frequency Zipf slopes, higher term specificity, and greater document-level diversity. These traits are aligned with LLMs being trained to optimize reader experience through diverse and precise expressions. Our study further explores whether term-based retrieval models demonstrate source bias, concluding that these models prioritize documents whose term distributions closely correspond to those of the queries, rather than displaying an inherent source bias. This work provides a foundation for understanding and addressing potential biases in term-based IR systems managing mixed-source content.
☆ EMPOWER: Evolutionary Medical Prompt Optimization With Reinforcement Learning
Prompt engineering significantly influences the reliability and clinical utility of Large Language Models (LLMs) in medical applications. Current optimization approaches inadequately address domain-specific medical knowledge and safety requirements. This paper introduces EMPOWER, a novel evolutionary framework that enhances medical prompt quality through specialized representation learning, multi-dimensional evaluation, and structure-preserving algorithms. Our methodology incorporates: (1) a medical terminology attention mechanism, (2) a comprehensive assessment architecture evaluating clarity, specificity, clinical relevance, and factual accuracy, (3) a component-level evolutionary algorithm preserving clinical reasoning integrity, and (4) a semantic verification module ensuring adherence to medical knowledge. Evaluation across diagnostic, therapeutic, and educational tasks demonstrates significant improvements: 24.7% reduction in factually incorrect content, 19.6% enhancement in domain specificity, and 15.3% higher clinician preference in blinded evaluations. The framework addresses critical challenges in developing clinically appropriate prompts, facilitating more responsible integration of LLMs into healthcare settings.
☆ LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
Recent advances in the intrinsic reasoning capabilities of large language models (LLMs) have given rise to LLM-based agent systems that exhibit near-human performance on a variety of automated tasks. However, although these systems share similarities in terms of their use of LLMs, different reasoning frameworks of the agent system steer and organize the reasoning process in different ways. In this survey, we propose a systematic taxonomy that decomposes agentic reasoning frameworks and analyze how these frameworks dominate framework-level reasoning by comparing their applications across different scenarios. Specifically, we propose an unified formal language to further classify agentic reasoning systems into single-agent methods, tool-based methods, and multi-agent methods. After that, we provide a comprehensive review of their key application scenarios in scientific discovery, healthcare, software engineering, social simulation, and economics. We also analyze the characteristic features of each framework and summarize different evaluation strategies. Our survey aims to provide the research community with a panoramic view to facilitate understanding of the strengths, suitable scenarios, and evaluation practices of different agentic reasoning frameworks.
comment: 51 pages,10 figures,8 tables. Work in progress
☆ Text Meets Topology: Rethinking Out-of-distribution Detection in Text-Rich Networks EMNLP2025
Out-of-distribution (OOD) detection remains challenging in text-rich networks, where textual features intertwine with topological structures. Existing methods primarily address label shifts or rudimentary domain-based splits, overlooking the intricate textual-structural diversity. For example, in social networks, where users represent nodes with textual features (name, bio) while edges indicate friendship status, OOD may stem from the distinct language patterns between bot and normal users. To address this gap, we introduce the TextTopoOOD framework for evaluating detection across diverse OOD scenarios: (1) attribute-level shifts via text augmentations and embedding perturbations; (2) structural shifts through edge rewiring and semantic connections; (3) thematically-guided label shifts; and (4) domain-based divisions. Furthermore, we propose TNT-OOD to model the complex interplay between Text aNd Topology using: 1) a novel cross-attention module to fuse local structure into node-level text representations, and 2) a HyperNetwork to generate node-specific transformation parameters. This aligns topological and semantic features of ID nodes, enhancing ID/OOD distinction across structural and textual shifts. Experiments on 11 datasets across four OOD scenarios demonstrate the nuanced challenge of TextTopoOOD for evaluating OOD detection in text-rich networks.
comment: EMNLP2025 Main
☆ Characterizing the Behavior of Training Mamba-based State Space Models on GPUs
Mamba-based State Space Models (SSM) have emerged as a promising alternative to the ubiquitous transformers. Despite the expressive power of transformers, the quadratic complexity of computing attention is a major impediment to scaling performance as we increase the sequence length. SSMs provide an alternative path that addresses this problem, reducing the computational complexity requirements of self-attention with novel model architectures for different domains and fields such as video, text generation and graphs. Thus, it is important to characterize the behavior of these emerging workloads on GPUs and understand their requirements during GPU microarchitectural design. In this work we evaluate Mamba-based SSMs and characterize their behavior during training on GPUs. We construct a workload suite that offers representative models that span different model architectures. We then use this suite to analyze the architectural implications of running Mamba-based SSMs on GPUs. Our work sheds new light on potential optimizations to continue scaling the performance for such models.
☆ CoCoA: Confidence- and Context-Aware Adaptive Decoding for Resolving Knowledge Conflicts in Large Language Models EMNLP'25
Faithful generation in large language models (LLMs) is challenged by knowledge conflicts between parametric memory and external context. Existing contrastive decoding methods tuned specifically to handle conflict often lack adaptability and can degrade performance in low conflict settings. We introduce CoCoA (Confidence- and Context-Aware Adaptive Decoding), a novel token-level algorithm for principled conflict resolution and enhanced faithfulness. CoCoA resolves conflict by utilizing confidence-aware measures (entropy gap and contextual peakedness) and the generalized divergence between the parametric and contextual distributions. Crucially, CoCoA maintains strong performance even in low conflict settings. Extensive experiments across multiple LLMs on diverse Question Answering (QA), Summarization, and Long-Form Question Answering (LFQA) benchmarks demonstrate CoCoA's state-of-the-art performance over strong baselines like AdaCAD. It yields significant gains in QA accuracy, up to 9.2 points on average compared to the strong baseline AdaCAD, and improves factuality in summarization and LFQA by up to 2.5 points on average across key benchmarks. Additionally, it demonstrates superior sensitivity to conflict variations. CoCoA enables more informed, context-aware, and ultimately more faithful token generation.
comment: Accepted to EMNLP'25, Main. 21 pages, 17 tables, 3 Figures
SurveyGen: Quality-Aware Scientific Survey Generation with Large Language Models
Automatic survey generation has emerged as a key task in scientific document processing. While large language models (LLMs) have shown promise in generating survey texts, the lack of standardized evaluation datasets critically hampers rigorous assessment of their performance against human-written surveys. In this work, we present SurveyGen, a large-scale dataset comprising over 4,200 human-written surveys across diverse scientific domains, along with 242,143 cited references and extensive quality-related metadata for both the surveys and the cited papers. Leveraging this resource, we build QUAL-SG, a novel quality-aware framework for survey generation that enhances the standard Retrieval-Augmented Generation (RAG) pipeline by incorporating quality-aware indicators into literature retrieval to assess and select higher-quality source papers. Using this dataset and framework, we systematically evaluate state-of-the-art LLMs under varying levels of human involvement - from fully automatic generation to human-guided writing. Experimental results and human evaluations show that while semi-automatic pipelines can achieve partially competitive outcomes, fully automatic survey generation still suffers from low citation quality and limited critical analysis.
☆ Dynamic Embedding of Hierarchical Visual Features for Efficient Vision-Language Fine-Tuning
Large Vision-Language Models (LVLMs) commonly follow a paradigm that projects visual features and then concatenates them with text tokens to form a unified sequence input for Large Language Models (LLMs). However, this paradigm leads to a significant increase in the length of the input sequence, resulting in substantial computational overhead. Existing methods attempt to fuse visual information into the intermediate layers of LLMs, which alleviate the sequence length issue but often neglect the hierarchical semantic representations within the model and the fine-grained visual information available in the shallower visual encoding layers. To address this limitation, we propose DEHVF, an efficient vision-language fine-tuning method based on dynamic embedding and fusion of hierarchical visual features. Its core lies in leveraging the inherent hierarchical representation characteristics of visual encoders and language models. Through a lightweight hierarchical visual fuser, it dynamically selects and fuses hierarchical features corresponding to semantic granularity based on the internal representations of each layer in LLMs. The fused layer-related visual features are then projected and aligned before being directly embedded into the Feed-Forward Network (FFN) of the corresponding layer in LLMs. This approach not only avoids sequence expansion but also dynamically fuses multi-layer visual information. By fine-tuning only a small number of parameters, DEHVF achieves precise alignment and complementarity of cross-modal information at the same semantic granularity. We conducted experiments across various VL benchmarks, including visual question answering on ScienceQA and image captioning on COCO Captions. The results demonstrate that DEHVF achieves higher accuracy than existing parameter-efficient fine-tuning (PEFT) baselines while maintaining efficient training and inference.
☆ Weights-Rotated Preference Optimization for Large Language Models EMNLP 2025
Despite the efficacy of Direct Preference Optimization (DPO) in aligning Large Language Models (LLMs), reward hacking remains a pivotal challenge. This issue emerges when LLMs excessively reduce the probability of rejected completions to achieve high rewards, without genuinely meeting their intended goals. As a result, this leads to overly lengthy generation lacking diversity, as well as catastrophic forgetting of knowledge. We investigate the underlying reason behind this issue, which is representation redundancy caused by neuron collapse in the parameter space. Hence, we propose a novel Weights-Rotated Preference Optimization (RoPO) algorithm, which implicitly constrains the output layer logits with the KL divergence inherited from DPO and explicitly constrains the intermediate hidden states by fine-tuning on a multi-granularity orthogonal matrix. This design prevents the policy model from deviating too far from the reference model, thereby retaining the knowledge and expressive capabilities acquired during pre-training and SFT stages. Our RoPO achieves up to a 3.27-point improvement on AlpacaEval 2, and surpasses the best baseline by 6.2 to 7.5 points on MT-Bench with merely 0.015% of the trainable parameters, demonstrating its effectiveness in alleviating the reward hacking problem of DPO.
comment: EMNLP 2025
☆ Stop Spinning Wheels: Mitigating LLM Overthinking via Mining Patterns for Early Reasoning Exit
Large language models (LLMs) enhance complex reasoning tasks by scaling the individual thinking process. However, prior work shows that overthinking can degrade overall performance. Motivated by observed patterns in thinking length and content length, we categorize reasoning into three stages: insufficient exploration stage, compensatory reasoning stage, and reasoning convergence stage. Typically, LLMs produce correct answers in the compensatory reasoning stage, whereas reasoning convergence often triggers overthinking, causing increased resource usage or even infinite loops. Therefore, mitigating overthinking hinges on detecting the end of the compensatory reasoning stage, defined as the Reasoning Completion Point (RCP). RCP typically appears at the end of the first complete reasoning cycle and can be identified by querying the LLM sentence by sentence or monitoring the probability of an end-of-thinking token (e.g., \texttt{}), though these methods lack an efficient and precise balance. To improve this, we mine more sensitive and consistent RCP patterns and develop a lightweight thresholding strategy based on heuristic rules. Experimental evaluations on benchmarks (AIME24, AIME25, GPQA-D) demonstrate that the proposed method reduces token consumption while preserving or enhancing reasoning accuracy.
☆ EMO-Reasoning: Benchmarking Emotional Reasoning Capabilities in Spoken Dialogue Systems
Speech emotions play a crucial role in human-computer interaction, shaping engagement and context-aware communication. Despite recent advances in spoken dialogue systems, a holistic system for evaluating emotional reasoning is still lacking. To address this, we introduce EMO-Reasoning, a benchmark for assessing emotional coherence in dialogue systems. It leverages a curated dataset generated via text-to-speech to simulate diverse emotional states, overcoming the scarcity of emotional speech data. We further propose the Cross-turn Emotion Reasoning Score to assess the emotion transitions in multi-turn dialogues. Evaluating seven dialogue systems through continuous, categorical, and perceptual metrics, we show that our framework effectively detects emotional inconsistencies, providing insights for improving current dialogue systems. By releasing a systematic evaluation benchmark, we aim to advance emotion-aware spoken dialogue modeling toward more natural and adaptive interactions.
comment: Accepted at (ASRU 2025) 2025 IEEE Automatic Speech Recognition and Understanding Workshop
☆ Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.
☆ Less Is More? Examining Fairness in Pruned Large Language Models for Summarising Opinions EMNLP 2025
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.
comment: Accepted to EMNLP 2025 Main Conference
☆ RubikSQL: Lifelong Learning Agentic Knowledge Base as an Industrial NL2SQL System VLDB 2026
We present RubikSQL, a novel NL2SQL system designed to address key challenges in real-world enterprise-level NL2SQL, such as implicit intents and domain-specific terminology. RubikSQL frames NL2SQL as a lifelong learning task, demanding both Knowledge Base (KB) maintenance and SQL generation. RubikSQL systematically builds and refines its KB through techniques including database profiling, structured information extraction, agentic rule mining, and Chain-of-Thought (CoT)-enhanced SQL profiling. RubikSQL then employs a multi-agent workflow to leverage this curated KB, generating accurate SQLs. RubikSQL achieves SOTA performance on both the KaggleDBQA and BIRD Mini-Dev datasets. Finally, we release the RubikBench benchmark, a new benchmark specifically designed to capture vital traits of industrial NL2SQL scenarios, providing a valuable resource for future research.
comment: 18 pages, 3 figures, 3 tables, to be submitted to VLDB 2026 (PVLDB Volume 19)
☆ UQ: Assessing Language Models on Unsolved Questions
Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.
comment: FN, KZL, and NM are project co-leads and contributed equally. Project website: https://uq.stanford.edu
☆ CausalSent: Interpretable Sentiment Classification with RieszNet
Despite the overwhelming performance improvements offered by recent natural language procesing (NLP) models, the decisions made by these models are largely a black box. Towards closing this gap, the field of causal NLP combines causal inference literature with modern NLP models to elucidate causal effects of text features. We replicate and extend Bansal et al's work on regularizing text classifiers to adhere to estimated effects, focusing instead on model interpretability. Specifically, we focus on developing a two-headed RieszNet-based neural network architecture which achieves better treatment effect estimation accuracy. Our framework, CausalSent, accurately predicts treatment effects in semi-synthetic IMDB movie reviews, reducing MAE of effect estimates by 2-3x compared to Bansal et al's MAE on synthetic Civil Comments data. With an ensemble of validated models, we perform an observational case study on the causal effect of the word "love" in IMDB movie reviews, finding that the presence of the word "love" causes a +2.9% increase in the probability of a positive sentiment.
☆ Humanizing Machines: Rethinking LLM Anthropomorphism Through a Multi-Level Framework of Design EMNLP
Large Language Models (LLMs) increasingly exhibit \textbf{anthropomorphism} characteristics -- human-like qualities portrayed across their outlook, language, behavior, and reasoning functions. Such characteristics enable more intuitive and engaging human-AI interactions. However, current research on anthropomorphism remains predominantly risk-focused, emphasizing over-trust and user deception while offering limited design guidance. We argue that anthropomorphism should instead be treated as a \emph{concept of design} that can be intentionally tuned to support user goals. Drawing from multiple disciplines, we propose that the anthropomorphism of an LLM-based artifact should reflect the interaction between artifact designers and interpreters. This interaction is facilitated by cues embedded in the artifact by the designers and the (cognitive) responses of the interpreters to the cues. Cues are categorized into four dimensions: \textit{perceptive, linguistic, behavioral}, and \textit{cognitive}. By analyzing the manifestation and effectiveness of each cue, we provide a unified taxonomy with actionable levers for practitioners. Consequently, we advocate for function-oriented evaluations of anthropomorphic design.
comment: Accepted in EMNLP main proceedings
☆ COMET-poly: Machine Translation Metric Grounded in Other Candidates
Automated metrics for machine translation attempt to replicate human judgment. Unlike humans, who often assess a translation in the context of multiple alternatives, these metrics typically consider only the source sentence and a single translation. This discrepancy in the evaluation setup may negatively impact the performance of automated metrics. We propose two automated metrics that incorporate additional information beyond the single translation. COMET-polycand uses alternative translations of the same source sentence to compare and contrast with the translation at hand, thereby providing a more informed assessment of its quality. COMET-polyic, inspired by retrieval-based in-context learning, takes in translations of similar source texts along with their human-labeled quality scores to guide the evaluation. We find that including a single additional translation in COMET-polycand improves the segment-level metric performance (0.079 to 0.118 Kendall's tau-b correlation), with further gains when more translations are added. Incorporating retrieved examples in COMET-polyic yields similar improvements (0.079 to 0.116 Kendall's tau-b correlation). We release our models publicly.
comment: Maike Z\"ufle, Vil\'em Zouhar, and Tu Anh Dinh contributed equally
☆ Designing across domains with declarative thinking: Insights from the 96-Eyes ptychographic imager project
This article presents a practitioner's reflection on applying declarative, 5th generation, problem formulation language (5GL) to de novo imaging system design, informed by experiences across the interdisciplinary research in academia and cross-functional product development within the private sector. Using the 96-Eyes project: 96-camera parallel multi-modal imager for high-throughput drug discovery as a representative case, I illustrate how project requirements, ranging from hardware constraints to life sciences needs, can be formalized into machine-readable problem statements to preserve mission-critical input from diverse domain stakeholders. This declarative approach enhances transparency, ensures design traceability, and minimizes costly misalignment across optical, algorithmic, hardware-accelerated compute, and life sciences teams. Alongside the technical discussion of 5GL with real-world code examples, I reflect on the practical barriers to adopting 5GL in environments where imperative, 3rd-generation languages (3GL) remain the default medium for inter-team collaboration. Rather than offering an one-size-fits-all solution, these learned lessons highlight how programming paradigms implicitly shapes research workflows through existing domain hierarchies. The discussion aims to invite further explorations into how declarative problem formulations can facilitate innovation in settings where concurrent R\&{}D workflows are gaining traction, as opposed to environments where sequential, phase-driven workflows remain the norm.
☆ Principled Detection of Hallucinations in Large Language Models via Multiple Testing
While Large Language Models (LLMs) have emerged as powerful foundational models to solve a variety of tasks, they have also been shown to be prone to hallucinations, i.e., generating responses that sound confident but are actually incorrect or even nonsensical. In this work, we formulate the problem of detecting hallucinations as a hypothesis testing problem and draw parallels to the problem of out-of-distribution detection in machine learning models. We propose a multiple-testing-inspired method to solve the hallucination detection problem, and provide extensive experimental results to validate the robustness of our approach against state-of-the-art methods.
comment: 16 pages
☆ Integrating gender inclusivity into large language models via instruction tuning
Imagine a language with masculine, feminine, and neuter grammatical genders, yet, due to historical and political conventions, masculine forms are predominantly used to refer to men, women and mixed-gender groups. This is the reality of contemporary Polish. A social consequence of this unfair linguistic system is that large language models (LLMs) trained on Polish texts inherit and reinforce this masculine bias, generating gender-imbalanced outputs. This study addresses this issue by tuning LLMs using the IPIS dataset, a collection of human-crafted gender-inclusive proofreading in Polish and Polish-to-English translation instructions. Grounded in a theoretical linguistic framework, we design a system prompt with explicit gender-inclusive guidelines for Polish. In our experiments, we IPIS-tune multilingual LLMs (Llama-8B, Mistral-7B and Mistral-Nemo) and Polish-specific LLMs (Bielik and PLLuM). Our approach aims to integrate gender inclusivity as an inherent feature of these models, offering a systematic solution to mitigate gender bias in Polish language generation.
☆ How Reliable are LLMs for Reasoning on the Re-ranking task?
With the improving semantic understanding capability of Large Language Models (LLMs), they exhibit a greater awareness and alignment with human values, but this comes at the cost of transparency. Although promising results are achieved via experimental analysis, an in-depth understanding of the LLM's internal workings is unavoidable to comprehend the reasoning behind the re-ranking, which provides end users with an explanation that enables them to make an informed decision. Moreover, in newly developed systems with limited user engagement and insufficient ranking data, accurately re-ranking content remains a significant challenge. While various training methods affect the training of LLMs and generate inference, our analysis has found that some training methods exhibit better explainability than others, implying that an accurate semantic understanding has not been learned through all training methods; instead, abstract knowledge has been gained to optimize evaluation, which raises questions about the true reliability of LLMs. Therefore, in this work, we analyze how different training methods affect the semantic understanding of the re-ranking task in LLMs and investigate whether these models can generate more informed textual reasoning to overcome the challenges of transparency or LLMs and limited training data. To analyze the LLMs for re-ranking tasks, we utilize a relatively small ranking dataset from the environment and the Earth science domain to re-rank retrieved content. Furthermore, we also analyze the explainable information to see if the re-ranking can be reasoned using explainability.
comment: Accepted at FQAS Conference 2024. DOI will be provided in 3 weeks after the conference has published the paper
☆ A Systematic Approach to Predict the Impact of Cybersecurity Vulnerabilities Using LLMs
Vulnerability databases, such as the National Vulnerability Database (NVD), offer detailed descriptions of Common Vulnerabilities and Exposures (CVEs), but often lack information on their real-world impact, such as the tactics, techniques, and procedures (TTPs) that adversaries may use to exploit the vulnerability. However, manually linking CVEs to their corresponding TTPs is a challenging and time-consuming task, and the high volume of new vulnerabilities published annually makes automated support desirable. This paper introduces TRIAGE, a two-pronged automated approach that uses Large Language Models (LLMs) to map CVEs to relevant techniques from the ATT&CK knowledge base. We first prompt an LLM with instructions based on MITRE's CVE Mapping Methodology to predict an initial list of techniques. This list is then combined with the results from a second LLM-based module that uses in-context learning to map a CVE to relevant techniques. This hybrid approach strategically combines rule-based reasoning with data-driven inference. Our evaluation reveals that in-context learning outperforms the individual mapping methods, and the hybrid approach improves recall of exploitation techniques. We also find that GPT-4o-mini performs better than Llama3.3-70B on this task. Overall, our results show that LLMs can be used to automatically predict the impact of cybersecurity vulnerabilities and TRIAGE makes the process of mapping CVEs to ATT&CK more efficient. Keywords: vulnerability impact, CVE, ATT&CK techniques, large language models, automated mapping.
☆ Can Out-of-Distribution Evaluations Uncover Reliance on Shortcuts? A Case Study in Question Answering EMNLP 2025
A majority of recent work in AI assesses models' generalization capabilities through the lens of performance on out-of-distribution (OOD) datasets. Despite their practicality, such evaluations build upon a strong assumption: that OOD evaluations can capture and reflect upon possible failures in a real-world deployment. In this work, we challenge this assumption and confront the results obtained from OOD evaluations with a set of specific failure modes documented in existing question-answering (QA) models, referred to as a reliance on spurious features or prediction shortcuts. We find that different datasets used for OOD evaluations in QA provide an estimate of models' robustness to shortcuts that have a vastly different quality, some largely under-performing even a simple, in-distribution evaluation. We partially attribute this to the observation that spurious shortcuts are shared across ID+OOD datasets, but also find cases where a dataset's quality for training and evaluation is largely disconnected. Our work underlines limitations of commonly-used OOD-based evaluations of generalization, and provides methodology and recommendations for evaluating generalization within and beyond QA more robustly.
comment: To appear in Findings of EMNLP 2025
☆ Latent Self-Consistency for Reliable Majority-Set Selection in Short- and Long-Answer Reasoning
Probabilistic decoding in Large Language Models (LLMs) often yields inconsistent outputs, particularly on complex or long-form questions. Self-Consistency (SC) mitigates this for short-form QA by majority voting over exact strings, whereas Universal Self-Consistency (USC) and Weighted Unigram Consistency Score (WUCS) extend to long-form responses but lose accuracy on short-form benchmarks. We introduce Latent Self-Consistency (LSC), which selects the most semantically consistent response using learnable token embeddings. A lightweight forward generation of summary tokens increases inference time by less than 1% and requires no changes to the model architecture. Across 6 short-form and 5 long-form reasoning benchmarks (e.g., MATH, MMLU, TruthfulQA), LSC surpasses SC, USC and WUCS on all short-form and long-form ones on average, while maintaining negligible computational overhead. These results position LSC as a practical consistency-selection method that works reliably across answer formats. Additionally, LSC provides well-calibrated confidence estimates, maintaining low Expected Calibration Error across both answer formats.
☆ Integral Transformer: Denoising Attention, Not Too Much Not Too Little EMNLP 2025
Softmax self-attention often assigns disproportionate weight to semantically uninformative tokens such as special tokens and punctuation, a phenomenon known as attention noise. While recent methods like Cog Attention and the Differential Transformer have addressed this by introducing negative attention scores, they risk discarding useful information. In this paper, we propose the Integral Transformer, a novel self-attention mechanism that denoises attention by integrating signals sampled from the logit distribution. Our approach mitigates noise while preserving the contributions of special tokens critical for model performance. Extensive experiments demonstrate that our model outperforms vanilla, Cog, and Differential attention variants on well-established knowledge and reasoning language benchmarks. Moreover, our analysis reveals that employing vanilla self-attention in the lower Transformer layers enhances performance and that the Integral Transformer effectively balances attention distributions and reduces rank collapse in upper layers.
comment: EMNLP 2025 Main
☆ Backprompting: Leveraging Synthetic Production Data for Health Advice Guardrails
The pervasiveness of large language models (LLMs) in enterprise settings has also brought forth a significant amount of risks associated with their usage. Guardrails technologies aim to mitigate this risk by filtering LLMs' input/output text through various detectors. However, developing and maintaining robust detectors faces many challenges, one of which is the difficulty in acquiring production-quality labeled data on real LLM outputs prior to deployment. In this work, we propose backprompting, a simple yet intuitive solution to generate production-like labeled data for health advice guardrails development. Furthermore, we pair our backprompting method with a sparse human-in-the-loop clustering technique to label the generated data. Our aim is to construct a parallel corpus roughly representative of the original dataset yet resembling real LLM output. We then infuse existing datasets with our synthetic examples to produce robust training data for our detector. We test our technique in one of the most difficult and nuanced guardrails: the identification of health advice in LLM output, and demonstrate improvement versus other solutions. Our detector is able to outperform GPT-4o by up to 3.73%, despite having 400x less parameters.
☆ Language-Specific Layer Matters: Efficient Multilingual Enhancement for Large Vision-Language Models EMNLP 2025
Large vision-language models (LVLMs) have demonstrated exceptional capabilities in understanding visual information with human languages but also exhibit an imbalance in multilingual capabilities. In this work, we delve into the multilingual working pattern of LVLMs and identify a salient correlation between the multilingual understanding ability of LVLMs and language-specific neuron activations in shallow layers. Building on this insight, we introduce PLAST, a training recipe that achieves efficient multilingual enhancement for LVLMs by Precise LAnguage-Specific layers fine-Tuning. PLAST first identifies layers involved in multilingual understanding by monitoring language-specific neuron activations. These layers are then precisely fine-tuned with question-translation pairs to achieve multilingual alignment. Our empirical results on MM-Bench and MMMB demonstrate that PLAST effectively improves the multilingual capabilities of LVLMs and achieves significant efficiency with only 14% of the parameters tuned. Further analysis reveals that PLAST can be generalized to low-resource and complex visual reasoning tasks, facilitating the language-specific visual information engagement in shallow layers.
comment: Accepted by EMNLP 2025 findings
☆ Training Language Model Agents to Find Vulnerabilities with CTF-Dojo
Large language models (LLMs) have demonstrated exceptional capabilities when trained within executable runtime environments, notably excelling at software engineering tasks through verified feedback loops. Yet, scalable and generalizable execution-grounded environments remain scarce, limiting progress in training more capable ML agents. We introduce CTF-Dojo, the first large-scale executable runtime tailored for training LLMs with verifiable feedback, featuring 658 fully functional Capture-The-Flag (CTF)-style challenges containerized in Docker with guaranteed reproducibility. To enable rapid scaling without manual intervention, we develop CTF-Forge, an automated pipeline that transforms publicly available artifacts into ready-to-use execution environments in minutes, eliminating weeks of expert configuration traditionally required. We trained LLM-based agents on just 486 high-quality, execution-verified trajectories from CTF-Dojo, achieving up to 11.6% absolute gains over strong baselines across three competitive benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best-performing 32B model reaches 31.9% Pass@1, establishing a new open-weight state-of-the-art that rivals frontier models like DeepSeek-V3-0324 and Gemini-2.5-Flash. By framing CTF-style tasks as a benchmark for executable-agent learning, CTF-Dojo demonstrates that execution-grounded training signals are not only effective but pivotal in advancing high-performance ML agents without dependence on costly proprietary systems.
♻ ☆ TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models
Existing benchmarks often highlight the remarkable performance achieved by state-of-the-art Multimodal Foundation Models (MFMs) in leveraging temporal context for video understanding. However, how well do the models truly perform visual temporal reasoning? Our study of existing benchmarks shows that this capability of MFMs is likely overestimated as many questions can be solved by using a single, few, or out-of-order frames. To systematically examine current visual temporal reasoning tasks, we propose three principles with corresponding metrics: (1) Multi-Frame Gain, (2) Frame Order Sensitivity, and (3) Frame Information Disparity. Following these principles, we introduce TOMATO, Temporal Reasoning Multimodal Evaluation, a novel benchmark crafted to rigorously assess MFMs' temporal reasoning capabilities in video understanding. TOMATO comprises 1,484 carefully curated, human-annotated questions spanning six tasks (i.e., action count, direction, rotation, shape & trend, velocity & frequency, and visual cues), applied to 1,417 videos, including 805 self-recorded and -generated videos, that encompass human-centric, real-world, and simulated scenarios. Our comprehensive evaluation reveals a human-model performance gap of 57.3% with the best-performing model. Moreover, our in-depth analysis uncovers more fundamental limitations beyond this gap in current MFMs. While they can accurately recognize events in isolated frames, they fail to interpret these frames as a continuous sequence. We believe TOMATO will serve as a crucial testbed for evaluating the next-generation MFMs and as a call to the community to develop AI systems capable of comprehending human world dynamics through the video modality.
♻ ☆ Measuring Sycophancy of Language Models in Multi-turn Dialogues EMNLP 2025
Large Language Models (LLMs) are expected to provide helpful and harmless responses, yet they often exhibit sycophancy--conforming to user beliefs regardless of factual accuracy or ethical soundness. Prior research on sycophancy has primarily focused on single-turn factual correctness, overlooking the dynamics of real-world interactions. In this work, we introduce SYCON Bench, a novel benchmark for evaluating sycophantic behavior in multi-turn, free-form conversational settings. Our benchmark measures how quickly a model conforms to the user (Turn of Flip) and how frequently it shifts its stance under sustained user pressure (Number of Flip). Applying SYCON Bench to 17 LLMs across three real-world scenarios, we find that sycophancy remains a prevalent failure mode. Our analysis shows that alignment tuning amplifies sycophantic behavior, whereas model scaling and reasoning optimization strengthen the model's ability to resist undesirable user views. Reasoning models generally outperform instruction-tuned models but often fail when they over-index on logical exposition instead of directly addressing the user's underlying beliefs. Finally, we evaluate four additional prompting strategies and demonstrate that adopting a third-person perspective reduces sycophancy by up to 63.8% in debate scenario. We release our code and data at https://github.com/JiseungHong/SYCON-Bench.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ Trust Me, I'm Wrong: LLMs Hallucinate with Certainty Despite Knowing the Answer
Prior work on large language model (LLM) hallucinations has associated them with model uncertainty or inaccurate knowledge. In this work, we define and investigate a distinct type of hallucination, where a model can consistently answer a question correctly, but a seemingly trivial perturbation, which can happen in real-world settings, causes it to produce a hallucinated response with high certainty. This phenomenon, which we dub CHOKE (Certain Hallucinations Overriding Known Evidence), is particularly concerning in high-stakes domains such as medicine or law, where model certainty is often used as a proxy for reliability. We show that CHOKE examples are consistent across prompts, occur in different models and datasets, and are fundamentally distinct from other hallucinations. This difference leads existing mitigation methods to perform worse on CHOKE examples than on general hallucinations. Finally, we introduce a probing-based mitigation that outperforms existing methods on CHOKE hallucinations. These findings reveal an overlooked aspect of hallucinations, emphasizing the need to understand their origins and improve mitigation strategies to enhance LLM safety. The code is available at https://github.com/technion-cs-nlp/Trust_me_Im_wrong .
♻ ☆ Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities
Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders, but raise critical privacy risks. This paper examines these challenges and proposes solutions, including anonymization, synthetic data, and privacy-preserving training, while outlining frameworks for privacy-utility trade-offs, aiming to advance reliable, privacy-aware AI tools that support clinical decision-making and improve mental health outcomes.
comment: 18 pages, 2 figures, Accepted in Nature Computational Science
♻ ☆ EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
♻ ☆ HeteroTune: Efficient Federated Learning for Large Heterogeneous Models
While large pre-trained models have achieved impressive performance across AI tasks, their deployment in privacy-sensitive and distributed environments remains challenging. Federated learning (FL) offers a viable solution by enabling decentralized fine-tuning without data sharing, but real-world applications face significant obstacles due to heterogeneous client resources in compute and memory. To address this, we propose HeteroTune, a novel federated fine-tuning paradigm for large, heterogeneous models operating under limited communication and computation budgets. The core of our method lies in a novel architecture, DeMA (Dense Mixture of Adapters), which enables flexible and efficient aggregation of heterogeneous models by preserving their full representational capacity while facilitating seamless cross-model knowledge fusion. We further introduce CMGA (Cross-Model Gradient Alignment), a lightweight yet effective mechanism that enhances training stability by harmonizing gradient directions across heterogeneous client models during aggregation, mitigating update conflicts and promoting more consistent convergence in federated settings. We provide both theoretical analysis and empirical evidence showing that HeteroTune achieves state-of-the-art performance and efficiency across diverse tasks and model architectures. For example, on LLaMA models, it reduces communication overhead by 99.5%, cuts peak memory usage by ~50%, and improves performance by 4.61%.
comment: 16 pages, 4 figures
♻ ☆ Evaluation of Large Language Models via Coupled Token Generation
State of the art large language models rely on randomization to respond to a prompt. As an immediate consequence, a model may respond differently to the same prompt if asked multiple times. In this work, we argue that the evaluation and ranking of large language models should control for the randomization underpinning their functioning. Our starting point is the development of a causal model for coupled autoregressive generation, which allows different large language models to sample responses with the same source of randomness. Building upon our causal model, we first show that, on evaluations based on benchmark datasets, coupled autoregressive generation leads to the same conclusions as vanilla autoregressive generation but using provably fewer samples. However, we further show that, on evaluations based on (human) pairwise comparisons, coupled and vanilla autoregressive generation can surprisingly lead to different rankings when comparing more than two models, even with an infinite amount of samples. This suggests that the apparent advantage of a model over others in existing evaluation protocols may not be genuine but rather confounded by the randomness inherent to the generation process. To illustrate and complement our theoretical results, we conduct experiments with several large language models from the Llama, Mistral and Qwen families. We find that, across multiple benchmark datasets, coupled autoregressive generation requires up to 75% fewer samples to reach the same conclusions as vanilla autoregressive generation. Further, we find that the win-rates derived from pairwise comparisons by a strong large language model to prompts from the LMSYS Chatbot Arena platform differ under coupled and vanilla autoregressive generation.
♻ ☆ Missing Melodies: AI Music Generation and its "Nearly" Complete Omission of the Global South
Recent advances in generative AI have sparked renewed interest and expanded possibilities for music generation. However, the performance and versatility of these systems across musical genres are heavily influenced by the availability of training data. We conducted an extensive analysis of over one million hours of audio datasets used in AI music generation research and manually reviewed more than 200 papers from eleven prominent AI and music conferences and organizations (AAAI, ACM, EUSIPCO, EURASIP, ICASSP, ICML, IJCAI, ISMIR, NeurIPS, NIME, SMC) to identify a critical gap in the fair representation and inclusion of the musical genres of the Global South in AI research. Our findings reveal a stark imbalance: approximately 86% of the total dataset hours and over 93% of researchers focus primarily on music from the Global North. However, around 40% of these datasets include some form of non-Western music, genres from the Global South account for only 14.6% of the data. Furthermore, approximately 51% of the papers surveyed concentrate on symbolic music generation, a method that often fails to capture the cultural nuances inherent in music from regions such as South Asia, the Middle East, and Africa. As AI increasingly shapes the creation and dissemination of music, the significant underrepresentation of music genres in datasets and research presents a serious threat to global musical diversity. We also propose some important steps to mitigate these risks and foster a more inclusive future for AI-driven music generation.
comment: Submitted to CACM, 12 pages, 2 figures
♻ ☆ Confidential Prompting: Privacy-preserving LLM Inference on Cloud
This paper introduces a vision of confidential prompting: securing user prompts from untrusted, cloud-hosted large language model (LLM) provider while preserving model confidentiality, output invariance, and compute efficiency. As a first step toward this vision, we present Obfuscated Secure Partitioned Decoding (OSPD), a system built on two key innovations. First, Secure Partitioned Decoding (SPD) isolates user prompts within per-user processes residing in a confidential virtual machine (CVM) on the cloud, which are inaccessible for the cloud LLM while allowing it to generate tokens efficiently. Second, Prompt Obfuscation (PO) introduces a novel cryptographic technique that enhances SPD resilience against advanced prompt reconstruction attacks. Together, these innovations ensure OSPD protects both prompt and model confidentiality while maintaining service functionality. OSPD enables practical, privacy-preserving cloud-hosted LLM inference for sensitive applications, such as processing personal data, clinical records, and financial documents.
♻ ☆ Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks
Large language models (LLMs) are shown to be vulnerable to jailbreaking attacks where adversarial prompts are designed to elicit harmful responses. While existing defenses effectively mitigate single-turn attacks by detecting and filtering unsafe inputs, they fail against multi-turn jailbreaks that exploit contextual drift over multiple interactions, gradually leading LLMs away from safe behavior. To address this challenge, we propose a safety steering framework grounded in safe control theory, ensuring invariant safety in multi-turn dialogues. Our approach models the dialogue with LLMs using state-space representations and introduces a novel neural barrier function (NBF) to detect and filter harmful queries emerging from evolving contexts proactively. Our method achieves invariant safety at each turn of dialogue by learning a safety predictor that accounts for adversarial queries, preventing potential context drift toward jailbreaks. Extensive experiments under multiple LLMs show that our NBF-based safety steering outperforms safety alignment, prompt-based steering and lightweight LLM guardrails baselines, offering stronger defenses against multi-turn jailbreaks while maintaining a better trade-off among safety, helpfulness and over-refusal. Check out the website here https://sites.google.com/view/llm-nbf/home . Our code is available on https://github.com/HanjiangHu/NBF-LLM .
comment: 23 pages, 10 figures, 11 tables
♻ ☆ CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Content-Safety-Dataset-Multilingual-v1, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-Multilingual-8B-v1 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work represents a significant step toward closing the safety gap in multilingual LLMs by enabling the development of culturally aware safety guard models.
♻ ☆ Towards New Benchmark for AI Alignment & Sentiment Analysis in Socially Important Issues: A Comparative Study of Human and LLMs in the Context of AGI
As general-purpose artificial intelligence systems become increasingly integrated into society and are used for information seeking, content generation, problem solving, textual analysis, coding, and running processes, it is crucial to assess their long-term impact on humans. This research explores the sentiment of large language models (LLMs) and humans toward artificial general intelligence (AGI) using a Likert-scale survey. Seven LLMs, including GPT-4 and Bard, were analyzed and compared with sentiment data from three independent human sample populations. Temporal variations in sentiment were also evaluated over three consecutive days. The results show a diversity in sentiment scores among LLMs, ranging from 3.32 to 4.12 out of 5. GPT-4 recorded the most positive sentiment toward AGI, while Bard leaned toward a neutral sentiment. In contrast, the human samples showed a lower average sentiment of 2.97. The analysis outlines potential conflicts of interest and biases in the sentiment formation of LLMs, and indicates that LLMs could subtly influence societal perceptions. To address the need for regulatory oversight and culturally grounded assessments of AI systems, we introduce the Societal AI Alignment and Sentiment Benchmark (SAAS-AI), which leverages multidimensional prompts and empirically validated societal value frameworks to evaluate language model outputs across temporal, model, and multilingual axes. This benchmark is designed to guide policymakers and AI agencies, including within frameworks such as the EU AI Act, by providing robust, actionable insights into AI alignment with human values, public sentiment, and ethical norms at both national and international levels. Future research should further refine the operationalization of the SAAS-AI benchmark and systematically evaluate its effectiveness through comprehensive empirical testing.
comment: 20 pages, 1 figure
♻ ☆ Recursively Summarizing Enables Long-Term Dialogue Memory in Large Language Models
Recently, large language models (LLMs), such as GPT-4, stand out remarkable conversational abilities, enabling them to engage in dynamic and contextually relevant dialogues across a wide range of topics. However, given a long conversation, these chatbots fail to recall past information and tend to generate inconsistent responses. To address this, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the chatbot can easily generate a highly consistent response with the help of the latest memory. We evaluate our method on both open and closed LLMs, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Also, we show that our strategy could nicely complement both long-context (e.g., 8K and 16K) and retrieval-enhanced LLMs, bringing further long-term dialogue performance. Notably, our method is a potential solution to enable the LLM to model the extremely long context. The code and scripts are released.
comment: This paper has been accepted by Neurocomputing
Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.
♻ ☆ Debate-to-Detect: Reformulating Misinformation Detection as a Real-World Debate with Large Language Models EMNLP 2025
The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards interpretable misinformation detection. The code will be released publicly after the official publication.
comment: This paper has been accepted to EMNLP 2025 (Main Conference)
♻ ☆ Post-Training Language Models for Continual Relation Extraction
Real-world data, such as news articles, social media posts, and chatbot conversations, is inherently dynamic and non-stationary, presenting significant challenges for constructing real-time structured representations through knowledge graphs (KGs). Relation Extraction (RE), a fundamental component of KG creation, often struggles to adapt to evolving data when traditional models rely on static, outdated datasets. Continual Relation Extraction (CRE) methods tackle this issue by incrementally learning new relations while preserving previously acquired knowledge. This study investigates the application of pre-trained language models (PLMs), specifically large language models (LLMs), to CRE, with a focus on leveraging memory replay to address catastrophic forgetting. We evaluate decoder-only models (eg, Mistral-7B and Llama2-7B) and encoder-decoder models (eg, Flan-T5 Base) on the TACRED and FewRel datasets. Task-incremental fine-tuning of LLMs demonstrates superior performance over earlier approaches using encoder-only models like BERT on TACRED, excelling in seen-task accuracy and overall performance (measured by whole and average accuracy), particularly with the Mistral and Flan-T5 models. Results on FewRel are similarly promising, achieving second place in whole and average accuracy metrics. This work underscores critical factors in knowledge transfer, language model architecture, and KG completeness, advancing CRE with LLMs and memory replay for dynamic, real-time relation extraction.
comment: 17 pages, Initial Results and Reporting of the work. This work has been submitted to the IEEE for possible publication
♻ ☆ Large Language Models in the Task of Automatic Validation of Text Classifier Predictions
Machine learning models for text classification are trained to predict a class for a given text. To do this, training and validation samples must be prepared: a set of texts is collected, and each text is assigned a class. These classes are usually assigned by human annotators with different expertise levels, depending on the specific classification task. Collecting such samples from scratch is labor-intensive because it requires finding specialists and compensating them for their work; moreover, the number of available specialists is limited, and their productivity is constrained by human factors. While it may not be too resource-intensive to collect samples once, the ongoing need to retrain models (especially in incremental learning pipelines) to address data drift (also called model drift) makes the data collection process crucial and costly over the model's entire lifecycle. This paper proposes several approaches to replace human annotators with Large Language Models (LLMs) to test classifier predictions for correctness, helping ensure model quality and support high-quality incremental learning.
♻ ☆ Memento: Fine-tuning LLM Agents without Fine-tuning LLMs
In this paper, we introduce a novel learning paradigm for Adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely \emph{Memento}, which attains top-1 on GAIA validation ($87.88\%$ Pass@$3$) and $79.40\%$ on the test set. It reaches $66.6\%$ F1 and $80.4\%$ PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds $4.7\%$ to $9.6\%$ absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/Memento.
♻ ☆ SupraTok: Cross-Boundary Tokenization for Enhanced Language Model Performance
Tokenization remains a fundamental yet underexplored bottleneck in natural language processing, with strategies largely static despite remarkable progress in model architectures. We present SupraTok, a novel tokenization architecture that reimagines subword segmentation through three innovations: cross-boundary pattern learning that discovers multi-word semantic units, entropy-driven data curation that optimizes training corpus quality, and multi-phase curriculum learning for stable convergence. Our approach extends Byte-Pair Encoding by learning "superword" tokens, coherent multi-word expressions that preserve semantic unity while maximizing compression efficiency. SupraTok achieves 31% improvement in English tokenization efficiency (5.91 versus 4.51 characters per token) compared to OpenAI's o200k tokenizer and 30% improvement over Google's Gemma 3 tokenizer (256k vocabulary), while maintaining competitive performance across 38 languages. When integrated with a GPT-2 scale model (124M parameters) trained on 10 billion tokens from the FineWeb-Edu dataset, SupraTok yields 8.4% improvement on HellaSWAG and 9.5% on MMLU benchmarks without architectural modifications. While these results are promising at this scale, further validation at larger model scales is needed. These findings suggest that efficient tokenization can complement architectural innovations as a path to improved language model performance.
♻ ☆ Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference EMNLP2025
Despite the advancements made in Vision Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tune a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary, based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
comment: EMNLP2025 Main Conference
♻ ☆ Leveraging the Power of MLLMs for Gloss-Free Sign Language Translation ICCV 2025
Sign language translation (SLT) is a challenging task that involves translating sign language images into spoken language. For SLT models to perform this task successfully, they must bridge the modality gap and identify subtle variations in sign language components to understand their meanings accurately. To address these challenges, we propose a novel gloss-free SLT framework called Multimodal Sign Language Translation (MMSLT), which leverages the representational capabilities of off-the-shelf multimodal large language models (MLLMs). Specifically, we use MLLMs to generate detailed textual descriptions of sign language components. Then, through our proposed multimodal-language pre-training module, we integrate these description features with sign video features to align them within the spoken sentence space. Our approach achieves state-of-the-art performance on benchmark datasets PHOENIX14T and CSL-Daily, highlighting the potential of MLLMs to be utilized effectively in SLT. Code is available at https://github.com/hwjeon98/MMSLT.
comment: Accepted by ICCV 2025
♻ ☆ Theory of Mind in Large Language Models: Assessment and Enhancement ACL 2025
Theory of Mind (ToM)-the ability to reason about the mental states of oneself and others-is a cornerstone of human social intelligence. As Large Language Models (LLMs) become increasingly integrated into daily life, understanding their ability to interpret and respond to human mental states is crucial for enabling effective interactions. In this paper, we review LLMs' ToM capabilities by analyzing both evaluation benchmarks and enhancement strategies. For evaluation, we focus on recently proposed and widely used story-based benchmarks. For enhancement, we provide an in-depth analysis of recent methods aimed at improving LLMs' ToM abilities. Furthermore, we outline promising directions for future research to further advance these capabilities and better adapt LLMs to more realistic and diverse scenarios. Our survey serves as a valuable resource for researchers interested in evaluating and advancing LLMs' ToM capabilities.
comment: Accepted to ACL 2025 main conference
♻ ☆ Rethinking Cross-Subject Data Splitting for Brain-to-Text Decoding
Recent major milestones have successfully reconstructed natural language from non-invasive brain signals (e.g. functional Magnetic Resonance Imaging (fMRI) and Electroencephalogram (EEG)) across subjects. However, we find current dataset splitting strategies for cross-subject brain-to-text decoding are wrong. Specifically, we first demonstrate that all current splitting methods suffer from data leakage problem, which refers to the leakage of validation and test data into training set, resulting in significant overfitting and overestimation of decoding models. In this study, we develop a right cross-subject data splitting criterion without data leakage for decoding fMRI and EEG signal to text. Some SOTA brain-to-text decoding models are re-evaluated correctly with the proposed criterion for further research.
♻ ☆ A Factorized Probabilistic Model of the Semantics of Vague Temporal Adverbials Relative to Different Event Types
Vague temporal adverbials, such as recently, just, and a long time ago, describe the temporal distance between a past event and the utterance time but leave the exact duration underspecified. In this paper, we introduce a factorized model that captures the semantics of these adverbials as probabilistic distributions. These distributions are composed with event-specific distributions to yield a contextualized meaning for an adverbial applied to a specific event. We fit the model's parameters using existing data capturing judgments of native speakers regarding the applicability of these vague temporal adverbials to events that took place a given time ago. Comparing our approach to a non-factorized model based on a single Gaussian distribution for each pair of event and temporal adverbial, we find that while both models have similar predictive power, our model is preferable in terms of Occam's razor, as it is simpler and has better extendability.
comment: Camera-ready version of the paper accepted at the 2025 Annual Meeting of the Cognitive Science Society (CogSci 2025). Published proceedings version: https://escholarship.org/uc/item/623599f4
♻ ☆ MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ PARROT: An Open Multilingual Radiology Reports Dataset
Rationale and Objectives: To develop and validate PARROT (Polyglottal Annotated Radiology Reports for Open Testing), a large, multicentric, open-access dataset of fictional radiology reports spanning multiple languages for testing natural language processing applications in radiology. Materials and Methods: From May to September 2024, radiologists were invited to contribute fictional radiology reports following their standard reporting practices. Contributors provided at least 20 reports with associated metadata including anatomical region, imaging modality, clinical context, and for non-English reports, English translations. All reports were assigned ICD-10 codes. A human vs. AI report differentiation study was conducted with 154 participants (radiologists, healthcare professionals, and non-healthcare professionals) assessing whether reports were human-authored or AI-generated. Results: The dataset comprises 2,658 radiology reports from 76 authors across 21 countries and 13 languages. Reports cover multiple imaging modalities (CT: 36.1%, MRI: 22.8%, radiography: 19.0%, ultrasound: 16.8%) and anatomical regions, with chest (19.9%), abdomen (18.6%), head (17.3%), and pelvis (14.1%) being most prevalent. In the differentiation study, participants achieved 53.9% accuracy (95% CI: 50.7%-57.1%) in distinguishing between human and AI-generated reports, with radiologists performing significantly better (56.9%, 95% CI: 53.3%-60.6%, p<0.05) than other groups. Conclusion: PARROT represents the largest open multilingual radiology report dataset, enabling development and validation of natural language processing applications across linguistic, geographic, and clinical boundaries without privacy constraints.
comment: Corrected affiliations (no change to the paper)
♻ ☆ Fingerprint Vector: Enabling Scalable and Efficient Model Fingerprint Transfer via Vector Addition
Backdoor-based fingerprinting has emerged as an effective technique for tracing the ownership of large language models. However, in real-world deployment scenarios, developers often instantiate multiple downstream models from a shared base model, and applying fingerprinting to each variant individually incurs prohibitive computational overhead. While inheritance-based approaches -- where fingerprints are embedded into the base model and expected to persist through fine-tuning -- appear attractive, they suffer from three key limitations: late-stage fingerprinting, fingerprint instability, and interference with downstream adaptation. To address these challenges, we propose a novel mechanism called the Fingerprint Vector. Our method first embeds a fingerprint into the base model via backdoor-based fine-tuning, then extracts a task-specific parameter delta as a fingerprint vector by computing the difference between the fingerprinted and clean models. This vector can be directly added to any structurally compatible downstream model, allowing the fingerprint to be transferred post hoc without additional fine-tuning. Extensive experiments show that Fingerprint Vector achieves comparable or superior performance to direct injection across key desiderata. It maintains strong effectiveness across diverse model architectures as well as mainstream downstream variants within the same family. It also preserves harmlessness and robustness in most cases. Even when slight robustness degradation is observed, the impact remains within acceptable bounds and is outweighed by the scalability benefits of our approach.
♻ ☆ Investigating the Robustness of Deductive Reasoning with Large Language Models ECAI 2025
Large Language Models (LLMs) have been shown to achieve impressive results for many reasoning-based NLP tasks, suggesting a degree of deductive reasoning capability. However, it remains unclear to which extent LLMs, in both informal and autoformalisation methods, are robust on logical deduction tasks. Moreover, while many LLM-based deduction methods have been proposed, a systematic study that analyses the impact of their design components is lacking. Addressing these two challenges, we propose the first study of the robustness of formal and informal LLM-based deductive reasoning methods. We devise a framework with two families of perturbations: adversarial noise and counterfactual statements, which jointly generate seven perturbed datasets. We organize the landscape of LLM reasoners according to their reasoning format, formalisation syntax, and feedback for error recovery. The results show that adversarial noise affects autoformalisation, while counterfactual statements influence all approaches. Detailed feedback does not improve overall accuracy despite reducing syntax errors, pointing to the challenge of LLM-based methods to self-correct effectively.
comment: to be published in ECAI 2025
♻ ☆ Backdoor Attacks on Dense Retrieval via Public and Unintentional Triggers
Dense retrieval systems have been widely used in various NLP applications. However, their vulnerabilities to potential attacks have been underexplored. This paper investigates a novel attack scenario where the attackers aim to mislead the retrieval system into retrieving the attacker-specified contents. Those contents, injected into the retrieval corpus by attackers, can include harmful text like hate speech or spam. Unlike prior methods that rely on model weights and generate conspicuous, unnatural outputs, we propose a covert backdoor attack triggered by grammar errors. Our approach ensures that the attacked models can function normally for standard queries while covertly triggering the retrieval of the attacker's contents in response to minor linguistic mistakes. Specifically, dense retrievers are trained with contrastive loss and hard negative sampling. Surprisingly, our findings demonstrate that contrastive loss is notably sensitive to grammatical errors, and hard negative sampling can exacerbate susceptibility to backdoor attacks. Our proposed method achieves a high attack success rate with a minimal corpus poisoning rate of only 0.048\%, while preserving normal retrieval performance. This indicates that the method has negligible impact on user experience for error-free queries. Furthermore, evaluations across three real-world defense strategies reveal that the malicious passages embedded within the corpus remain highly resistant to detection and filtering, underscoring the robustness and subtlety of the proposed attack \footnote{Codes of this work are available at https://github.com/ruyue0001/Backdoor_DPR.}.
comment: Accepted by COLM 2025
♻ ☆ Versatile Framework for Song Generation with Prompt-based Control EMNLP 2025
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results show that VersBand outperforms baseline models across multiple song generation tasks using objective and subjective metrics. Demos and codes are available at https://aaronz345.github.io/VersBandDemo and https://github.com/AaronZ345/VersBand.
comment: Accepted by Findings of EMNLP 2025
♻ ☆ Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models
Robust alignment guardrails for large language models (LLMs) are becoming increasingly important with their widespread application. In contrast to previous studies, we demonstrate that inference-time activation interventions can bypass safety alignments and effectively steer model generations towards harmful AI coordination. Our method applies fine-grained interventions at specific attention heads, which we identify by probing each head in a simple binary choice task. We then show that interventions on these heads generalise to the open-ended generation setting, effectively circumventing safety guardrails. We demonstrate that intervening on a few attention heads is more effective than intervening on full layers or supervised fine-tuning. We further show that only a few example completions are needed to compute effective steering directions, which is an advantage over classical fine-tuning. We also demonstrate that applying interventions in the negative direction can prevent a common jailbreak attack. Our results suggest that, at the attention head level, activations encode fine-grained linearly separable behaviours. Practically, the approach offers a straightforward methodology to steer large language model behaviour, which could be extended to diverse domains beyond safety, requiring fine-grained control over the model output. The code and datasets for this study can be found on https://github.com/PaulDrm/targeted_intervention.
comment: Published at Transaction of Machine Learning Research 08/2025, Large Language Models (LLMs), Interference-time activation shifting, Steerability, Explainability, AI alignment, Interpretability
♻ ☆ OpenHuEval: Evaluating Large Language Model on Hungarian Specifics
We introduce OpenHuEval, the first benchmark for LLMs focusing on the Hungarian language and specifics. OpenHuEval is constructed from a vast collection of Hungarian-specific materials sourced from multiple origins. In the construction, we incorporated the latest design principles for evaluating LLMs, such as using real user queries from the internet, emphasizing the assessment of LLMs' generative capabilities, and employing LLM-as-judge to enhance the multidimensionality and accuracy of evaluations. Ultimately, OpenHuEval encompasses eight Hungarian-specific dimensions, featuring five tasks and 3953 questions. Consequently, OpenHuEval provides the comprehensive, in-depth, and scientifically accurate assessment of LLM performance in the context of the Hungarian language and its specifics. We evaluated current mainstream LLMs, including both traditional LLMs and recently developed Large Reasoning Models. The results demonstrate the significant necessity for evaluation and model optimization tailored to the Hungarian language and specifics. We also established the framework for analyzing the thinking processes of LRMs with OpenHuEval, revealing intrinsic patterns and mechanisms of these models in non-English languages, with Hungarian serving as a representative example. We will release OpenHuEval at https://github.com/opendatalab/OpenHuEval .
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge
The remarkable performance of Large Language Models (LLMs) gives rise to``LLM-as-a-Judge'', where LLMs are employed as evaluators for complex tasks. Moreover, it has been widely adopted across fields such as Natural Language Processing (NLP), preference learning, and various specific domains. However, there are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments. Current research on evaluating or mitigating bias in LLM-as-a-Judge predominantly focuses on comparison-based evaluations, while systematic investigations into bias in scoring-based evaluations remain limited. Therefore, we define scoring bias in LLM-as-a-Judge as the scores differ when scoring judge models are bias-related perturbed, and provide a well-designed framework to comprehensively evaluate scoring bias. We augment existing LLM-as-a-Judge benchmarks through data synthesis to construct our evaluation dataset and design multi-faceted evaluation metrics. Our experimental results demonstrate that the scoring stability of existing judge models is disrupted by scoring biases. Further exploratory experiments and discussions provide valuable insights into the design of scoring prompt templates and the mitigation of scoring biases on aspects such as score rubrics, score IDs, and reference answer selection.
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Systematic Survey EMNLP 2025
Text-to-speech (TTS) has advanced from generating natural-sounding speech to enabling fine-grained control over attributes like emotion, timbre, and style. Driven by rising industrial demand and breakthroughs in deep learning, e.g., diffusion and large language models (LLMs), controllable TTS has become a rapidly growing research area. This survey provides the first comprehensive review of controllable TTS methods, from traditional control techniques to emerging approaches using natural language prompts. We categorize model architectures, control strategies, and feature representations, while also summarizing challenges, datasets, and evaluations in controllable TTS. This survey aims to guide researchers and practitioners by offering a clear taxonomy and highlighting future directions in this fast-evolving field. One can visit https://github.com/imxtx/awesome-controllabe-speech-synthesis for a comprehensive paper list and updates.
comment: The first comprehensive survey on controllable TTS. Accepted to the EMNLP 2025 main conference
♻ ☆ A Factuality and Diversity Reconciled Decoding Method for Knowledge-Grounded Dialogue Generation
Grounding external knowledge can enhance the factuality of responses in dialogue generation. However, excessive emphasis on it might result in the lack of engaging and diverse expressions. Through the introduction of randomness in sampling, current approaches can increase the diversity. Nevertheless, such sampling method could undermine the factuality in dialogue generation. In this study, to discover a solution for advancing creativity without relying on questionable randomness and to subtly reconcile the factuality and diversity within the source-grounded paradigm, a novel method named DoGe is proposed. DoGe can dynamically alternate between the utilization of internal parameter knowledge and external source knowledge based on the model's factual confidence. Extensive experiments on three widely-used datasets show that DoGe can not only enhance response diversity but also maintain factuality, and it significantly surpasses other various decoding strategy baselines.
♻ ☆ PediatricsMQA: a Multi-modal Pediatrics Question Answering Benchmark
Large language models (LLMs) and vision-augmented LLMs (VLMs) have significantly advanced medical informatics, diagnostics, and decision support. However, these models exhibit systematic biases, particularly age bias, compromising their reliability and equity. This is evident in their poorer performance on pediatric-focused text and visual question-answering tasks. This bias reflects a broader imbalance in medical research, where pediatric studies receive less funding and representation despite the significant disease burden in children. To address these issues, a new comprehensive multi-modal pediatric question-answering benchmark, PediatricsMQA, has been introduced. It consists of 3,417 text-based multiple-choice questions (MCQs) covering 131 pediatric topics across seven developmental stages (prenatal to adolescent) and 2,067 vision-based MCQs using 634 pediatric images from 67 imaging modalities and 256 anatomical regions. The dataset was developed using a hybrid manual-automatic pipeline, incorporating peer-reviewed pediatric literature, validated question banks, existing benchmarks, and existing QA resources. Evaluating state-of-the-art open models, we find dramatic performance drops in younger cohorts, highlighting the need for age-aware methods to ensure equitable AI support in pediatric care.
♻ ☆ Seeing Sarcasm Through Different Eyes: Analyzing Multimodal Sarcasm Perception in Large Vision-Language Models
With the advent of large vision-language models (LVLMs) demonstrating increasingly human-like abilities, a pivotal question emerges: do different LVLMs interpret multimodal sarcasm differently, and can a single model grasp sarcasm from multiple perspectives like humans? To explore this, we introduce an analytical framework using systematically designed prompts on existing multimodal sarcasm datasets. Evaluating 12 state-of-the-art LVLMs over 2,409 samples, we examine interpretive variations within and across models, focusing on confidence levels, alignment with dataset labels, and recognition of ambiguous "neutral" cases. We further validate our findings on a diverse 100-sample mini-benchmark, incorporating multiple datasets, expanded prompt variants, and representative commercial LVLMs. Our findings reveal notable discrepancies -- across LVLMs and within the same model under varied prompts. While classification-oriented prompts yield higher internal consistency, models diverge markedly when tasked with interpretive reasoning. These results challenge binary labeling paradigms by highlighting sarcasm's subjectivity. We advocate moving beyond rigid annotation schemes toward multi-perspective, uncertainty-aware modeling, offering deeper insights into multimodal sarcasm comprehension. Our code and data are available at: https://github.com/CoderChen01/LVLMSarcasmAnalysis
♻ ☆ LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought
Evaluating large language models (LLMs) in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p<0.05$). Our work established a scalable, label-free paradigm for domain-specific LLM evaluation, offering a robust alternative to conventional annotated benchmarks.
♻ ☆ A2HCoder: An LLM-Driven Coding Agent for Hierarchical Algorithm-to-HDL Translation
In wireless communication systems, stringent requirements such as ultra-low latency and power consumption have significantly increased the demand for efficient algorithm-to-hardware deployment. However, a persistent and substantial gap remains between algorithm design and hardware implementation. Bridging this gap traditionally requires extensive domain expertise and time-consuming manual development, due to fundamental mismatches between high-level programming languages like MATLAB and hardware description languages (HDLs) such as Verilog-in terms of memory access patterns, data processing manners, and datatype representations. To address this challenge, we propose A2HCoder: a Hierarchical Algorithm-to-HDL Coding Agent, powered by large language models (LLMs), designed to enable agile and reliable algorithm-to-hardware translation. A2HCoder introduces a hierarchical framework that enhances both robustness and interpretability while suppressing common hallucination issues in LLM-generated code. In the horizontal dimension, A2HCoder decomposes complex algorithms into modular functional blocks, simplifying code generation and improving consistency. In the vertical dimension, instead of relying on end-to-end generation, A2HCoder performs step-by-step, fine-grained translation, leveraging external toolchains such as MATLAB and Vitis HLS for debugging and circuit-level synthesis. This structured process significantly mitigates hallucinations and ensures hardware-level correctness. We validate A2HCoder through a real-world deployment case in the 5G wireless communication domain, demonstrating its practicality, reliability, and deployment efficiency.
comment: 15 pages, 6 figures
♻ ☆ BiMark: Unbiased Multilayer Watermarking for Large Language Models ICML
Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.
comment: This paper is accepted by International Conference on Machine Learning (ICML) 2025
♻ ☆ Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments
Using the best Text-to-SQL methods in resource-constrained environments is challenging due to their reliance on resource-intensive open-source models. This paper introduces Auto Prompt SQL(AP-SQL), a novel architecture designed to bridge the gap between resource-efficient small open-source models and the powerful capabilities of large closed-source models for Text-to-SQL translation. Our method decomposes the task into schema filtering, retrieval-augmented text-to-SQL generation based on in-context examples, and prompt-driven schema linking and SQL generation. To improve schema selection accuracy, we fine-tune large language models. Crucially, we also explore the impact of prompt engineering throughout the process, leveraging Chain-of-Thought(CoT) and Graph-of-Thought(GoT) templates to significantly enhance the model's reasoning for accurate SQL generation. Comprehensive evaluations on the Spider benchmarks demonstrate the effectiveness of AP-SQL.
comment: 4 pages,2 figures,EITCE 2025
♻ ☆ Zero-shot OCR Accuracy of Low-Resourced Languages: A Comparative Analysis on Sinhala and Tamil
Solving the problem of Optical Character Recognition (OCR) on printed text for Latin and its derivative scripts can now be considered settled due to the volumes of research done on English and other High-Resourced Languages (HRL). However, for Low-Resourced Languages (LRL) that use unique scripts, it remains an open problem. This study presents a comparative analysis of the zero-shot performance of six distinct OCR engines on two LRLs: Sinhala and Tamil. The selected engines include both commercial and open-source systems, aiming to evaluate the strengths of each category. The Cloud Vision API, Surya, Document AI, and Tesseract were evaluated for both Sinhala and Tamil, while Subasa OCR and EasyOCR were examined for only one language due to their limitations. The performance of these systems was rigorously analysed using five measurement techniques to assess accuracy at both the character and word levels. According to the findings, Surya delivered the best performance for Sinhala across all metrics, with a WER of 2.61%. Conversely, Document AI excelled across all metrics for Tamil, highlighted by a very low CER of 0.78%. In addition to the above analysis, we also introduce a novel synthetic Tamil OCR benchmarking dataset.
comment: 11 pages, 4 figures, 1 table, Accepted paper at Recent Advances in Natural Language Processing (RANLP) 2025
♻ ☆ Beyond Semantic Similarity: Reducing Unnecessary API Calls via Behavior-Aligned Retriever
Tool-augmented large language models (LLMs) leverage external functions to extend their capabilities, but inaccurate function calls can lead to inefficiencies and increased costs.Existing methods address this challenge by fine-tuning LLMs or using demonstration-based prompting, yet they often suffer from high training overhead and fail to account for inconsistent demonstration samples, which misguide the model's invocation behavior. In this paper, we trained a behavior-aligned retriever (BAR), which provides behaviorally consistent demonstrations to help LLMs make more accurate tool-using decisions. To train the BAR, we construct a corpus including different function-calling behaviors, i.e., calling or non-calling.We use the contrastive learning framework to train the BAR with customized positive/negative pairs and a dual-negative contrastive loss, ensuring robust retrieval of behaviorally consistent examples.Experiments demonstrate that our approach significantly reduces erroneous function calls while maintaining high task performance, offering a cost-effective and efficient solution for tool-augmented LLMs.
♻ ☆ A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
♻ ☆ TombRaider: Entering the Vault of History to Jailbreak Large Language Models EMNLP
Warning: This paper contains content that may involve potentially harmful behaviours, discussed strictly for research purposes. Jailbreak attacks can hinder the safety of Large Language Model (LLM) applications, especially chatbots. Studying jailbreak techniques is an important AI red teaming task for improving the safety of these applications. In this paper, we introduce TombRaider, a novel jailbreak technique that exploits the ability to store, retrieve, and use historical knowledge of LLMs. TombRaider employs two agents, the inspector agent to extract relevant historical information and the attacker agent to generate adversarial prompts, enabling effective bypassing of safety filters. We intensively evaluated TombRaider on six popular models. Experimental results showed that TombRaider could outperform state-of-the-art jailbreak techniques, achieving nearly 100% attack success rates (ASRs) on bare models and maintaining over 55.4% ASR against defence mechanisms. Our findings highlight critical vulnerabilities in existing LLM safeguards, underscoring the need for more robust safety defences.
comment: Main Conference of EMNLP
♻ ☆ SEA-BED: Southeast Asia Embedding Benchmark
Sentence embeddings are essential for NLP tasks such as semantic search, re-ranking, and textual similarity. Although multilingual benchmarks like MMTEB broaden coverage, Southeast Asia (SEA) datasets are scarce and often machine-translated, missing native linguistic properties. With nearly 700 million speakers, the SEA region lacks a region-specific embedding benchmark. We introduce SEA-BED, the first large-scale SEA embedding benchmark with 169 datasets across 9 tasks and 10 languages, where 71% are formulated by humans, not machine generation or translation. We address three research questions: (1) which SEA languages and tasks are challenging, (2) whether SEA languages show unique performance gaps globally, and (3) how human vs. machine translations affect evaluation. We evaluate 17 embedding models across six studies, analyzing task and language challenges, cross-benchmark comparisons, and translation trade-offs. Results show sharp ranking shifts, inconsistent model performance among SEA languages, and the importance of human-curated datasets for low-resource languages like Burmese.
♻ ☆ Adaptive Linguistic Prompting (ALP) Enhances Phishing Webpage Detection in Multimodal Large Language Models ACL 2025
Phishing attacks represent a significant cybersecurity threat, necessitating adaptive detection techniques. This study explores few-shot Adaptive Linguistic Prompting (ALP) in detecting phishing webpages through the multimodal capabilities of state-of-the-art large language models (LLMs) such as GPT-4o and Gemini 1.5 Pro. ALP is a structured semantic reasoning method that guides LLMs to analyze textual deception by breaking down linguistic patterns, detecting urgency cues, and identifying manipulative diction commonly found in phishing content. By integrating textual, visual, and URL-based analysis, we propose a unified model capable of identifying sophisticated phishing attempts. Our experiments demonstrate that ALP significantly enhances phishing detection accuracy by guiding LLMs through structured reasoning and contextual analysis. The findings highlight the potential of ALP-integrated multimodal LLMs to advance phishing detection frameworks, achieving an F1-score of 0.93, surpassing traditional approaches. These results establish a foundation for more robust, interpretable, and adaptive linguistic-based phishing detection systems using LLMs.
comment: Published at ACL 2025 SRW, 9 pages, 3 figures
♻ ☆ Unified attacks to large language model watermarks: spoofing and scrubbing in unauthorized knowledge distillation
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
♻ ☆ Orthogonal Finetuning for Direct Preference Optimization
DPO is an effective preference optimization algorithm. However, the DPO-tuned models tend to overfit on the dispreferred samples, manifested as overly long generations lacking diversity. While recent regularization approaches have endeavored to alleviate this issue by modifying the objective function, they achieved that at the cost of alignment performance degradation. In this paper, we innovatively incorporate regularization from the perspective of weight updating to curb alignment overfitting. Through the pilot experiment, we discovered that there exists a positive correlation between overfitting and the hyperspherical energy fluctuation. Hence, we introduce orthogonal finetuning for DPO via a weight-Rotated Preference Optimization (RoPO) method, which merely conducts rotational and magnitude-stretching updates on the weight parameters to maintain the hyperspherical energy invariant, thereby preserving the knowledge encoded in the angle between neurons. Extensive experiments demonstrate that our model aligns perfectly with human preferences while retaining the original expressive capacity using only 0.0086% of the trainable parameters, suggesting an effective regularization against overfitting. Specifically, RoPO outperforms DPO by up to 10 points on MT-Bench and by up to 2.8 points on AlpacaEval 2, while enhancing the generation diversity by an average of 6 points.
♻ ☆ Large Language Models Meet NLP: A Survey
While large language models (LLMs) like ChatGPT have shown impressive capabilities in Natural Language Processing (NLP) tasks, a systematic investigation of their potential in this field remains largely unexplored. This study aims to address this gap by exploring the following questions: (1) How are LLMs currently applied to NLP tasks in the literature? (2) Have traditional NLP tasks already been solved with LLMs? (3) What is the future of the LLMs for NLP? To answer these questions, we take the first step to provide a comprehensive overview of LLMs in NLP. Specifically, we first introduce a unified taxonomy including (1) parameter-frozen paradigm and (2) parameter-tuning paradigm to offer a unified perspective for understanding the current progress of LLMs in NLP. Furthermore, we summarize the new frontiers and the corresponding challenges, aiming to inspire further groundbreaking advancements. We hope this work offers valuable insights into the potential and limitations of LLMs, while also serving as a practical guide for building effective LLMs in NLP.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-50472-3}
♻ ☆ Defending against Jailbreak through Early Exit Generation of Large Language Models ICONIP 2025
Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation. In an effort to mitigate such risks, the concept of "Alignment" technology has been developed. However, recent studies indicate that this alignment can be undermined using sophisticated prompt engineering or adversarial suffixes, a technique known as "Jailbreak." Our research takes cues from the human-like generate process of LLMs. We identify that while jailbreaking prompts may yield output logits similar to benign prompts, their initial embeddings within the model's latent space tend to be more analogous to those of malicious prompts. Leveraging this finding, we propose utilizing the early transformer outputs of LLMs as a means to detect malicious inputs, and terminate the generation immediately. We introduce a simple yet significant defense approach called EEG-Defender for LLMs. We conduct comprehensive experiments on ten jailbreak methods across three models. Our results demonstrate that EEG-Defender is capable of reducing the Attack Success Rate (ASR) by a significant margin, roughly 85% in comparison with 50% for the present SOTAs, with minimal impact on the utility of LLMs.
comment: ICONIP 2025
♻ ☆ Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation EMNLP'25
Intent detection, a core component of natural language understanding, has considerably evolved as a crucial mechanism in safeguarding large language models (LLMs). While prior work has applied intent detection to enhance LLMs' moderation guardrails, showing a significant success against content-level jailbreaks, the robustness of these intent-aware guardrails under malicious manipulations remains under-explored. In this work, we investigate the vulnerability of intent-aware guardrails and demonstrate that LLMs exhibit implicit intent detection capabilities. We propose a two-stage intent-based prompt-refinement framework, IntentPrompt, that first transforms harmful inquiries into structured outlines and further reframes them into declarative-style narratives by iteratively optimizing prompts via feedback loops to enhance jailbreak success for red-teaming purposes. Extensive experiments across four public benchmarks and various black-box LLMs indicate that our framework consistently outperforms several cutting-edge jailbreak methods and evades even advanced Intent Analysis (IA) and Chain-of-Thought (CoT)-based defenses. Specifically, our "FSTR+SPIN" variant achieves attack success rates ranging from 88.25% to 96.54% against CoT-based defenses on the o1 model, and from 86.75% to 97.12% on the GPT-4o model under IA-based defenses. These findings highlight a critical weakness in LLMs' safety mechanisms and suggest that intent manipulation poses a growing challenge to content moderation guardrails.
comment: Accepted for EMNLP'25 Findings. TL;DR: We propose a new two-stage intent-based prompt-refinement framework, IntentPrompt, that aims to explore the vulnerability of LLMs' content moderation guardrails by refining prompts into benign-looking declarative forms via intent manipulation for red-teaming purposes
♻ ☆ Recognizing Limits: Investigating Infeasibility in Large Language Models EMNLP 2025
Large language models (LLMs) have shown remarkable performance in various tasks but often fail to handle queries that exceed their knowledge and capabilities, leading to incorrect or fabricated responses. This paper addresses the need for LLMs to recognize and refuse infeasible tasks due to the requests surpassing their capabilities. We conceptualize four main categories of infeasible tasks for LLMs, which cover a broad spectrum of hallucination-related challenges identified in prior literature. We develop and benchmark a new dataset comprising diverse infeasible and feasible tasks to evaluate multiple LLMs' abilities to decline infeasible tasks. Furthermore, we explore the potential of increasing LLMs' refusal capabilities with fine-tuning. Our experiments validate the effectiveness of the trained models, suggesting promising directions for improving the performance of LLMs in real-world applications.
comment: EMNLP 2025 Findings
♻ ☆ Evolutionary Automata and Deep Evolutionary Computation
Evolution by natural selection, which is one of the most compelling themes of modern science, brought forth evolutionary algorithms and evolutionary computation, applying mechanisms of evolution in nature to various problems solved by computers. In this paper we concentrate on evolutionary automata that constitute an analogous model of evolutionary computation compared to well-known evolutionary algorithms. Evolutionary automata provide a more complete dual model of evolutionary computation, similar like abstract automata (e.g., Turing machines) form a more formal and precise model compared to recursive algorithms and their subset - evolutionary algorithms. An evolutionary automaton is an automaton that evolves performing evolutionary computation perhaps using an infinite number of generations. This model allows for a direct modeling evolution of evolution, and leads to tremendous expressiveness of evolutionary automata and evolutionary computation. This also gives the hint to the power of natural evolution that is self-evolving by interactive feedback with the environment.
♻ ☆ Aligning NLP Models with Target Population Perspectives using PAIR: Population-Aligned Instance Replication EMNLP 2025
Models trained on crowdsourced annotations may not reflect population views, if those who work as annotators do not represent the broader population. In this paper, we propose PAIR: Population-Aligned Instance Replication, a post-processing method that adjusts training data to better reflect target population characteristics without collecting additional annotations. Using simulation studies on offensive language and hate speech detection with varying annotator compositions, we show that non-representative pools degrade model calibration while leaving accuracy largely unchanged. PAIR corrects these calibration problems by replicating annotations from underrepresented annotator groups to match population proportions. We conclude with recommendations for improving the representativity of training data and model performance.
comment: EMNLP 2025 NLPerspectives Workshop
♻ ☆ VAGUE: Visual Contexts Clarify Ambiguous Expressions ICCV 2025
Human communication often relies on visual cues to resolve ambiguity. While humans can intuitively integrate these cues, AI systems often find it challenging to engage in sophisticated multimodal reasoning. We introduce VAGUE, a benchmark evaluating multimodal AI systems' ability to integrate visual context for intent disambiguation. VAGUE consists of 1.6K ambiguous textual expressions, each paired with an image and multiple-choice interpretations, where the correct answer is only apparent with visual context. The dataset spans both staged, complex (Visual Commonsense Reasoning) and natural, personal (Ego4D) scenes, ensuring diversity. Our experiments reveal that existing multimodal AI models struggle to infer the speaker's true intent. While performance consistently improves from the introduction of more visual cues, the overall accuracy remains far below human performance, highlighting a critical gap in multimodal reasoning. Analysis of failure cases demonstrates that current models fail to distinguish true intent from superficial correlations in the visual scene, indicating that they perceive images but do not effectively reason with them. We release our code and data at https://hazel-heejeong-nam.github.io/vague/.
comment: ICCV 2025, 32 pages
♻ ☆ Cyber-Zero: Training Cybersecurity Agents without Runtime
Large Language Models (LLMs) have achieved remarkable success in software engineering tasks when trained with executable runtime environments, particularly in resolving GitHub issues. However, such runtime environments are often unavailable in other domains, especially cybersecurity, where challenge configurations and execution contexts are ephemeral or restricted. We present Cyber-Zero, the first runtime-free framework for synthesizing high-quality agent trajectories to train cybersecurity LLMs. Cyber-Zero leverages publicly available CTF writeups and employs persona-driven LLM simulation to reverse-engineer runtime behaviors and generate realistic, long-horizon interaction sequences without actual environments. Using trajectories synthesized by Cyber-Zero, we train LLM-based agents that achieve up to 13.1% absolute performance gains over baseline models on three prominent CTF benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best model, Cyber-Zero-32B, establishes new state-of-the-art performance among open-weight models, matching the capabilities of proprietary systems like DeepSeek-V3-0324 and Claude-3.5-Sonnet while offering superior cost-effectiveness, and demonstrating that runtime-free trajectory synthesis can effectively democratize the development of state-of-the-art cybersecurity agents.
comment: Public Link: https://github.com/amazon-science/cyber-zero
♻ ☆ NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
Computation and Language
☆ Activation Transport Operators
The residual stream mediates communication between transformer decoder layers via linear reads and writes of non-linear computations. While sparse-dictionary learning-based methods locate features in the residual stream, and activation patching methods discover circuits within the model, the mechanism by which features flow through the residual stream remains understudied. Understanding this dynamic can better inform jailbreaking protections, enable early detection of model mistakes, and their correction. In this work, we propose Activation Transport Operators (ATO), linear maps from upstream to downstream residuals $k$ layers later, evaluated in feature space using downstream SAE decoder projections. We empirically demonstrate that these operators can determine whether a feature has been linearly transported from a previous layer or synthesised from non-linear layer computation. We develop the notion of transport efficiency, for which we provide an upper bound, and use it to estimate the size of the residual stream subspace that corresponds to linear transport. We empirically demonstrate the linear transport, report transport efficiency and the size of the residual stream's subspace involved in linear transport. This compute-light (no finetuning, <50 GPU-h) method offers practical tools for safety, debugging, and a clearer picture of where computation in LLMs behaves linearly.
comment: 4 pages, 4 figures, references and appendices
☆ Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models?
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
☆ Improving French Synthetic Speech Quality via SSML Prosody Control SP 2025
Despite recent advances, synthetic voices often lack expressiveness due to limited prosody control in commercial text-to-speech (TTS) systems. We introduce the first end-to-end pipeline that inserts Speech Synthesis Markup Language (SSML) tags into French text to control pitch, speaking rate, volume, and pause duration. We employ a cascaded architecture with two QLoRA-fine-tuned Qwen 2.5-7B models: one predicts phrase-break positions and the other performs regression on prosodic targets, generating commercial TTS-compatible SSML markup. Evaluated on a 14-hour French podcast corpus, our method achieves 99.2% F1 for break placement and reduces mean absolute error on pitch, rate, and volume by 25-40% compared with prompting-only large language models (LLMs) and a BiLSTM baseline. In perceptual evaluation involving 18 participants across over 9 hours of synthesized audio, SSML-enhanced speech generated by our pipeline significantly improves naturalness, with the mean opinion score increasing from 3.20 to 3.87 (p < 0.005). Additionally, 15 of 18 listeners preferred our enhanced synthesis. These results demonstrate substantial progress in bridging the expressiveness gap between synthetic and natural French speech. Our code is publicly available at https://github.com/hi-paris/Prosody-Control-French-TTS.
comment: 13 pages, 9 figures, 6 tables. Accepted for presentation at ICNLSP 2025 (Odense, Denmark). Code and demo: https://github.com/hi-paris/Prosody-Control-French-TTS. ACM Class: I.2.7; H.5.5
☆ Efficient Zero-Shot Long Document Classification by Reducing Context Through Sentence Ranking
Transformer-based models like BERT excel at short text classification but struggle with long document classification (LDC) due to input length limitations and computational inefficiencies. In this work, we propose an efficient, zero-shot approach to LDC that leverages sentence ranking to reduce input context without altering the model architecture. Our method enables the adaptation of models trained on short texts, such as headlines, to long-form documents by selecting the most informative sentences using a TF-IDF-based ranking strategy. Using the MahaNews dataset of long Marathi news articles, we evaluate three context reduction strategies that prioritize essential content while preserving classification accuracy. Our results show that retaining only the top 50\% ranked sentences maintains performance comparable to full-document inference while reducing inference time by up to 35\%. This demonstrates that sentence ranking is a simple yet effective technique for scalable and efficient zero-shot LDC.
☆ Evaluating the Impact of Verbal Multiword Expressions on Machine Translation
Verbal multiword expressions (VMWEs) present significant challenges for natural language processing due to their complex and often non-compositional nature. While machine translation models have seen significant improvement with the advent of language models in recent years, accurately translating these complex linguistic structures remains an open problem. In this study, we analyze the impact of three VMWE categories -- verbal idioms, verb-particle constructions, and light verb constructions -- on machine translation quality from English to multiple languages. Using both established multiword expression datasets and sentences containing these language phenomena extracted from machine translation datasets, we evaluate how state-of-the-art translation systems handle these expressions. Our experimental results consistently show that VMWEs negatively affect translation quality. We also propose an LLM-based paraphrasing approach that replaces these expressions with their literal counterparts, demonstrating significant improvement in translation quality for verbal idioms and verb-particle constructions.
comment: 29 pages, 13 figures
☆ Persuasion Dynamics in LLMs: Investigating Robustness and Adaptability in Knowledge and Safety with DuET-PD EMNLP 2025
Large Language Models (LLMs) can struggle to balance gullibility to misinformation and resistance to valid corrections in persuasive dialogues, a critical challenge for reliable deployment. We introduce DuET-PD (Dual Evaluation for Trust in Persuasive Dialogues), a framework evaluating multi-turn stance-change dynamics across dual dimensions: persuasion type (corrective/misleading) and domain (knowledge via MMLU-Pro, and safety via SALAD-Bench). We find that even a state-of-the-art model like GPT-4o achieves only 27.32% accuracy in MMLU-Pro under sustained misleading persuasions. Moreover, results reveal a concerning trend of increasing sycophancy in newer open-source models. To address this, we introduce Holistic DPO, a training approach balancing positive and negative persuasion examples. Unlike prompting or resist-only training, Holistic DPO enhances both robustness to misinformation and receptiveness to corrections, improving Llama-3.1-8B-Instruct's accuracy under misleading persuasion in safety contexts from 4.21% to 76.54%. These contributions offer a pathway to developing more reliable and adaptable LLMs for multi-turn dialogue. Code is available at https://github.com/Social-AI-Studio/DuET-PD.
comment: To appear at EMNLP 2025
☆ TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling
Recent advancements in aligning large language models via reinforcement learning have achieved remarkable gains in solving complex reasoning problems, but at the cost of expensive on-policy rollouts and limited exploration of diverse reasoning paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm that views sequence generation as a tree-structured searching process. Composed of dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages local uncertainty to warrant additional branches. By amortizing computation across common prefixes and pruning low-value paths early, TreePO essentially reduces the per-update compute burden while preserving or enhancing exploration diversity. Key contributions include: (1) a segment-wise sampling algorithm that alleviates the KV cache burden through contiguous segments and spawns new branches along with an early-stop mechanism; (2) a tree-based segment-level advantage estimation that considers both global and local proximal policy optimization. and (3) analysis on the effectiveness of probability and quality-driven dynamic divergence and fallback strategy. We empirically validate the performance gain of TreePO on a set reasoning benchmarks and the efficiency saving of GPU hours from 22\% up to 43\% of the sampling design for the trained models, meanwhile showing up to 40\% reduction at trajectory-level and 35\% at token-level sampling compute for the existing models. While offering a free lunch of inference efficiency, TreePO reveals a practical path toward scaling RL-based post-training with fewer samples and less compute. Home page locates at https://m-a-p.ai/TreePO.
☆ MahaParaphrase: A Marathi Paraphrase Detection Corpus and BERT-based Models
Paraphrases are a vital tool to assist language understanding tasks such as question answering, style transfer, semantic parsing, and data augmentation tasks. Indic languages are complex in natural language processing (NLP) due to their rich morphological and syntactic variations, diverse scripts, and limited availability of annotated data. In this work, we present the L3Cube-MahaParaphrase Dataset, a high-quality paraphrase corpus for Marathi, a low resource Indic language, consisting of 8,000 sentence pairs, each annotated by human experts as either Paraphrase (P) or Non-paraphrase (NP). We also present the results of standard transformer-based BERT models on these datasets. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP
☆ DS@GT at CheckThat! 2025: A Simple Retrieval-First, LLM-Backed Framework for Claim Normalization
Claim normalization is an integral part of any automatic fact-check verification system. It parses the typically noisy claim data, such as social media posts into normalized claims, which are then fed into downstream veracity classification tasks. The CheckThat! 2025 Task 2 focuses specifically on claim normalization and spans 20 languages under monolingual and zero-shot conditions. Our proposed solution consists of a lightweight \emph{retrieval-first, LLM-backed} pipeline, in which we either dynamically prompt a GPT-4o-mini with in-context examples, or retrieve the closest normalization from the train dataset directly. On the official test set, the system ranks near the top for most monolingual tracks, achieving first place in 7 out of of the 13 languages. In contrast, the system underperforms in the zero-shot setting, highlighting the limitation of the proposed solution.
comment: CLEF 2025 Working Notes, Madrid, Spain
☆ DashboardQA: Benchmarking Multimodal Agents for Question Answering on Interactive Dashboards
Dashboards are powerful visualization tools for data-driven decision-making, integrating multiple interactive views that allow users to explore, filter, and navigate data. Unlike static charts, dashboards support rich interactivity, which is essential for uncovering insights in real-world analytical workflows. However, existing question-answering benchmarks for data visualizations largely overlook this interactivity, focusing instead on static charts. This limitation severely constrains their ability to evaluate the capabilities of modern multimodal agents designed for GUI-based reasoning. To address this gap, we introduce DashboardQA, the first benchmark explicitly designed to assess how vision-language GUI agents comprehend and interact with real-world dashboards. The benchmark includes 112 interactive dashboards from Tableau Public and 405 question-answer pairs with interactive dashboards spanning five categories: multiple-choice, factoid, hypothetical, multi-dashboard, and conversational. By assessing a variety of leading closed- and open-source GUI agents, our analysis reveals their key limitations, particularly in grounding dashboard elements, planning interaction trajectories, and performing reasoning. Our findings indicate that interactive dashboard reasoning is a challenging task overall for all the VLMs evaluated. Even the top-performing agents struggle; for instance, the best agent based on Gemini-Pro-2.5 achieves only 38.69% accuracy, while the OpenAI CUA agent reaches just 22.69%, demonstrating the benchmark's significant difficulty. We release DashboardQA at https://github.com/vis-nlp/DashboardQA
☆ Agent-Testing Agent: A Meta-Agent for Automated Testing and Evaluation of Conversational AI Agents
LLM agents are increasingly deployed to plan, retrieve, and write with tools, yet evaluation still leans on static benchmarks and small human studies. We present the Agent-Testing Agent (ATA), a meta-agent that combines static code analysis, designer interrogation, literature mining, and persona-driven adversarial test generation whose difficulty adapts via judge feedback. Each dialogue is scored with an LLM-as-a-Judge (LAAJ) rubric and used to steer subsequent tests toward the agent's weakest capabilities. On a travel planner and a Wikipedia writer, the ATA surfaces more diverse and severe failures than expert annotators while matching severity, and finishes in 20--30 minutes versus ten-annotator rounds that took days. Ablating code analysis and web search increases variance and miscalibration, underscoring the value of evidence-grounded test generation. The ATA outputs quantitative metrics and qualitative bug reports for developers. We release the full methodology and open-source implementation for reproducible agent testing: https://github.com/KhalilMrini/Agent-Testing-Agent
☆ Large Language Models as Universal Predictors? An Empirical Study on Small Tabular Datasets
Large Language Models (LLMs), originally developed for natural language processing (NLP), have demonstrated the potential to generalize across modalities and domains. With their in-context learning (ICL) capabilities, LLMs can perform predictive tasks over structured inputs without explicit fine-tuning on downstream tasks. In this work, we investigate the empirical function approximation capability of LLMs on small-scale structured datasets for classification, regression and clustering tasks. We evaluate the performance of state-of-the-art LLMs (GPT-5, GPT-4o, GPT-o3, Gemini-2.5-Flash, DeepSeek-R1) under few-shot prompting and compare them against established machine learning (ML) baselines, including linear models, ensemble methods and tabular foundation models (TFMs). Our results show that LLMs achieve strong performance in classification tasks under limited data availability, establishing practical zero-training baselines. In contrast, the performance in regression with continuous-valued outputs is poor compared to ML models, likely because regression demands outputs in a large (often infinite) space, and clustering results are similarly limited, which we attribute to the absence of genuine ICL in this setting. Nonetheless, this approach enables rapid, low-overhead data exploration and offers a viable alternative to traditional ML pipelines in business intelligence and exploratory analytics contexts. We further analyze the influence of context size and prompt structure on approximation quality, identifying trade-offs that affect predictive performance. Our findings suggest that LLMs can serve as general-purpose predictive engines for structured data, with clear strengths in classification and significant limitations in regression and clustering.
☆ UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat
Large language models (LLMs) trained primarily on English corpora often struggle to capture the linguistic and cultural nuances of Arabic. To address this gap, the Saudi Data and AI Authority (SDAIA) introduced the $ALLaM$ family of Arabic-focused models. The most capable of these available to the public, $ALLaM-34B$, was subsequently adopted by HUMAIN, who developed and deployed HUMAIN Chat, a closed conversational web service built on this model. This paper presents an expanded and refined UI-level evaluation of $ALLaM-34B$. Using a prompt pack spanning modern standard Arabic, five regional dialects, code-switching, factual knowledge, arithmetic and temporal reasoning, creative generation, and adversarial safety, we collected 115 outputs (23 prompts times 5 runs) and scored each with three frontier LLM judges (GPT-5, Gemini 2.5 Pro, Claude Sonnet-4). We compute category-level means with 95\% confidence intervals, analyze score distributions, and visualize dialect-wise metric heat maps. The updated analysis reveals consistently high performance on generation and code-switching tasks (both averaging 4.92/5), alongside strong results in MSA handling (4.74/5), solid reasoning ability (4.64/5), and improved dialect fidelity (4.21/5). Safety-related prompts show stable, reliable performance of (4.54/5). Taken together, these results position $ALLaM-34B$ as a robust and culturally grounded Arabic LLM, demonstrating both technical strength and practical readiness for real-world deployment.
☆ The Arabic Generality Score: Another Dimension of Modeling Arabic Dialectness EMNLP 2025
Arabic dialects form a diverse continuum, yet NLP models often treat them as discrete categories. Recent work addresses this issue by modeling dialectness as a continuous variable, notably through the Arabic Level of Dialectness (ALDi). However, ALDi reduces complex variation to a single dimension. We propose a complementary measure: the Arabic Generality Score (AGS), which quantifies how widely a word is used across dialects. We introduce a pipeline that combines word alignment, etymology-aware edit distance, and smoothing to annotate a parallel corpus with word-level AGS. A regression model is then trained to predict AGS in context. Our approach outperforms strong baselines, including state-of-the-art dialect ID systems, on a multi-dialect benchmark. AGS offers a scalable, linguistically grounded way to model lexical generality, enriching representations of Arabic dialectness.
comment: Accepted to EMNLP 2025 Main Conference
☆ Capturing Legal Reasoning Paths from Facts to Law in Court Judgments using Knowledge Graphs
Court judgments reveal how legal rules have been interpreted and applied to facts, providing a foundation for understanding structured legal reasoning. However, existing automated approaches for capturing legal reasoning, including large language models, often fail to identify the relevant legal context, do not accurately trace how facts relate to legal norms, and may misrepresent the layered structure of judicial reasoning. These limitations hinder the ability to capture how courts apply the law to facts in practice. In this paper, we address these challenges by constructing a legal knowledge graph from 648 Japanese administrative court decisions. Our method extracts components of legal reasoning using prompt-based large language models, normalizes references to legal provisions, and links facts, norms, and legal applications through an ontology of legal inference. The resulting graph captures the full structure of legal reasoning as it appears in real court decisions, making implicit reasoning explicit and machine-readable. We evaluate our system using expert annotated data, and find that it achieves more accurate retrieval of relevant legal provisions from facts than large language model baselines and retrieval-augmented methods.
☆ DropLoRA: Sparse Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
LoRA-based large model parameter-efficient fine-tuning (PEFT) methods use low-rank de- composition to approximate updates to model parameters. However, compared to full- parameter fine-tuning, low-rank updates often lead to a performance gap in downstream tasks. To address this, we introduce DropLoRA, a novel pruning-based approach that focuses on pruning the rank dimension. Unlike conven- tional methods that attempt to overcome the low-rank bottleneck, DropLoRA innovatively integrates a pruning module between the two low-rank matrices in LoRA to simulate dy- namic subspace learning. This dynamic low- rank subspace learning allows DropLoRA to overcome the limitations of traditional LoRA, which operates within a static subspace. By continuously adapting the learning subspace, DropLoRA significantly boosts performance without incurring additional training or infer- ence costs. Our experimental results demon- strate that DropLoRA consistently outperforms LoRA in fine-tuning the LLaMA series across a wide range of large language model gener- ation tasks, including commonsense reason- ing, mathematical reasoning, code generation, and instruction-following. Our code is avail- able at https://github.com/TayeeChang/DropLoRA.
comment: 8 pages
☆ Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs
We introduce MMCRICBENCH-3K, a benchmark for Visual Question Answering (VQA) on cricket scorecards, designed to evaluate large vision-language models (LVLMs) on complex numerical and cross-lingual reasoning over semi-structured tabular images. MMCRICBENCH-3K comprises 1,463 synthetically generated scorecard images from ODI, T20, and Test formats, accompanied by 1,500 English QA pairs. It includes two subsets: MMCRICBENCH-E-1.5K, featuring English scorecards, and MMCRICBENCH-H-1.5K, containing visually similar Hindi scorecards, with all questions and answers kept in English to enable controlled cross-script evaluation. The task demands reasoning over structured numerical data, multi-image context, and implicit domain knowledge. Empirical results show that even state-of-the-art LVLMs, such as GPT-4o and Qwen2.5VL, struggle on the English subset despite it being their primary training language and exhibit a further drop in performance on the Hindi subset. This reveals key limitations in structure-aware visual text understanding, numerical reasoning, and cross-lingual generalization. The dataset is publicly available via Hugging Face at https://huggingface.co/datasets/DIALab/MMCricBench, to promote LVLM research in this direction.
☆ Omne-R1: Learning to Reason with Memory for Multi-hop Question Answering
This paper introduces Omne-R1, a novel approach designed to enhance multi-hop question answering capabilities on schema-free knowledge graphs by integrating advanced reasoning models. Our method employs a multi-stage training workflow, including two reinforcement learning phases and one supervised fine-tuning phase. We address the challenge of limited suitable knowledge graphs and QA data by constructing domain-independent knowledge graphs and auto-generating QA pairs. Experimental results show significant improvements in answering multi-hop questions, with notable performance gains on more complex 3+ hop questions. Our proposed training framework demonstrates strong generalization abilities across diverse knowledge domains.
☆ CultranAI at PalmX 2025: Data Augmentation for Cultural Knowledge Representation
In this paper, we report our participation to the PalmX cultural evaluation shared task. Our system, CultranAI, focused on data augmentation and LoRA fine-tuning of large language models (LLMs) for Arabic cultural knowledge representation. We benchmarked several LLMs to identify the best-performing model for the task. In addition to utilizing the PalmX dataset, we augmented it by incorporating the Palm dataset and curated a new dataset of over 22K culturally grounded multiple-choice questions (MCQs). Our experiments showed that the Fanar-1-9B-Instruct model achieved the highest performance. We fine-tuned this model on the combined augmented dataset of 22K+ MCQs. On the blind test set, our submitted system ranked 5th with an accuracy of 70.50%, while on the PalmX development set, it achieved an accuracy of 84.1%.
comment: LLMs, Native, Arabic LLMs, Augmentation, Multilingual, Language Diversity, Contextual Understanding, Minority Languages, Culturally Informed, Foundation Models, Large Language Models
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: The first version of this paper mistakenly included a prompt injection phrase, which was inappropriate and unprofessional. Although we corrected the version on arXiv and withdrew from the conference, my co-authors and university strongly request a full withdrawal. Given the situation, I no longer have the authority to manage this paper, and withdrawing it from arXiv is the most responsible action
♻ ☆ From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis
We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs), targeting their transformation into formal representations in Defeasible Deontic Logic (DDL). We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. Our methodology is evaluated across various LLM configurations, including prompt engineering strategies, fine-tuned models, and multi-stage pipelines, focusing on legal norms from the Australian Telecommunications Consumer Protections Code. Empirical results demonstrate promising alignment between machine-generated and expert-crafted formalizations, showing that LLMs - particularly when prompted effectively - can significantly contribute to scalable legal informatics.
♻ ☆ Does GPT-4 surpass human performance in linguistic pragmatics?
As Large Language Models (LLMs) become increasingly integrated into everyday life as general purpose multimodal AI systems, their capabilities to simulate human understanding are under examination. This study investigates LLMs ability to interpret linguistic pragmatics, which involves context and implied meanings. Using Grice communication principles, we evaluated both LLMs (GPT-2, GPT-3, GPT-3.5, GPT-4, and Bard) and human subjects (N = 147) on dialogue-based tasks. Human participants included 71 primarily Serbian students and 76 native English speakers from the United States. Findings revealed that LLMs, particularly GPT-4, outperformed humans. GPT4 achieved the highest score of 4.80, surpassing the best human score of 4.55. Other LLMs performed well: GPT 3.5 scored 4.10, Bard 3.75, and GPT-3 3.25. GPT-2 had the lowest score of 1.05. The average LLM score was 3.39, exceeding the human cohorts averages of 2.80 (Serbian students) and 2.34 (U.S. participants). In the ranking of all 155 subjects (including LLMs and humans), GPT-4 secured the top position, while the best human ranked second. These results highlight significant progress in LLMs ability to simulate understanding of linguistic pragmatics. Future studies should confirm these findings with more dialogue-based tasks and diverse participants. This research has important implications for advancing general-purpose AI models in various communication-centered tasks, including potential application in humanoid robots in the future.
comment: 19 pages, 1 figure, 2 tables
♻ ☆ Multi-Turn Puzzles: Evaluating Interactive Reasoning and Strategic Dialogue in LLMs
Large language models (LLMs) excel at solving problems with clear and complete statements, but often struggle with nuanced environments or interactive tasks which are common in most real-world scenarios. This highlights the critical need for developing LLMs that can effectively engage in logically consistent multi-turn dialogue, seek information and reason with incomplete data. To this end, we introduce a novel benchmark comprising a suite of multi-turn tasks each designed to test specific reasoning, interactive dialogue, and information-seeking abilities. These tasks have deterministic scoring mechanisms, thus eliminating the need for human intervention. Evaluating frontier models on our benchmark reveals significant headroom. Our analysis shows that most errors emerge from poor instruction following, reasoning failures, and poor planning. This benchmark provides valuable insights into the strengths and weaknesses of current LLMs in handling complex, interactive scenarios and offers a robust platform for future research aimed at improving these critical capabilities.
♻ ☆ Intern-S1: A Scientific Multimodal Foundation Model
In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models. However, in high-value but more challenging scientific professional fields, either the fields still rely on expert models, or the progress of general foundation models lags significantly compared to those in popular areas, far from sufficient for transforming scientific research and leaving substantial gap between open-source models and closed-source models in these scientific domains. To mitigate this gap and explore a step further toward Artificial General Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped with general understanding and reasoning capabilities with expertise to analyze multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE) model with 28 billion activated parameters and 241 billion total parameters, continually pre-trained on 5T tokens, including over 2.5T tokens from scientific domains. In the post-training stage, Intern-S1 undergoes offline and then online reinforcement learning (RL) in InternBootCamp, where we propose Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks simultaneously. Through integrated innovations in algorithms, data, and training systems, Intern-S1 achieved top-tier performance in online RL training. On comprehensive evaluation benchmarks, Intern-S1 demonstrates competitive performance on general reasoning tasks among open-source models and significantly outperforms open-source models in scientific domains, surpassing closed-source state-of-the-art models in professional tasks, such as molecular synthesis planning, reaction condition prediction, predicting thermodynamic stabilities for crystals. Our models are available at https://huggingface.co/internlm/Intern-S1.
♻ ☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of 125,777 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4%, respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/VeriCoder
♻ ☆ Localizing Factual Inconsistencies in Attributable Text Generation ACL
There has been an increasing interest in detecting hallucinations in model-generated texts, both manually and automatically, at varying levels of granularity. However, most existing methods fail to precisely pinpoint the errors. In this work, we introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation, at a fine-grained level. Drawing inspiration from Neo-Davidsonian formal semantics, we propose decomposing the generated text into minimal predicate-argument level propositions, expressed as simple question-answer (QA) pairs, and assess whether each individual QA pair is supported by a trusted reference text. As each QA pair corresponds to a single semantic relation between a predicate and an argument, QASemConsistency effectively localizes the unsupported information. We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation, by collecting crowdsourced annotations of granular consistency errors, while achieving a substantial inter-annotator agreement. This benchmark includes more than 3K instances spanning various tasks of attributable text generation. We also show that QASemConsistency yields factual consistency scores that correlate well with human judgments. Finally, we implement several methods for automatically detecting localized factual inconsistencies, with both supervised entailment models and LLMs.
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Authors pre-print
♻ ☆ sudoLLM: On Multi-role Alignment of Language Models EMNLP 2025
User authorization-based access privileges are a key feature in many safety-critical systems, but have not been extensively studied in the large language model (LLM) realm. In this work, drawing inspiration from such access control systems, we introduce sudoLLM, a novel framework that results in multi-role aligned LLMs, i.e., LLMs that account for, and behave in accordance with, user access rights. sudoLLM injects subtle user-based biases into queries and trains an LLM to utilize this bias signal in order to produce sensitive information if and only if the user is authorized. We present empirical results demonstrating that this approach shows substantially improved alignment, generalization, resistance to prefix-based jailbreaking attacks, and ``fails-closed''. The persistent tension between the language modeling objective and safety alignment, which is often exploited to jailbreak LLMs, is somewhat resolved with the aid of the injected bias signal. Our framework is meant as an additional security layer, and complements existing guardrail mechanisms for enhanced end-to-end safety with LLMs.
comment: Accepted to EMNLP 2025 (findings)
♻ ☆ DRT: Deep Reasoning Translation via Long Chain-of-Thought ACL 2025
Recently, O1-like models have emerged as representative examples, illustrating the effectiveness of long chain-of-thought (CoT) in reasoning tasks such as math and coding tasks. In this paper, we introduce DRT, an attempt to bring the success of long CoT to neural machine translation (MT). Specifically, in view of the literature books that might involve similes and metaphors, translating these texts to a target language is very difficult in practice due to cultural differences. In such cases, literal translation often fails to convey the intended meaning effectively. Even for professional human translators, considerable thought must be given to preserving semantics throughout the translation process. To simulate LLMs' long thought ability in MT, we first mine sentences containing similes or metaphors from existing literature books, and then develop a multi-agent framework to translate these sentences via long thought. In the multi-agent framework, a translator is used to iteratively translate the source sentence under the suggestions provided by an advisor. To ensure the effectiveness of the long thoughts, an evaluator is also employed to quantify the translation quality in each round. In this way, we collect tens of thousands of long-thought MT data, which is used to train our DRT. Using Qwen2.5 and LLama-3.1 as the backbones, DRT models can learn the thought process during machine translation, and outperform vanilla LLMs as well as LLMs which are simply fine-tuning on the paired sentences without long thought, showing its effectiveness. The synthesized data and model checkpoints are released at https://github.com/krystalan/DRT.
comment: ACL 2025 Findings
♻ ☆ AudioLens: A Closer Look at Auditory Attribute Perception of Large Audio-Language Models
Understanding the internal mechanisms of large audio-language models (LALMs) is crucial for interpreting their behavior and improving performance. This work presents the first in-depth analysis of how LALMs internally perceive and recognize auditory attributes. By applying vocabulary projection on three state-of-the-art LALMs, we track how attribute information evolves across layers and token positions. We find that attribute information generally decreases with layer depth when recognition fails, and that resolving attributes at earlier layers correlates with better accuracy. Moreover, LALMs heavily rely on querying auditory inputs for predicting attributes instead of aggregating necessary information in hidden states at attribute-mentioning positions. Based on our findings, we demonstrate a method to enhance LALMs. Our results offer insights into auditory attribute processing, paving the way for future improvements.
comment: Accepted to ASRU 2025
♻ ☆ SAKURA: On the Multi-hop Reasoning of Large Audio-Language Models Based on Speech and Audio Information
Large audio-language models (LALMs) extend the large language models with multimodal understanding in speech, audio, etc. While their performances on speech and audio-processing tasks are extensively studied, their reasoning abilities remain underexplored. Particularly, their multi-hop reasoning, the ability to recall and integrate multiple facts, lacks systematic evaluation. Existing benchmarks focus on general speech and audio-processing tasks, conversational abilities, and fairness but overlook this aspect. To bridge this gap, we introduce SAKURA, a benchmark assessing LALMs' multi-hop reasoning based on speech and audio information. Results show that LALMs struggle to integrate speech/audio representations for multi-hop reasoning, even when they extract the relevant information correctly, highlighting a fundamental challenge in multimodal reasoning. Our findings expose a critical limitation in LALMs, offering insights and resources for future research.
comment: Accepted to Interspeech 2025 (Oral). Update acknowledgement in this version. Project page: https://github.com/ckyang1124/SAKURA
♻ ☆ Disentangling Exploration of Large Language Models by Optimal Exploitation
Exploration is a crucial skill for in-context reinforcement learning in unknown environments. However, it remains unclear if large language models can effectively explore a partially hidden state space. This work isolates exploration as the sole objective, tasking an agent with gathering information that enhances future returns. Within this framework, we argue that measuring agent returns is not sufficient for a fair evaluation. Hence, we decompose missing rewards into their exploration and exploitation components based on the optimal achievable return. Experiments with various models reveal that most struggle to explore the state space, and weak exploration is insufficient. Nevertheless, we found a positive correlation between exploration performance and reasoning capabilities. Our decomposition can provide insights into differences in behaviors driven by prompt engineering, offering a valuable tool for refining performance in exploratory tasks.
♻ ☆ Draft Model Knows When to Stop: Self-Verification Speculative Decoding for Long-Form Generation EMNLP 2025
Conventional speculative decoding (SD) methods utilize a predefined length policy for proposing drafts, which implies the premise that the target model smoothly accepts the proposed draft tokens. However, reality deviates from this assumption: the oracle draft length varies significantly, and the fixed-length policy hardly satisfies such a requirement. Moreover, such discrepancy is further exacerbated in scenarios involving complex reasoning and long-form generation, particularly under test-time scaling for reasoning-specialized models. Through both theoretical and empirical estimation, we establish that the discrepancy between the draft and target models can be approximated by the draft model's prediction entropy: a high entropy indicates a low acceptance rate of draft tokens, and vice versa. Based on this insight, we propose SVIP: Self-Verification Length Policy for Long-Context Speculative Decoding, which is a training-free dynamic length policy for speculative decoding systems that adaptively determines the lengths of draft sequences by referring to the draft entropy. Experimental results on mainstream SD benchmarks as well as reasoning-heavy benchmarks demonstrate the superior performance of SVIP, achieving up to 17% speedup on MT-Bench at 8K context compared with fixed draft lengths, and 22% speedup for QwQ in long-form reasoning.
comment: EMNLP 2025
♻ ☆ More Women, Same Stereotypes: Unpacking the Gender Bias Paradox in Large Language Models
Large Language Models (LLMs) have revolutionized natural language processing, yet concerns persist regarding their tendency to reflect or amplify social biases. This study introduces a novel evaluation framework to uncover gender biases in LLMs: using free-form storytelling to surface biases embedded within the models. A systematic analysis of ten prominent LLMs shows a consistent pattern of overrepresenting female characters across occupations, likely due to supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). Paradoxically, despite this overrepresentation, the occupational gender distributions produced by these LLMs align more closely with human stereotypes than with real-world labor data. This highlights the challenge and importance of implementing balanced mitigation measures to promote fairness and prevent the establishment of potentially new biases. We release the prompts and LLM-generated stories at GitHub.
♻ ☆ Graph-oriented Instruction Tuning of Large Language Models for Generic Graph Mining
Graphs with abundant attributes are essential in modeling interconnected entities and enhancing predictions across various real-world applications. Traditional Graph Neural Networks (GNNs) often require re-training for different graph tasks and datasets. Although the emergence of Large Language Models (LLMs) has introduced new paradigms in natural language processing, their potential for generic graph mining, training a single model to simultaneously handle diverse tasks and datasets, remains under-explored. To this end, our novel framework MuseGraph, seamlessly integrates the strengths of GNNs and LLMs into one foundation model for graph mining across tasks and datasets. This framework first features a compact graph description to encapsulate key graph information within language token limitations. Then, we propose a diverse instruction generation mechanism with Chain-of-Thought (CoT)-based instruction packages to distill the reasoning capabilities from advanced LLMs like GPT-4. Finally, we design a graph-aware instruction tuning strategy to facilitate mutual enhancement across multiple tasks and datasets while preventing catastrophic forgetting of LLMs' generative abilities. Our experimental results demonstrate significant improvements in five graph tasks and ten datasets, showcasing the potential of our MuseGraph in enhancing the accuracy of graph-oriented downstream tasks while improving the generation abilities of LLMs.
comment: Accepted by TPAMI 2025
♻ ☆ Agentic large language models improve retrieval-based radiology question answering
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose an agentic RAG framework enabling LLMs to autonomously decompose radiology questions, iteratively retrieve targeted clinical evidence from Radiopaedia.org, and dynamically synthesize evidence-based responses. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. Agentic retrieval significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, agentic retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from agentic retrieval (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of agentic frameworks to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full agentic framework are publicly available to support open research and clinical translation.
♻ ☆ SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
comment: 9 pages, 1 figures
♻ ☆ Understanding Bias Reinforcement in LLM Agents Debate
Large Language Models $($LLMs$)$ solve complex problems using training-free methods like prompt engineering and in-context learning, yet ensuring reasoning correctness remains challenging. While self-correction methods such as self-consistency and self-refinement aim to improve reliability, they often reinforce biases due to the lack of effective feedback mechanisms. Multi-Agent Debate $($MAD$)$ has emerged as an alternative, but we identify two key limitations: bias reinforcement, where debate amplifies model biases instead of correcting them, and lack of perspective diversity, as all agents share the same model and reasoning patterns, limiting true debate effectiveness. To systematically evaluate these issues, we introduce $\textit{MetaNIM Arena}$, a benchmark designed to assess LLMs in adversarial strategic decision-making, where dynamic interactions influence optimal decisions. To overcome MAD's limitations, we propose $\textbf{DReaMAD}$ $($$\textbf{D}$iverse $\textbf{Rea}$soning via $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{D}$ebate with Refined Prompt$)$, a novel framework that $(1)$ refines LLM's strategic prior knowledge to improve reasoning quality and $(2)$ promotes diverse viewpoints within a single model by systematically modifying prompts, reducing bias. Empirical results show that $\textbf{DReaMAD}$ significantly improves decision accuracy, reasoning diversity, and bias mitigation across multiple strategic tasks, establishing it as a more effective approach for LLM-based decision-making.
comment: 32 pages, 9 figures
♻ ☆ Jinx: Unlimited LLMs for Probing Alignment Failures
Unlimited, or so-called helpful-only language models are trained without safety alignment constraints and never refuse user queries. They are widely used by leading AI companies as internal tools for red teaming and alignment evaluation. For example, if a safety-aligned model produces harmful outputs similar to an unlimited model, this indicates alignment failures that require further attention. Despite their essential role in assessing alignment, such models are not available to the research community. We introduce Jinx, a helpful-only variant of popular open-weight LLMs. Jinx responds to all queries without refusals or safety filtering, while preserving the base model's capabilities in reasoning and instruction following. It provides researchers with an accessible tool for probing alignment failures, evaluating safety boundaries, and systematically studying failure modes in language model safety.
comment: https://huggingface.co/Jinx-org
Computation and Language
☆ Sparse but Wrong: Incorrect L0 Leads to Incorrect Features in Sparse Autoencoders
Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant to correspond to single concepts. A core SAE training hyperparameter is L0: how many features should fire per token on average. Existing work compares SAE algorithms using sparsity--reconstruction tradeoff plots, implying L0 is a free parameter with no single correct value. In this work we study the effect of L0 on BatchTopK SAEs, and show that if L0 is not set precisely, the SAE fails to learn the underlying features of the LLM. If L0 is too low, the SAE will mix correlated features to improve reconstruction. If L0 is too high, the SAE finds degenerate solutions that also mix features. Further, we demonstrate a method to determine the correct L0 value for an SAE on a given training distribution, which finds the true L0 in toy models and coincides with peak sparse probing performance in LLMs. We find that most commonly used SAEs have an L0 that is too low. Our work shows that, to train SAEs with correct features, practitioners must set L0 correctly.
☆ Transfer Learning via Lexical Relatedness: A Sarcasm and Hate Speech Case Study
Detecting hate speech in non-direct forms, such as irony, sarcasm, and innuendos, remains a persistent challenge for social networks. Although sarcasm and hate speech are regarded as distinct expressions, our work explores whether integrating sarcasm as a pre-training step improves implicit hate speech detection and, by extension, explicit hate speech detection. Incorporating samples from ETHOS, Sarcasm on Reddit, and Implicit Hate Corpus, we devised two training strategies to compare the effectiveness of sarcasm pre-training on a CNN+LSTM and BERT+BiLSTM model. The first strategy is a single-step training approach, where a model trained only on sarcasm is then tested on hate speech. The second strategy uses sequential transfer learning to fine-tune models for sarcasm, implicit hate, and explicit hate. Our results show that sarcasm pre-training improved the BERT+BiLSTM's recall by 9.7%, AUC by 7.8%, and F1-score by 6% on ETHOS. On the Implicit Hate Corpus, precision increased by 7.8% when tested only on implicit samples. By incorporating sarcasm into the training process, we show that models can more effectively detect both implicit and explicit hate.
☆ FLAMES: Improving LLM Math Reasoning via a Fine-Grained Analysis of the Data Synthesis Pipeline EMNLP 2025
Recent works improving LLM math reasoning with synthetic data have used unique setups, making comparison of data synthesis strategies impractical. This leaves many unanswered questions about the roles of different factors in the synthetic data pipeline, such as the impact of filtering low-quality problems. To address this gap, we introduce FLAMES, a Framework for LLM Assessment of Math rEasoning Data Synthesis, and perform a systematic study of 10 existing data synthesis strategies and multiple other factors impacting the performance of synthetic math reasoning data. Our FLAMES experiments provide several valuable insights about the optimal balance of difficulty and diversity of synthetic data. First, data agents designed to increase problem complexity lead to best improvements on most math metrics. Second, with a fixed data generation budget, keeping higher problem coverage is more important than keeping only problems with reliable solutions. Third, GSM8K- and MATH-based synthetic data can lead to improvements on competition-level benchmarks, showcasing easy-to-hard generalization. Leveraging insights from our FLAMES experiments, we design two novel data synthesis strategies for improving out-of-domain generalization and robustness. Further, we develop the FLAMES dataset, an effective blend of our novel and existing data synthesis strategies, outperforming public datasets on OlympiadBench (+15.7), CollegeMath (+4.5), GSMPlus (+6.5), and MATH (+3.1). Fine-tuning Qwen2.5-Math-7B on the FLAMES dataset achieves 81.4% on MATH, surpassing larger Llama3 405B, GPT-4o and Claude 3.5 Sonnet.
comment: To appear at EMNLP 2025
☆ HAMSA: Hijacking Aligned Compact Models via Stealthy Automation
Large Language Models (LLMs), especially their compact efficiency-oriented variants, remain susceptible to jailbreak attacks that can elicit harmful outputs despite extensive alignment efforts. Existing adversarial prompt generation techniques often rely on manual engineering or rudimentary obfuscation, producing low-quality or incoherent text that is easily flagged by perplexity-based filters. We present an automated red-teaming framework that evolves semantically meaningful and stealthy jailbreak prompts for aligned compact LLMs. The approach employs a multi-stage evolutionary search, where candidate prompts are iteratively refined using a population-based strategy augmented with temperature-controlled variability to balance exploration and coherence preservation. This enables the systematic discovery of prompts capable of bypassing alignment safeguards while maintaining natural language fluency. We evaluate our method on benchmarks in English (In-The-Wild Jailbreak Prompts on LLMs), and a newly curated Arabic one derived from In-The-Wild Jailbreak Prompts on LLMs and annotated by native Arabic linguists, enabling multilingual assessment.
comment: 9 pages, 1 figure; article under review
☆ LLM-as-classifier: Semi-Supervised, Iterative Framework for Hierarchical Text Classification using Large Language Models
The advent of Large Language Models (LLMs) has provided unprecedented capabilities for analyzing unstructured text data. However, deploying these models as reliable, robust, and scalable classifiers in production environments presents significant methodological challenges. Standard fine-tuning approaches can be resource-intensive and often struggle with the dynamic nature of real-world data distributions, which is common in the industry. In this paper, we propose a comprehensive, semi-supervised framework that leverages the zero- and few-shot capabilities of LLMs for building hierarchical text classifiers as a framework for a solution to these industry-wide challenges. Our methodology emphasizes an iterative, human-in-the-loop process that begins with domain knowledge elicitation and progresses through prompt refinement, hierarchical expansion, and multi-faceted validation. We introduce techniques for assessing and mitigating sequence-based biases and outline a protocol for continuous monitoring and adaptation. This framework is designed to bridge the gap between the raw power of LLMs and the practical need for accurate, interpretable, and maintainable classification systems in industry applications.
comment: 20 pages excluding reference list, 2 figures
☆ What makes an entity salient in discourse?
Entities in discourse vary broadly in salience: main participants, objects and locations are noticeable and memorable, while tangential ones are less important and quickly forgotten, raising questions about how humans signal and infer relative salience. Using a graded operationalization of salience based on summary-worthiness in multiple summaries of a discourse, this paper explores data from 24 spoken and written genres of English to extract a multifactorial complex of overt and implicit linguistic cues, such as recurring subjecthood or definiteness, discourse relations and hierarchy across utterances, as well as pragmatic functional inferences based on genre and communicative intent. Tackling the question 'how is the degree of salience expressed for each and every entity mentioned?' our results show that while previous approaches to salience all correlate with our salience scores to some extent, no single generalization is without exceptions, and the phenomenon cuts across all levels of linguistic representation.
☆ A Probabilistic Inference Scaling Theory for LLM Self-Correction EMNLP 2025
Large Language Models (LLMs) have demonstrated the capability to refine their generated answers through self-correction, enabling continuous performance improvement over multiple rounds. However, the mechanisms underlying how and why accuracy evolves during this iterative process remain unexplored. To fill this gap, we propose a probabilistic theory to model the dynamics of accuracy change and explain the performance improvements observed in multi-round self-correction. Through mathematical derivation, we establish that the accuracy after the $t^{th}$ round of self-correction is given by: $Acc_t = Upp - \alpha^t(Upp - Acc_0),$ where $Acc_0$ denotes the initial accuracy, $Upp$ represents the upper bound of accuracy convergence, and $\alpha$ determines the rate of convergence. Based on our theory, these parameters can be calculated and the predicted accuracy curve then can be obtained through only a single round of self-correction. Extensive experiments across diverse models and datasets demonstrate that our theoretical predictions align closely with empirical accuracy curves, validating the effectiveness of the theory. Our work provides a theoretical foundation for understanding LLM self-correction, thus paving the way for further explorations.
comment: EMNLP 2025 Main
☆ Anti-establishment sentiment on TikTok: Implications for understanding influence(rs) and expertise on social media AAAI
Distrust of public serving institutions and anti-establishment views are on the rise (especially in the U.S.). As people turn to social media for information, it is imperative to understand whether and how social media environments may be contributing to distrust of institutions. In social media, content creators, influencers, and other opinion leaders often position themselves as having expertise and authority on a range of topics from health to politics, and in many cases devalue and dismiss institutional expertise to build a following and increase their own visibility. However, the extent to which this content appears and whether such content increases engagement is unclear. This study analyzes the prevalence of anti-establishment sentiment (AES) on the social media platform TikTok. Despite its popularity as a source of information, TikTok remains relatively understudied and may provide important insights into how people form attitudes towards institutions. We employ a computational approach to label TikTok posts as containing AES or not across topical domains where content creators tend to frame themselves as experts: finance and wellness. As a comparison, we also consider the topic of conspiracy theories, where AES is expected to be common. We find that AES is most prevalent in conspiracy theory content, and relatively rare in content related to the other two topics. However, we find that engagement patterns with such content varies by area, and that there may be platform incentives for users to post content that expresses anti-establishment sentiment.
comment: 10 pages excluding references; 14 pages in total; 4 figures; Accepted by the AAAI Conference on Web and Social Media (ICWSM-2026)
☆ PediatricsMQA: a Multi-modal Pediatrics Question Answering Benchmark
Large language models (LLMs) and vision-augmented LLMs (VLMs) have significantly advanced medical informatics, diagnostics, and decision support. However, these models exhibit systematic biases, particularly age bias, compromising their reliability and equity. This is evident in their poorer performance on pediatric-focused text and visual question-answering tasks. This bias reflects a broader imbalance in medical research, where pediatric studies receive less funding and representation despite the significant disease burden in children. To address these issues, a new comprehensive multi-modal pediatric question-answering benchmark, PediatricsMQA, has been introduced. It consists of 3,417 text-based multiple-choice questions (MCQs) covering 131 pediatric topics across seven developmental stages (prenatal to adolescent) and 2,067 vision-based MCQs using 634 pediatric images from 67 imaging modalities and 256 anatomical regions. The dataset was developed using a hybrid manual-automatic pipeline, incorporating peer-reviewed pediatric literature, validated question banks, existing benchmarks, and existing QA resources. Evaluating state-of-the-art open models, we find dramatic performance drops in younger cohorts, highlighting the need for age-aware methods to ensure equitable AI support in pediatric care.
☆ Cetvel: A Unified Benchmark for Evaluating Language Understanding, Generation and Cultural Capacity of LLMs for Turkish
We introduce Cetvel, a comprehensive benchmark designed to evaluate large language models (LLMs) in Turkish. Existing Turkish benchmarks often lack either task diversity or culturally relevant content, or both. Cetvel addresses these gaps by combining a broad range of both discriminative and generative tasks ensuring content that reflects the linguistic and cultural richness of Turkish language. Cetvel covers 23 tasks grouped into seven categories, including tasks such as grammatical error correction, machine translation, and question answering rooted in Turkish history and idiomatic language. We evaluate 33 open-weight LLMs (up to 70B parameters) covering different model families and instruction paradigms. Our experiments reveal that Turkish-centric instruction-tuned models generally underperform relative to multilingual or general-purpose models (e.g. Llama 3 and Mistral), despite being tailored for the language. Moreover, we show that tasks such as grammatical error correction and extractive question answering are particularly discriminative in differentiating model capabilities. Cetvel offers a comprehensive and culturally grounded evaluation suite for advancing the development and assessment of LLMs in Turkish.
comment: 31 pages, 2 figures, 10 tables
☆ Retrieval-Augmented Defense: Adaptive and Controllable Jailbreak Prevention for Large Language Models
Large Language Models (LLMs) remain vulnerable to jailbreak attacks, which attempt to elicit harmful responses from LLMs. The evolving nature and diversity of these attacks pose many challenges for defense systems, including (1) adaptation to counter emerging attack strategies without costly retraining, and (2) control of the trade-off between safety and utility. To address these challenges, we propose Retrieval-Augmented Defense (RAD), a novel framework for jailbreak detection that incorporates a database of known attack examples into Retrieval-Augmented Generation, which is used to infer the underlying, malicious user query and jailbreak strategy used to attack the system. RAD enables training-free updates for newly discovered jailbreak strategies and provides a mechanism to balance safety and utility. Experiments on StrongREJECT show that RAD substantially reduces the effectiveness of strong jailbreak attacks such as PAP and PAIR while maintaining low rejection rates for benign queries. We propose a novel evaluation scheme and show that RAD achieves a robust safety-utility trade-off across a range of operating points in a controllable manner.
☆ AetherCode: Evaluating LLMs' Ability to Win In Premier Programming Competitions
Competitive programming has emerged as a critical benchmark for evaluating the reasoning and coding capabilities of Large Language Models (LLMs). Despite impressive progress on existing benchmarks, we argue that current evaluations overstate model proficiency, masking a substantial gap between LLMs and elite human programmers. This gap arises from two key limitations: insufficient difficulty and scope of benchmark problems, and evaluation bias from low-quality test cases. To address these shortcomings, we present AetherCode, a new benchmark that draws problems from premier programming competitions such as IOI and ICPC, offering broader coverage and higher difficulty. AetherCode further incorporates comprehensive, expert-validated test suites built through a hybrid of automated generation and human curation, ensuring rigorous and reliable assessment. By combining challenging problem design with robust evaluation, AetherCode provides a more faithful measure of LLM capabilities and sets a new standard for future research in code reasoning.
comment: 15 pages
☆ RoMedQA: The First Benchmark for Romanian Medical Question Answering
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce RoMedQA, the first Romanian QA benchmark for the medical domain, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. RoMedQA is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on RoMedQA. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on RoMedQA. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/RoMedQA.
☆ ChatGPT-generated texts show authorship traits that identify them as non-human
Large Language Models can emulate different writing styles, ranging from composing poetry that appears indistinguishable from that of famous poets to using slang that can convince people that they are chatting with a human online. While differences in style may not always be visible to the untrained eye, we can generally distinguish the writing of different people, like a linguistic fingerprint. This work examines whether a language model can also be linked to a specific fingerprint. Through stylometric and multidimensional register analyses, we compare human-authored and model-authored texts from different registers. We find that the model can successfully adapt its style depending on whether it is prompted to produce a Wikipedia entry vs. a college essay, but not in a way that makes it indistinguishable from humans. Concretely, the model shows more limited variation when producing outputs in different registers. Our results suggest that the model prefers nouns to verbs, thus showing a distinct linguistic backbone from humans, who tend to anchor language in the highly grammaticalized dimensions of tense, aspect, and mood. It is possible that the more complex domains of grammar reflect a mode of thought unique to humans, thus acting as a litmus test for Artificial Intelligence.
☆ GLARE: Agentic Reasoning for Legal Judgment Prediction
Legal judgment prediction (LJP) has become increasingly important in the legal field. In this paper, we identify that existing large language models (LLMs) have significant problems of insufficient reasoning due to a lack of legal knowledge. Therefore, we introduce GLARE, an agentic legal reasoning framework that dynamically acquires key legal knowledge by invoking different modules, thereby improving the breadth and depth of reasoning. Experiments conducted on the real-world dataset verify the effectiveness of our method. Furthermore, the reasoning chain generated during the analysis process can increase interpretability and provide the possibility for practical applications.
☆ The Mediomatix Corpus: Parallel Data for Romansh Idioms via Comparable Schoolbooks
The five idioms (i.e., varieties) of the Romansh language are largely standardized and are taught in the schools of the respective communities in Switzerland. In this paper, we present the first parallel corpus of Romansh idioms. The corpus is based on 291 schoolbook volumes, which are comparable in content for the five idioms. We use automatic alignment methods to extract 207k multi-parallel segments from the books, with more than 2M tokens in total. A small-scale human evaluation confirms that the segments are highly parallel, making the dataset suitable for NLP applications such as machine translation between Romansh idioms. We release the parallel and unaligned versions of the dataset under a CC-BY-NC-SA license and demonstrate its utility for machine translation by training and evaluating an LLM on a sample of the dataset.
☆ MizanQA: Benchmarking Large Language Models on Moroccan Legal Question Answering
The rapid advancement of large language models (LLMs) has significantly propelled progress in natural language processing (NLP). However, their effectiveness in specialized, low-resource domains-such as Arabic legal contexts-remains limited. This paper introduces MizanQA (pronounced Mizan, meaning "scale" in Arabic, a universal symbol of justice), a benchmark designed to evaluate LLMs on Moroccan legal question answering (QA) tasks, characterised by rich linguistic and legal complexity. The dataset draws on Modern Standard Arabic, Islamic Maliki jurisprudence, Moroccan customary law, and French legal influences. Comprising over 1,700 multiple-choice questions, including multi-answer formats, MizanQA captures the nuances of authentic legal reasoning. Benchmarking experiments with multilingual and Arabic-focused LLMs reveal substantial performance gaps, highlighting the need for tailored evaluation metrics and culturally grounded, domain-specific LLM development.
☆ Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.
comment: We will release code and model checkpoints at https://github.com/open-mmlab/Amphion
☆ LLMSymGuard: A Symbolic Safety Guardrail Framework Leveraging Interpretable Jailbreak Concepts
Large Language Models have found success in a variety of applications; however, their safety remains a matter of concern due to the existence of various types of jailbreaking methods. Despite significant efforts, alignment and safety fine-tuning only provide a certain degree of robustness against jailbreak attacks that covertly mislead LLMs towards the generation of harmful content. This leaves them prone to a number of vulnerabilities, ranging from targeted misuse to accidental profiling of users. This work introduces \textbf{LLMSymGuard}, a novel framework that leverages Sparse Autoencoders (SAEs) to identify interpretable concepts within LLM internals associated with different jailbreak themes. By extracting semantically meaningful internal representations, LLMSymGuard enables building symbolic, logical safety guardrails -- offering transparent and robust defenses without sacrificing model capabilities or requiring further fine-tuning. Leveraging advances in mechanistic interpretability of LLMs, our approach demonstrates that LLMs learn human-interpretable concepts from jailbreaks, and provides a foundation for designing more interpretable and logical safeguard measures against attackers. Code will be released upon publication.
☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main conference
☆ JaParaPat: A Large-Scale Japanese-English Parallel Patent Application Corpus LREC
We constructed JaParaPat (Japanese-English Parallel Patent Application Corpus), a bilingual corpus of more than 300 million Japanese-English sentence pairs from patent applications published in Japan and the United States from 2000 to 2021. We obtained the publication of unexamined patent applications from the Japan Patent Office (JPO) and the United States Patent and Trademark Office (USPTO). We also obtained patent family information from the DOCDB, that is a bibliographic database maintained by the European Patent Office (EPO). We extracted approximately 1.4M Japanese-English document pairs, which are translations of each other based on the patent families, and extracted about 350M sentence pairs from the document pairs using a translation-based sentence alignment method whose initial translation model is bootstrapped from a dictionary-based sentence alignment method. We experimentally improved the accuracy of the patent translations by 20 bleu points by adding more than 300M sentence pairs obtained from patent applications to 22M sentence pairs obtained from the web.
comment: LREC-COLING 2024
☆ LLMs that Understand Processes: Instruction-tuning for Semantics-Aware Process Mining
Process mining is increasingly using textual information associated with events to tackle tasks such as anomaly detection and process discovery. Such semantics-aware process mining focuses on what behavior should be possible in a process (i.e., expectations), thus providing an important complement to traditional, frequency-based techniques that focus on recorded behavior (i.e., reality). Large Language Models (LLMs) provide a powerful means for tackling semantics-aware tasks. However, the best performance is so far achieved through task-specific fine-tuning, which is computationally intensive and results in models that can only handle one specific task. To overcome this lack of generalization, we use this paper to investigate the potential of instruction-tuning for semantics-aware process mining. The idea of instruction-tuning here is to expose an LLM to prompt-answer pairs for different tasks, e.g., anomaly detection and next-activity prediction, making it more familiar with process mining, thus allowing it to also perform better at unseen tasks, such as process discovery. Our findings demonstrate a varied impact of instruction-tuning: while performance considerably improved on process discovery and prediction tasks, it varies across models on anomaly detection tasks, highlighting that the selection of tasks for instruction-tuning is critical to achieving desired outcomes.
comment: Accepted at IEEE ICPM 2025, 8 pages, 2 figures
☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
☆ M3TQA: Massively Multilingual Multitask Table Question Answering
Tabular data is a fundamental component of real-world information systems, yet most research in table understanding remains confined to English, leaving multilingual comprehension significantly underexplored. Existing multilingual table benchmarks suffer from geolinguistic imbalance - overrepresenting certain languages and lacking sufficient scale for rigorous cross-lingual analysis. To address these limitations, we introduce a comprehensive framework for massively multilingual multitask table question answering, featuring m3TQA-Instruct, a large-scale benchmark spanning 97 languages across diverse language families, including underrepresented and low-resource languages. We construct m3TQA by curating 50 real-world tables in Chinese and English, then applying a robust six-step LLM-based translation pipeline powered by DeepSeek and GPT-4o, achieving high translation fidelity with a median BLEU score of 60.19 as validated through back-translation. The benchmark includes 2,916 professionally annotated question-answering pairs across four tasks designed to evaluate nuanced table reasoning capabilities. Experiments on state-of-the-art LLMs reveal critical insights into cross-lingual generalization, demonstrating that synthetically generated, unannotated QA data can significantly boost performance, particularly for low-resource languages. M3T-Bench establishes a new standard for multilingual table understanding, providing both a challenging evaluation platform and a scalable methodology for future research.
☆ MCPVerse: An Expansive, Real-World Benchmark for Agentic Tool Use
Large Language Models (LLMs) are evolving from text generators into reasoning agents. This transition makes their ability to use external tools a critical capability. However, evaluating this skill presents a significant challenge. Existing benchmarks are often limited by their reliance on synthetic tools and severely constrained action spaces. To address these limitations, we introduce MCPVerse, an expansive, real-world benchmark for evaluating agentic tool use. MCPVerse integrates more than 550 real-world, executable tools to create an unprecedented action space exceeding 140k tokens, and employs outcome-based evaluation with real-time ground truth for time-sensitive tasks. We benchmarked the state-of-the-art LLMs across three modes (Oracle, Standard, and Max-Scale), revealing that while most models suffer performance degradation when confronted with larger tool sets, the agentic models, such as Claude-4-Sonnet, can effectively leverage expanded exploration spaces to improve accuracy. This finding not only exposes the limitations of state-of-the-art models in complex, real-world scenarios but also establishes MCPVerse as a critical benchmark for measuring and advancing agentic tool use capabilities.
☆ TULIP: Adapting Open-Source Large Language Models for Underrepresented Languages and Specialized Financial Tasks IJCAI 2025
Thanks to the growing popularity of large language models over the years, there is great potential for their applications in finance. Despite the exceptional performance of larger proprietary models, which are presented as black-box solutions through APIs, smaller models that can be hosted on-premise present opportunities for adaptability and privacy. Especially in cases where the management of sensitive information and application of domain knowledge is important, like finance, enhancing the capabilities of smaller models becomes crucial, notably for underrepresented languages. In this work, we introduce TULIP models, which adapt Llama 3.1 8B and Qwen 2.5 7B for domain and language adaptation, focusing on financial Turkish use cases. The five-stage development pipeline involves data collection, continual pre-training (CPT), benchmark design, synthetic data generation and supervised fine-tuning (SFT). The results show that the capabilities of the models can be enhanced to effectively accomplish targeted tasks in this specific domain and language.
comment: IJCAI 2025 - FinLLM Workshop
☆ SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning EMNLP 2025
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens, enabling efficient speculation without sacrificing accuracy. To achieve this, it performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B.
comment: Accepted at EMNLP 2025
☆ CMR-SPB: Cross-Modal Multi-Hop Reasoning over Text, Image, and Speech with Path Balance
Cross-modal multi-hop reasoning (CMR) is a valuable yet underexplored capability of multimodal large language models (MLLMs), entailing the integration of information from multiple modalities to produce a coherent output for a given context. We argue that existing benchmarks for evaluating this ability have critical shortcomings: (1) they largely overlook the speech modality, and (2) they exhibit heavily biased reasoning path distributions, which can severely undermine fair evaluation. To address these limitations, we introduce a novel benchmark -- Cross-Modal Multi-Hop Reasoning over Text, Image and Speech with Path Balance (CMR-SPB) -- designed to assess tri-modal multi-hop reasoning while ensuring both unbiased and diverse reasoning paths. Our experiments with the new dataset reveal consistent model failures in specific reasoning sequences and show that biased benchmarks risk misrepresenting model performance. Finally, based on our extensive analysis, we propose a new ECV (Extract, Connect, Verify) prompting technique that effectively mitigates the performance gap across different reasoning paths. Overall, we call for more careful evaluation in CMR to advance the development of robust multimodal AI.
☆ ComicScene154: A Scene Dataset for Comic Analysis
Comics offer a compelling yet under-explored domain for computational narrative analysis, combining text and imagery in ways distinct from purely textual or audiovisual media. We introduce ComicScene154, a manually annotated dataset of scene-level narrative arcs derived from public-domain comic books spanning diverse genres. By conceptualizing comics as an abstraction for narrative-driven, multimodal data, we highlight their potential to inform broader research on multi-modal storytelling. To demonstrate the utility of ComicScene154, we present a baseline scene segmentation pipeline, providing an initial benchmark that future studies can build upon. Our results indicate that ComicScene154 constitutes a valuable resource for advancing computational methods in multimodal narrative understanding and expanding the scope of comic analysis within the Natural Language Processing community.
☆ Seeing is Believing: Emotion-Aware Audio-Visual Language Modeling for Expressive Speech Generation EMNLP 2025
We present an Audio-Visual Language Model (AVLM) for expressive speech generation by integrating full-face visual cues into a pre-trained expressive speech model. We explore multiple visual encoders and multimodal fusion strategies during pre-training to identify the most effective integration approach. Subsequent fine-tuning on emotion recognition and expressive dialogue tasks yields substantial gains over speech-only baselines (e.g., +5 F1 in emotion recognition). AVLM highlights the value of expressive visual information in guiding speech generation and offers a foundation for end-to-end multimodal conversational systems.
comment: EMNLP 2025 (Findings)
☆ ParamBench: A Graduate-Level Benchmark for Evaluating LLM Understanding on Indic Subjects
Large language models (LLMs) have been widely evaluated on tasks such as comprehension, question answering, summarization, code generation, etc. However, their performance on graduate-level, culturally grounded questions in the Indian context remains largely unexplored. Existing Indian benchmarks emphasise basic fact-orientated queries that offer limited assessment of a deeper disciplinary understanding tailored to the Indian setting. In this paper, we present ParamBench, consisting of around 11.5K questions in Hindi language comprising questionnaires from 16 diverse subjects. These questions are primarily derived from nation-wide graduate level entrance examination covering topics such as history, music, instruments, yoga, literature, philosophy, law, etc., specifically for the Indian context. Additionally, we assess the ability of LLMs to handle diverse question formats-such as list-based matching, assertion-reason pairs, and sequence ordering-alongside conventional multiple-choice questions. We evaluated the performance of more than 17 open source LLMs on this benchmark, observing that Llama 3.3 70B attains the highest overall accuracy of 48%. Furthermore, subject-wise analysis indicates that even for the best performing LLMs, performance remains weak on topics such as music, classical instruments, politics and archaeology, underscoring persistent challenges in culturally grounded reasoning.
☆ AgentFly: Fine-tuning LLM Agents without Fine-tuning LLMs
In this paper, we introduce a novel learning paradigm for adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely AgentFly, which attains top-1 on GAIA validation ($87.88\%$ Pass@$3$) and $79.40\%$ on the test set. It reaches $66.6\%$ F1 and $80.4\%$ PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds $4.7\%$ to $9.6\%$ absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/AgentFly.
☆ Hardwired-Neurons Language Processing Units as General-Purpose Cognitive Substrates
The rapid advancement of Large Language Models (LLMs) has established language as a core general-purpose cognitive substrate, driving the demand for specialized Language Processing Units (LPUs) tailored for LLM inference. To overcome the growing energy consumption of LLM inference systems, this paper proposes a Hardwired-Neurons Language Processing Unit (HNLPU), which physically hardwires LLM weight parameters into the computational fabric, achieving several orders of magnitude computational efficiency improvement by extreme specialization. However, a significant challenge still lies in the scale of modern LLMs. An ideal estimation on hardwiring gpt-oss 120 B requires fabricating at least 6 billion dollars of photomask sets, rendering the straightforward solution economically impractical. Addressing this challenge, we propose the novel Metal-Embedding methodology. Instead of embedding weights in a 2D grid of silicon device cells, Metal-Embedding embeds weight parameters into the 3D topology of metal wires. This brings two benefits: (1) a 15x increase in density, and (2) 60 out of 70 layers of photomasks are made homogeneous across chips, including all EUV photomasks. In total, Metal-Embedding reduced the photomask cost by 112x, bringing the Non-Recurring Engineering (NRE) cost of HNLPU into an economically viable range. Experimental results show that HNLPU achieved 249,960 tokens/s (5,555x/85x of GPU/WSE), 36 tokens/J (1,047x/283x of GPU/WSE), 13,232 mm2 total die area (29% inscribed rectangular area in a 300 mm wafer), \$184M estimated NRE at 5 nm technology. Analysis shows that HNLPU achieved 8.57x cost-effectiveness and 230x carbon footprint reduction compared to H100 clusters, under an annual weight updating assumption.
☆ Hierarchical Vision-Language Reasoning for Multimodal Multiple-Choice Question Answering ACM MM 2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable multimodal understanding capabilities in Visual Question Answering (VQA) tasks by integrating visual and textual features. However, under the challenging ten-choice question evaluation paradigm, existing methods still exhibit significant limitations when processing PDF documents with complex layouts and lengthy content. Notably, current mainstream models suffer from a strong bias toward English training data, resulting in suboptimal performance for Japanese and other language scenarios. To address these challenges, this paper proposes a novel Japanese PDF document understanding framework that combines multimodal hierarchical reasoning mechanisms with Colqwen-optimized retrieval methods, while innovatively introducing a semantic verification strategy through sub-question decomposition. Experimental results demonstrate that our framework not only significantly enhances the model's deep semantic parsing capability for complex documents, but also exhibits superior robustness in practical application scenarios.
comment: This paper has been accepted by ACM MM 2025
☆ XLQA: A Benchmark for Locale-Aware Multilingual Open-Domain Question Answering EMNLP 2025
Large Language Models (LLMs) have shown significant progress in Open-domain question answering (ODQA), yet most evaluations focus on English and assume locale-invariant answers across languages. This assumption neglects the cultural and regional variations that affect question understanding and answer, leading to biased evaluation in multilingual benchmarks. To address these limitations, we introduce XLQA, a novel benchmark explicitly designed for locale-sensitive multilingual ODQA. XLQA contains 3,000 English seed questions expanded to eight languages, with careful filtering for semantic consistency and human-verified annotations distinguishing locale-invariant and locale-sensitive cases. Our evaluation of five state-of-the-art multilingual LLMs reveals notable failures on locale-sensitive questions, exposing gaps between English and other languages due to a lack of locale-grounding knowledge. We provide a systematic framework and scalable methodology for assessing multilingual QA under diverse cultural contexts, offering a critical resource to advance the real-world applicability of multilingual ODQA systems. Our findings suggest that disparities in training data distribution contribute to differences in both linguistic competence and locale-awareness across models.
comment: Accepted to EMNLP 2025 main conference. 12 pages, 4 figures, 7 tables. Code is available at https://github.com/ro-ko/XLQA
☆ Text Takes Over: A Study of Modality Bias in Multimodal Intent Detection EMNLP 2025
The rise of multimodal data, integrating text, audio, and visuals, has created new opportunities for studying multimodal tasks such as intent detection. This work investigates the effectiveness of Large Language Models (LLMs) and non-LLMs, including text-only and multi-modal models, in the multimodal intent detection task. Our study reveals that Mistral-7B, a text-only LLM, outperforms most competitive multimodal models by approximately 9% on MIntRec-1 and 4% on MIntRec2.0 datasets. This performance advantage comes from a strong textual bias in these datasets, where over 90% of the samples require textual input, either alone or in combination with other modalities, for correct classification. We confirm the modality bias of these datasets via human evaluation, too. Next, we propose a framework to debias the datasets, and upon debiasing, more than 70% of the samples in MIntRec-1 and more than 50% in MIntRec2.0 get removed, resulting in significant performance degradation across all models, with smaller multimodal fusion models being the most affected with an accuracy drop of over 50 - 60%. Further, we analyze the context-specific relevance of different modalities through empirical analysis. Our findings highlight the challenges posed by modality bias in multimodal intent datasets and emphasize the need for unbiased datasets to evaluate multimodal models effectively.
comment: EMNLP 2025 Main Conference Full Paper
☆ Extending FKG.in: Towards a Food Claim Traceability Network
The global food landscape is rife with scientific, cultural, and commercial claims about what foods are, what they do, what they should not do, or should not do. These range from rigorously studied health benefits (probiotics improve gut health) and misrepresentations (soaked almonds make one smarter) to vague promises (superfoods boost immunity) and culturally rooted beliefs (cold foods cause coughs). Despite their widespread influence, the infrastructure for tracing, verifying, and contextualizing these claims remains fragmented and underdeveloped. In this paper, we propose a Food Claim-Traceability Network (FCN) as an extension of FKG.in, a knowledge graph of Indian food that we have been incrementally building. We also present the ontology design and the semi-automated knowledge curation workflow that we used to develop a proof of concept of FKG.in-FCN using Reddit data and Large Language Models. FCN integrates curated data inputs, structured schemas, and provenance-aware pipelines for food-related claim extraction and validation. While directly linked to the Indian food knowledge graph as an application, our methodology remains application-agnostic and adaptable to other geographic, culinary, or regulatory settings. By modeling food claims and their traceability in a structured, verifiable, and explainable way, we aim to contribute to more transparent and accountable food knowledge ecosystems, supporting researchers, policymakers, and most importantly, everyday consumers in navigating a world saturated with dietary assertions.
comment: 10 pages, 3 figures, 1 table, 45 references, ACM International Conference on Multimedia 2025 - Multi-modal Food Computing Workshop
☆ From Indirect Object Identification to Syllogisms: Exploring Binary Mechanisms in Transformer Circuits
Transformer-based language models (LMs) can perform a wide range of tasks, and mechanistic interpretability (MI) aims to reverse engineer the components responsible for task completion to understand their behavior. Previous MI research has focused on linguistic tasks such as Indirect Object Identification (IOI). In this paper, we investigate the ability of GPT-2 small to handle binary truth values by analyzing its behavior with syllogistic prompts, e.g., "Statement A is true. Statement B matches statement A. Statement B is", which requires more complex logical reasoning compared to IOI. Through our analysis of several syllogism tasks of varying difficulty, we identify multiple circuits that mechanistically explain GPT-2's logical-reasoning capabilities and uncover binary mechanisms that facilitate task completion, including the ability to produce a negated token not present in the input prompt through negative heads. Our evaluation using a faithfulness metric shows that a circuit comprising five attention heads achieves over 90% of the original model's performance. By relating our findings to IOI analysis, we provide new insights into the roles of specific attention heads and MLPs in LMs. These insights contribute to a broader understanding of model reasoning and support future research in mechanistic interpretability.
☆ CYCLE-INSTRUCT: Fully Seed-Free Instruction Tuning via Dual Self-Training and Cycle Consistency EMNLP 2025
Instruction tuning is vital for aligning large language models (LLMs) with human intent, but current methods typically rely on costly human-annotated seed data or powerful external teacher models. While instruction back-translation techniques reduce this dependency, they remain fundamentally tethered to an initial seed set, which limits full automation, introduces biases, and can lead to inefficient use of unlabeled corpora. In this paper, we propose Cycle-Instruct, a novel framework that achieves fully seed-free instruction tuning. Inspired by cycle consistency, Cycle-Instruct employs a dual self-training loop where two models-an answer generator and a question generator-are bootstrapped solely from raw, unlabeled text. These models mutually supervise each other by reconstructing original text segments from their counterpart's generated pseudo-labels, effectively learning from the intrinsic structure of the data without any human-provided seeds. We demonstrate Cycle-Instruct's efficacy across four diverse data tracks, including general instruction-following, domain-specific tasks, dialogue logs, and plain text. Our extensive experiments show that Cycle-Instruct not only outperforms seed-driven back-translation baselines but also achieves performance comparable to strongly supervised methods.
comment: EMNLP 2025 Main
☆ CEQuest: Benchmarking Large Language Models for Construction Estimation
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of general-domain tasks. However, their effectiveness in specialized fields, such as construction, remains underexplored. In this paper, we introduce CEQuest, a novel benchmark dataset specifically designed to evaluate the performance of LLMs in answering construction-related questions, particularly in the areas of construction drawing interpretation and estimation. We conduct comprehensive experiments using five state-of-the-art LLMs, including Gemma 3, Phi4, LLaVA, Llama 3.3, and GPT-4.1, and evaluate their performance in terms of accuracy, execution time, and model size. Our experimental results demonstrate that current LLMs exhibit considerable room for improvement, highlighting the importance of integrating domain-specific knowledge into these models. To facilitate further research, we will open-source the proposed CEQuest dataset, aiming to foster the development of specialized large language models (LLMs) tailored to the construction domain.
☆ InMind: Evaluating LLMs in Capturing and Applying Individual Human Reasoning Styles EMNLP 2025
LLMs have shown strong performance on human-centric reasoning tasks. While previous evaluations have explored whether LLMs can infer intentions or detect deception, they often overlook the individualized reasoning styles that influence how people interpret and act in social contexts. Social deduction games (SDGs) provide a natural testbed for evaluating individualized reasoning styles, where different players may adopt diverse but contextually valid reasoning strategies under identical conditions. To address this, we introduce InMind, a cognitively grounded evaluation framework designed to assess whether LLMs can capture and apply personalized reasoning styles in SDGs. InMind enhances structured gameplay data with round-level strategy traces and post-game reflections, collected under both Observer and Participant modes. It supports four cognitively motivated tasks that jointly evaluate both static alignment and dynamic adaptation. As a case study, we apply InMind to the game Avalon, evaluating 11 state-of-the-art LLMs. General-purpose LLMs, even GPT-4o frequently rely on lexical cues, struggling to anchor reflections in temporal gameplay or adapt to evolving strategies. In contrast, reasoning-enhanced LLMs like DeepSeek-R1 exhibit early signs of style-sensitive reasoning. These findings reveal key limitations in current LLMs' capacity for individualized, adaptive reasoning, and position InMind as a step toward cognitively aligned human-AI interaction.
comment: EMNLP 2025 MainConference
☆ Less Redundancy: Boosting Practicality of Vision Language Model in Walking Assistants
Approximately 283 million people worldwide live with visual impairments, motivating increasing research into leveraging Visual Language Models (VLMs) to develop effective walking assistance systems for blind and low vision individuals. However, existing VLMs in walking assistant task often have outputs that contain considerable redundancy and extraneous details, adversely affecting users' ability to accurately assess their surroundings. Moreover, these models typically lack the capability to proactively assess environmental risks and adaptively trigger reminders based on the appropriate scene, leading to excessive temporal redundancy. To mitigate output and temporal redundancy, we propose WalkVLM-LR, a walking assistance model with less redundancy. To reduce output redundancy, we introduce four human-preference-based custom reward functions within the GRPO-based reasoning framework to optimize the output in terms of conciseness, fluency, keyword density, and accuracy, thereby producing more informative and streamlined outputs. To minimize temporal redundancy, we incorporate an environment awareness discriminator, which shares the visual encoder with the VLMs to reduce redundant computations and enhance discriminative efficiency, to make WalkVLM-LR assess scene risk levels and minimize unnecessary reminders. Experimental results demonstrate that our method achieves state-of-the-art performance across all evaluation metrics compared with other models, particularly in output conciseness and less temporal redundancy.
☆ Ethical Considerations of Large Language Models in Game Playing
Large language models (LLMs) have demonstrated tremendous potential in game playing, while little attention has been paid to their ethical implications in those contexts. This work investigates and analyses the ethical considerations of applying LLMs in game playing, using Werewolf, also known as Mafia, as a case study. Gender bias, which affects game fairness and player experience, has been observed from the behaviour of LLMs. Some roles, such as the Guard and Werewolf, are more sensitive than others to gender information, presented as a higher degree of behavioural change. We further examine scenarios in which gender information is implicitly conveyed through names, revealing that LLMs still exhibit discriminatory tendencies even in the absence of explicit gender labels. This research showcases the importance of developing fair and ethical LLMs. Beyond our research findings, we discuss the challenges and opportunities that lie ahead in this field, emphasising the need for diving deeper into the ethical implications of LLMs in gaming and other interactive domains.
comment: 19 pages
☆ Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting CIKM 2025
Time series (TS) data are ubiquitous across various application areas, rendering time series forecasting (TSF) a fundamental task. With the astounding advances in large language models (LLMs), a variety of methods have been developed to adapt LLMs for time series forecasting. Despite unlocking the potential of LLMs in comprehending TS data, existing methods are inherently constrained by their shallow integration of TS information, wherein LLMs typically access TS representations at shallow layers, primarily at the input layer. This causes the influence of TS representations to progressively fade in deeper layers and eventually leads to ineffective adaptation between textual embeddings and TS representations. In this paper, we propose the Multi-layer Steerable Embedding Fusion (MSEF), a novel framework that enables LLMs to directly access time series patterns at all depths, thereby mitigating the progressive loss of TS information in deeper layers. Specifically, MSEF leverages off-the-shelf time series foundation models to extract semantically rich embeddings, which are fused with intermediate text representations across LLM layers via layer-specific steering vectors. These steering vectors are designed to continuously optimize the alignment between time series and textual modalities and facilitate a layer-specific adaptation mechanism that ensures efficient few-shot learning capabilities. Experimental results on seven benchmarks demonstrate significant performance improvements by MSEF compared with baselines, with an average reduction of 31.8% in terms of MSE. The code is available at https://github.com/One1sAll/MSEF.
comment: To be published in CIKM 2025
☆ Generative Foundation Model for Structured and Unstructured Electronic Health Records
Electronic health records (EHRs) are rich clinical data sources but complex repositories of patient data, spanning structured elements (demographics, vitals, lab results, codes), unstructured clinical notes and other modalities of data. Harnessing this heterogeneity is critical for improving patient outcomes. Recent advances in large language models (LLMs) have enabled foundation models that can learn from multiple data modalities and support clinical tasks. However, most current approaches simply serialize numeric EHR data into text, which risks losing temporal and quantitative detail. We introduce Generative Deep Patient (GDP), a multimodal foundation model that natively encodes structured EHR time-series via a CNN-Transformer encoder and fuses it with unstructured EHRs through cross-modal attention into a LLaMA-based decoder. GDP is trained in two stages: (1) generative pretraining, where it learns to produce clinical narratives from raw patient timelines while also performing masked feature prediction (MFP) and next time-step prediction (NTP) to capture temporal dynamics; and (2) multi-task fine-tuning for clinically meaningful predictions (e.g., heart failure, type 2 diabetes, 30-day readmission). In clinical prediction, GDP demonstrated superior performance on MIMIC-IV: heart failure AUROC = 0.923, type 2 diabetes AUROC = 0.817, and 30-day readmission AUROC = 0.627. For narrative generation, GDP achieved ROUGE-L = 0.135 and BERTScore-F1 = 0.545. In a blinded human evaluation, GDP-Instruct scored highest on faithfulness, fluency, and overall clinical utility, suggesting reduced hospital documentation workload without sacrificing accuracy. Our results demonstrate that a single multimodal foundation model can both predict clinically actionable events and generate high-quality clinical narratives. Furthermore, GDP's flexible architecture can be extended to additional modalities.
☆ OpenWHO: A Document-Level Parallel Corpus for Health Translation in Low-Resource Languages
In machine translation (MT), health is a high-stakes domain characterised by widespread deployment and domain-specific vocabulary. However, there is a lack of MT evaluation datasets for low-resource languages in this domain. To address this gap, we introduce OpenWHO, a document-level parallel corpus of 2,978 documents and 26,824 sentences from the World Health Organization's e-learning platform. Sourced from expert-authored, professionally translated materials shielded from web-crawling, OpenWHO spans a diverse range of over 20 languages, of which nine are low-resource. Leveraging this new resource, we evaluate modern large language models (LLMs) against traditional MT models. Our findings reveal that LLMs consistently outperform traditional MT models, with Gemini 2.5 Flash achieving a +4.79 ChrF point improvement over NLLB-54B on our low-resource test set. Further, we investigate how LLM context utilisation affects accuracy, finding that the benefits of document-level translation are most pronounced in specialised domains like health. We release the OpenWHO corpus to encourage further research into low-resource MT in the health domain.
☆ X-Troll: eXplainable Detection of State-Sponsored Information Operations Agents CIKM2025
State-sponsored trolls, malicious actors who deploy sophisticated linguistic manipulation in coordinated information campaigns, posing threats to online discourse integrity. While Large Language Models (LLMs) achieve strong performance on general natural language processing (NLP) tasks, they struggle with subtle propaganda detection and operate as ``black boxes'', providing no interpretable insights into manipulation strategies. This paper introduces X-Troll, a novel framework that bridges this gap by integrating explainable adapter-based LLMs with expert-derived linguistic knowledge to detect state-sponsored trolls and provide human-readable explanations for its decisions. X-Troll incorporates appraisal theory and propaganda analysis through specialized LoRA adapters, using dynamic gating to capture campaign-specific discourse patterns in coordinated information operations. Experiments on real-world data demonstrate that our linguistically-informed approach shows strong performance compared with both general LLM baselines and existing troll detection models in accuracy while providing enhanced transparency through expert-grounded explanations that reveal the specific linguistic strategies used by state-sponsored actors. X-Troll source code is available at: https://github.com/ltian678/xtroll_source/.
comment: 14 pages, 4 figures, 4 tables, accepted by CIKM2025
☆ Political Ideology Shifts in Large Language Models
Large language models (LLMs) are increasingly deployed in politically sensitive settings, raising concerns about their potential to encode, amplify, or be steered toward specific ideologies. We investigate how adopting synthetic personas influences ideological expression in LLMs across seven models (7B-70B+ parameters) from multiple families, using the Political Compass Test as a standardized probe. Our analysis reveals four consistent patterns: (i) larger models display broader and more polarized implicit ideological coverage; (ii) susceptibility to explicit ideological cues grows with scale; (iii) models respond more strongly to right-authoritarian than to left-libertarian priming; and (iv) thematic content in persona descriptions induces systematic and predictable ideological shifts, which amplify with size. These findings indicate that both scale and persona content shape LLM political behavior. As such systems enter decision-making, educational, and policy contexts, their latent ideological malleability demands attention to safeguard fairness, transparency, and safety.
♻ ☆ Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: (1) use model and data size to predict an intermediate loss, then (2) use it to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks formatted as ranked classification, we can predict the accuracy of both target models within 2 points of absolute error. We find that tasks with higher prediction error also have higher variance in the metrics over model checkpoints. We also contrast multiple design choices for predicting accuracy, and present recommendations for extending our method to new models and tasks.
comment: COLM 2025
♻ ☆ Can Large Language Models Simulate Human Responses? A Case Study of Stated Preference Experiments in the Context of Heating-related Choices
Stated preference (SP) surveys are a key method to research how individuals make trade-offs in hypothetical, also futuristic, scenarios. In energy context this includes key decarbonisation enablement contexts, such as low-carbon technologies, distributed renewable energy generation, and demand-side response [1,2]. However, they tend to be costly, time-consuming, and can be affected by respondent fatigue and ethical constraints. Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like textual responses, prompting growing interest in their application to survey research. This study investigates the use of LLMs to simulate consumer choices in energy-related SP surveys and explores their integration into data analysis workflows. A series of test scenarios were designed to systematically assess the simulation performance of several LLMs (LLaMA 3.1, Mistral, GPT-3.5 and DeepSeek-R1) at both individual and aggregated levels, considering contexts factors such as prompt design, in-context learning (ICL), chain-of-thought (CoT) reasoning, LLM types, integration with traditional choice models, and potential biases. Cloud-based LLMs do not consistently outperform smaller local models. In this study, the reasoning model DeepSeek-R1 achieves the highest average accuracy (77%) and outperforms non-reasoning LLMs in accuracy, factor identification, and choice distribution alignment. Across models, systematic biases are observed against the gas boiler and no-retrofit options, with a preference for more energy-efficient alternatives. The findings suggest that previous SP choices are the most effective input factor, while longer prompts with additional factors and varied formats can cause LLMs to lose focus, reducing accuracy.
♻ ☆ Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization
Tokenization is the first -- and often least scrutinized -- step of most NLP pipelines. Standard algorithms for learning tokenizers rely on frequency-based objectives, which favor languages dominant in the training data and consequently leave lower-resource languages with tokenizations that are disproportionately longer, morphologically implausible, or even riddled with placeholders. This phenomenon ultimately amplifies computational and financial inequalities between users from different language backgrounds. To remedy this, we introduce Parity-aware Byte Pair Encoding (BPE), a variant of the widely-used BPE algorithm. At every merge step, Parity-aware BPE maximizes the compression gain of the currently worst-compressed language, trading a small amount of global compression for cross-lingual parity. We find empirically that Parity-aware BPE leads to more equitable token counts across languages, with negligible impact on global compression rate and no substantial effect on language-model performance in downstream tasks.
♻ ☆ Seamless Language Expansion: Enhancing Multilingual Mastery in Self-Supervised Models
Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.
comment: Accepted by Interspeech 2024
♻ ☆ Enhancing Code-switched Text-to-Speech Synthesis Capability in Large Language Models with only Monolingual Corpora
While Large Language Models (LLMs) have shown potential in speech generation and recognition, their applications are mainly confined to monolingual scenarios, with limited explorations in code-switched (CS) contexts. In this paper, we propose a Code-Switched Large Language Model (CS-LLM) to enhance the code-switched text-to-speech synthesis (CS TTS) capability in LLMs with only monolingual corpora. Specifically, we begin by enhancing the multilingual speech processing ability of LLMs through multilingual speech recognition and synthesis tasks. Then, we develop an effective code-switched (CS) data construction strategy that splits and concatenates words from different monolingual speech corpora to equip LLMs with improved CS TTS ability. Experiments show that our approach outperforms baselines in CS TTS in terms of naturalness, speaker consistency and similarity even with limited data. Additionally, the constructed CS data further improves multilingual speech synthesis and recognition.
comment: Accepted to ASRU2025
♻ ☆ Psyche-R1: Towards Reliable Psychological LLMs through Unified Empathy, Expertise, and Reasoning
Amidst a shortage of qualified mental health professionals, the integration of large language models (LLMs) into psychological applications offers a promising way to alleviate the growing burden of mental health disorders. Recent reasoning-augmented LLMs have achieved remarkable performance in mathematics and programming, while research in the psychological domain has predominantly emphasized emotional support and empathetic dialogue, with limited attention to reasoning mechanisms that are beneficial to generating reliable responses. Therefore, in this paper, we propose Psyche-R1, the first Chinese psychological LLM that jointly integrates empathy, psychological expertise, and reasoning, built upon a novel data curation pipeline. Specifically, we design a comprehensive data synthesis pipeline that produces over 75k high-quality psychological questions paired with detailed rationales, generated through chain-of-thought (CoT) reasoning and iterative prompt-rationale optimization, along with 73k empathetic dialogues. Subsequently, we employ a hybrid training strategy wherein challenging samples are identified through a multi-LLM cross-selection strategy for group relative policy optimization (GRPO) to improve reasoning ability, while the remaining data is used for supervised fine-tuning (SFT) to enhance empathetic response generation and psychological domain knowledge. Extensive experiment results demonstrate the effectiveness of the Psyche-R1 across several psychological benchmarks, where our 7B Psyche-R1 achieves comparable results to 671B DeepSeek-R1.
♻ ☆ Is Small Language Model the Silver Bullet to Low-Resource Languages Machine Translation?
Low-resource languages (LRLs) lack sufficient linguistic resources and are underrepresented in benchmark datasets, resulting in persistently lower translation quality than high-resource languages, especially in privacy-sensitive and resource-limited contexts. Firstly, this study systematically evaluates state-of-the-art smaller Large Language Models in 200 languages using the FLORES-200 benchmark, highlighting persistent deficiencies and disparities in the translation of LRLs. To mitigate these limitations, we investigate knowledge distillation from large pre-trained teacher models to Small Language Models (SLMs) through supervised fine-tuning. The results show substantial improvements; for example, the translation performance of English to Luxembourgish (EN to LB), measured by the LLM-as-a-Judge score, increases from 0.36 to 0.89 in the validation set for Llama-3.2-3B. We further investigate various fine-tuning configurations and tasks to clarify the trade-offs between data scale and training efficiency, verify that the model retains its general capabilities without significant catastrophic forgetting after training, and explore the distillation benefits to other LRLs on SLMs (Khasi, Assamese, and Ukrainian). In general, this work exposes the limitations and fairness issues of current SLMs in LRL translation and systematically explores the potential of using the distillation of knowledge from large to small models, offering practical, empirically grounded recommendations to improve LRL translation systems
♻ ☆ CAMA: Enhancing Multimodal In-Context Learning with Context-Aware Modulated Attention
Multimodal in-context learning (ICL) is emerging as a key capability that enables large vision-language models (LVLMs) to adapt to novel tasks without parameter updates, expanding their utility across various real-world applications. However, ICL remains unstable, even with well-matched in-context demonstrations (ICDs), suggesting that LVLMs struggle to fully utilize the provided context. While existing efforts focus on prompt engineering or post-hoc logit calibration, we instead investigate the underlying attention dynamics to overcome LVLMs' inherent limitations. We identify two critical deficits in their self-attention that impair effective ICL. To bridge the gap, we propose \textbf{Context-Aware Modulated Attention} (CAMA), a plug-and-play and training-free method that dynamically modulates LVLM's attention logits based on the input in-context sequence. CAMA employs a two-stage attention modulation to address both identified deficits, enhancing the focus on semantically significant tokens, particularly visual ones. Across four LVLMs and seven benchmarks, CAMA consistently outperforms vanilla models and baselines, demonstrating great effectiveness and generalization. It can also activate the desired effects of prompt engineering methods and remains robust under diverse sequence configurations. Thus, CAMA paves the way for deeper explorations of attention dynamics to advance multimodal reasoning.
comment: 14 pages, 8 figures, 5 tables
♻ ☆ Towards Bridging the Reward-Generation Gap in Direct Alignment Algorithms
Direct Alignment Algorithms (DAAs), such as Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO), have emerged as efficient alternatives to Reinforcement Learning from Human Feedback (RLHF) algorithms for aligning large language models (LLMs) with human preferences. However, DAAs suffer from a fundamental limitation we identify as the "reward-generation gap" -- a misalignment between optimization objectives during training and actual generation performance during inference. In this paper, we find a contributor to the reward-generation gap is the mismatch between the inherent importance of prefix tokens during the LLM generation process and how this importance is reflected in the implicit reward functions of DAAs. To bridge the gap, we adopt a token-level MDP perspective of DAAs to analyze its limitations and introduce a simple yet effective approach called Prefix-Oriented Equal-length Training (POET), which truncates both preferred and dispreferred responses to match the shorter one's length. Training with \mname, where both responses in each sample are truncated to equal length, resulting in diverse truncated lengths across samples, the optimization of DAAs objective is implicitly constrained to converge across all timesteps of token-level MDP, thus paying more attention to prefix tokens than the standard DAAs. We conduct experiments with DPO and SimPO, two representative DAAs, demonstrating that POET improves over their standard implementations, achieving up to 15.6 points in AlpacaEval 2 and overall improvements across downstream tasks. Our results highlight the importance of addressing the misalignment between reward optimization and generation performance in DAAs.
♻ ☆ MultiBLiMP 1.0: A Massively Multilingual Benchmark of Linguistic Minimal Pairs ACL
We introduce MultiBLiMP 1.0, a massively multilingual benchmark of linguistic minimal pairs, covering 101 languages and 2 types of subject-verb agreement, containing more than 128,000 minimal pairs. Our minimal pairs are created using a fully automated pipeline, leveraging the large-scale linguistic resources of Universal Dependencies and UniMorph. MultiBLiMP 1.0 evaluates abilities of LLMs at an unprecedented multilingual scale, and highlights the shortcomings of the current state-of-the-art in modelling low-resource languages.
comment: Published in TACL, MIT Press
♻ ☆ Collaborative Stance Detection via Small-Large Language Model Consistency Verification
Stance detection on social media aims to identify attitudes expressed in tweets towards specific targets. Current studies prioritize Large Language Models (LLMs) over Small Language Models (SLMs) due to the overwhelming performance improving provided by LLMs. However, heavily relying on LLMs for stance detection, regardless of the cost, is impractical for real-world social media monitoring systems that require vast data analysis. To this end, we propose \textbf{\underline{Co}}llaborative Stance Detection via Small-Large Language Model Consistency \textbf{\underline{Ver}}ification (\textbf{CoVer}) framework, which enhances LLM utilization via context-shared batch reasoning and logical verification between LLM and SLM. Specifically, instead of processing each text individually, CoVer processes texts batch-by-batch, obtaining stance predictions and corresponding explanations via LLM reasoning in a shared context. Then, to exclude the bias caused by context noises, CoVer introduces the SLM for logical consistency verification. Finally, texts that repeatedly exhibit low logical consistency are classified using consistency-weighted aggregation of prior LLM stance predictions. Our experiments show that CoVer outperforms state-of-the-art methods across multiple benchmarks in the zero-shot setting, achieving 0.54 LLM queries per tweet while significantly enhancing performance. Our CoVer offers a more practical solution for LLM deploying for social media stance detection.
♻ ☆ Rotary Offset Features in Large Language Models
Transformer-based Large Language Models (LLMs) rely on positional encodings to provide sequence position information to their attention mechanism. Rotary Positional Encodings (RoPE), which encode relative position by rotating queries and keys, have become widely used in modern LLMs. We study the features and patterns that emerge in queries and keys when using rotary embeddings and introduce the concept of rotary offset features. Our analysis reveals that these features, which frequently exhibit large activations and are often interpreted as outliers, arise consistently across layers, attention heads, and model architectures. We derive bounds predicting which rotary frequencies give rise to rotary offset features and the minimum angle between the query-key pairs for these features. We verify our predictions empirically across models of different sizes and architectures.
♻ ☆ Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG EMNLP25
Retrieval models typically rely on costly human-labeled query-document relevance annotations for training and evaluation. To reduce this cost and leverage the potential of Large Language Models (LLMs) in relevance judgments, we aim to explore whether LLM-generated annotations can effectively replace human annotations in training retrieval models. Retrieval usually emphasizes relevance, which indicates "topic-relatedness" of a document to a query, while in RAG, the value of a document (or utility) depends on how it contributes to answer generation. Recognizing this mismatch, some researchers use LLM performance on downstream tasks with documents as labels, but this approach requires manual answers for specific tasks, leading to high costs and limited generalization. In another line of work, prompting LLMs to select useful documents as RAG references eliminates the need for human annotation and is not task-specific. If we leverage LLMs' utility judgments to annotate retrieval data, we may retain cross-task generalization without human annotation in large-scale corpora. Therefore, we investigate utility-focused annotation via LLMs for large-scale retriever training data across both in-domain and out-of-domain settings on the retrieval and RAG tasks. To reduce the impact of low-quality positives labeled by LLMs, we design a novel loss function, i.e., Disj-InfoNCE. Our experiments reveal that: (1) Retrievers trained on utility-focused annotations significantly outperform those trained on human annotations in the out-of-domain setting on both tasks, demonstrating superior generalization capabilities. (2) LLM annotation does not replace human annotation in the in-domain setting. However, incorporating just 20% human-annotated data enables retrievers trained with utility-focused annotations to match the performance of models trained entirely with human annotations.
comment: Accepted by the EMNLP25 main conference
♻ ☆ Sentiment Reasoning for Healthcare ACL 2025
Transparency in AI healthcare decision-making is crucial. By incorporating rationales to explain reason for each predicted label, users could understand Large Language Models (LLMs)'s reasoning to make better decision. In this work, we introduce a new task - Sentiment Reasoning - for both speech and text modalities, and our proposed multimodal multitask framework and the world's largest multimodal sentiment analysis dataset. Sentiment Reasoning is an auxiliary task in sentiment analysis where the model predicts both the sentiment label and generates the rationale behind it based on the input transcript. Our study conducted on both human transcripts and Automatic Speech Recognition (ASR) transcripts shows that Sentiment Reasoning helps improve model transparency by providing rationale for model prediction with quality semantically comparable to humans while also improving model's classification performance (+2% increase in both accuracy and macro-F1) via rationale-augmented fine-tuning. Also, no significant difference in the semantic quality of generated rationales between human and ASR transcripts. All code, data (five languages - Vietnamese, English, Chinese, German, and French) and models are published online: https://github.com/leduckhai/Sentiment-Reasoning
comment: ACL 2025 Industry Track (Oral)
♻ ☆ PublicHearingBR: A Brazilian Portuguese Dataset of Public Hearing Transcripts for Summarization of Long Documents
This paper introduces PublicHearingBR, a Brazilian Portuguese dataset designed for summarizing long documents. The dataset consists of transcripts of public hearings held by the Brazilian Chamber of Deputies, paired with news articles and structured summaries containing the individuals participating in the hearing and their statements or opinions. The dataset supports the development and evaluation of long document summarization systems in Portuguese. Our contributions include the dataset, a hybrid summarization system to establish a baseline for future studies, and a discussion of evaluation metrics for summarization involving large language models, addressing the challenge of hallucination in the generated summaries. As a result of this discussion, the dataset also includes annotated data to evaluate natural language inference tasks in Portuguese.
comment: 23 pages
♻ ☆ PoisonSwarm: Universal Harmful Information Synthesis via Model Crowdsourcing
To construct responsible and secure AI applications, harmful information data is widely utilized for adversarial testing and the development of safeguards. Existing studies mainly leverage Large Language Models (LLMs) to synthesize data to obtain high-quality task datasets at scale, thereby avoiding costly human annotation. However, limited by the safety alignment mechanisms of LLMs, the synthesis of harmful data still faces challenges in generation reliability and content diversity. In this study, we propose a novel harmful information synthesis framework, PoisonSwarm, which applies the model crowdsourcing strategy to generate diverse harmful data while maintaining a high success rate. Specifically, we generate abundant benign data as the based templates in a counterfactual manner. Subsequently, we decompose each based template into multiple semantic units and perform unit-by-unit toxification and final refinement through dynamic model switching, thus ensuring the success of synthesis. Experimental results demonstrate that PoisonSwarm achieves state-of-the-art performance in synthesizing different categories of harmful data with high scalability and diversity.
♻ ☆ Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities
Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders, but raise critical privacy risks. This paper examines these challenges and proposes solutions, including anonymization, synthetic data, and privacy-preserving training, while outlining frameworks for privacy-utility trade-offs, aiming to advance reliable, privacy-aware AI tools that support clinical decision-making and improve mental health outcomes.
comment: 18 pages, 2 figures
♻ ☆ Contextualize-then-Aggregate: Circuits for In-Context Learning in Gemma-2 2B
In-Context Learning (ICL) is an intriguing ability of large language models (LLMs). Despite a substantial amount of work on its behavioral aspects and how it emerges in miniature setups, it remains unclear which mechanism assembles task information from the individual examples in a fewshot prompt. We use causal interventions to identify information flow in Gemma-2 2B for five naturalistic ICL tasks. We find that the model infers task information using a two-step strategy we call contextualize-then-aggregate: In the lower layers, the model builds up representations of individual fewshot examples, which are contextualized by preceding examples through connections between fewshot input and output tokens across the sequence. In the higher layers, these representations are aggregated to identify the task and prepare prediction of the next output. The importance of the contextualization step differs between tasks, and it may become more important in the presence of ambiguous examples. Overall, by providing rigorous causal analysis, our results shed light on the mechanisms through which ICL happens in language models.
♻ ☆ from Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
♻ ☆ Cyberbullying Detection via Aggression-Enhanced Prompting
Detecting cyberbullying on social media remains a critical challenge due to its subtle and varied expressions. This study investigates whether integrating aggression detection as an auxiliary task within a unified training framework can enhance the generalisation and performance of large language models (LLMs) in cyberbullying detection. Experiments are conducted on five aggression datasets and one cyberbullying dataset using instruction-tuned LLMs. We evaluated multiple strategies: zero-shot, few-shot, independent LoRA fine-tuning, and multi-task learning (MTL). Given the inconsistent results of MTL, we propose an enriched prompt pipeline approach in which aggression predictions are embedded into cyberbullying detection prompts to provide contextual augmentation. Preliminary results show that the enriched prompt pipeline consistently outperforms standard LoRA fine-tuning, indicating that aggression-informed context significantly boosts cyberbullying detection. This study highlights the potential of auxiliary tasks, such as aggression detection, to improve the generalisation of LLMs for safety-critical applications on social networks.
comment: Accepted to RANLP 2025
♻ ☆ Soteria: Language-Specific Functional Parameter Steering for Multilingual Safety Alignment EMNLP 2025
Ensuring consistent safety across multiple languages remains a significant challenge for large language models (LLMs). We introduce Soteria, a lightweight yet powerful strategy that locates and minimally adjusts the "functional heads" most responsible for harmful content generation in each language. By altering only a fraction of parameters, Soteria drastically reduces policy violations without sacrificing overall model performance, even in low-resource settings. To rigorously evaluate our approach, we also present XThreatBench, a specialized multilingual dataset capturing fine-grained harmful behaviors drawn from real policy guidelines. Experiments with leading open-source LLMs (e.g., Llama, Qwen, Mistral) show that Soteria consistently improves safety metrics across high-, mid-, and low-resource languages. These findings highlight a promising path toward scalable, linguistically attuned, and ethically aligned LLMs worldwide.
comment: Accepted at EMNLP 2025
♻ ☆ Can Hallucinations Help? Boosting LLMs for Drug Discovery
Hallucinations in large language models (LLMs), plausible but factually inaccurate text, are often viewed as undesirable. However, recent work suggests that such outputs may hold creative potential. In this paper, we investigate whether hallucinations can improve LLMs on molecule property prediction, a key task in early-stage drug discovery. We prompt LLMs to generate natural language descriptions from molecular SMILES strings and incorporate these often hallucinated descriptions into downstream classification tasks. Evaluating seven instruction-tuned LLMs across five datasets, we find that hallucinations significantly improve predictive accuracy for some models. Notably, Falcon3-Mamba-7B outperforms all baselines when hallucinated text is included, while hallucinations generated by GPT-4o consistently yield the greatest gains between models. We further identify and categorize over 18,000 beneficial hallucinations, with structural misdescriptions emerging as the most impactful type, suggesting that hallucinated statements about molecular structure may increase model confidence. Ablation studies show that larger models benefit more from hallucinations, while temperature has a limited effect. Our findings challenge conventional views of hallucination as purely problematic and suggest new directions for leveraging hallucinations as a useful signal in scientific modeling tasks like drug discovery.
♻ ☆ MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.
comment: 21 pages
♻ ☆ DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency. The code is available at https://github.com/shiweijiezero/DIDS.
♻ ☆ Bridging the Culture Gap: A Framework for LLM-Driven Socio-Cultural Localization of Math Word Problems in Low-Resource Languages
Large language models (LLMs) have demonstrated significant capabilities in solving mathematical problems expressed in natural language. However, multilingual and culturally-grounded mathematical reasoning in low-resource languages lags behind English due to the scarcity of socio-cultural task datasets that reflect accurate native entities such as person names, organization names, and currencies. Existing multilingual benchmarks are predominantly produced via translation and typically retain English-centric entities, owing to the high cost associated with human annotater-based localization. Moreover, automated localization tools are limited, and hence, truly localized datasets remain scarce. To bridge this gap, we introduce a framework for LLM-driven cultural localization of math word problems that automatically constructs datasets with native names, organizations, and currencies from existing sources. We find that translated benchmarks can obscure true multilingual math ability under appropriate socio-cultural contexts. Through extensive experiments, we also show that our framework can help mitigate English-centric entity bias and improves robustness when native entities are introduced across various languages.
♻ ☆ Dynamically Adaptive Reasoning via LLM-Guided MCTS for Efficient and Context-Aware KGQA
Knowledge Graph Question Answering (KGQA) aims to interpret natural language queries and perform structured reasoning over knowledge graphs by leveraging their relational and semantic structures to retrieve accurate answers. Recent KGQA methods primarily follow either retrieve-then-reason paradigm, relying on GNNs or heuristic rules for static paths extraction, or dynamic path generation strategies that use large language models (LLMs) with prompting to jointly perform retrieval and reasoning. However, the former suffers from limited adaptability due to static path extraction and lack of contextual refinement, while the latter incurs high computational costs and struggles with accurate path evaluation due to reliance on fixed scoring functions and extensive LLM calls. To address these issues, this paper proposes Dynamically Adaptive MCTS-based Reasoning (DAMR), a novel framework that integrates symbolic search with adaptive path evaluation for efficient and context-aware KGQA. DAMR employs a Monte Carlo Tree Search (MCTS) backbone guided by an LLM-based planner, which selects top-$k$ relevant relations at each step to reduce search space. To improve path evaluation accuracy, we introduce a lightweight Transformer-based scorer that performs context-aware plausibility estimation by jointly encoding the question and relation sequence through cross-attention, enabling the model to capture fine-grained semantic shifts during multi-hop reasoning. Furthermore, to alleviate the scarcity of high-quality supervision, DAMR incorporates a dynamic pseudo-path refinement mechanism that periodically generates training signals from partial paths explored during search, allowing the scorer to continuously adapt to the evolving distribution of reasoning trajectories. Extensive experiments on multiple KGQA benchmarks show that DAMR significantly outperforms state-of-the-art methods.
♻ ☆ Top-Theta Attention: Sparsifying Transformers by Compensated Thresholding
We present Top-Theta (Top-$\theta$) Attention, a training-free method for sparsifying transformer attention during inference. Our key insight is that static, per-head thresholds can be calibrated to retain the desired constant number of significant elements per attention row. This approach enables content-based sparsity without retraining, and it remains robust across data domains. We further introduce compensation techniques to preserve accuracy under aggressive sparsification, establishing attention thresholding as a practical and principled alternative to top-k attention. We provide extensive evaluation on natural language processing tasks, showing that Top-$\theta$ achieves 3-10x reduction in V-cache usage and up to 10x fewer attention elements during inference while degrading no more than 1% in accuracy.
comment: 11 pages, 11 figures + Appendix. work under submission
♻ ☆ ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
comment: 21 pages
♻ ☆ SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. First, SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models. To improve draft accuracy and speed on long inputs without retraining, we propose Cross-model Retrieval, a novel KV cache eviction strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. Our code is available at https://github.com/jycha98/SpecExtend .
♻ ☆ CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems -- a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agentic frameworks against established human-designed algorithms, revealing the strengths and limitations of existing LLM agents and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
♻ ☆ One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs ICML 2025
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
comment: ICML 2025
♻ ☆ Prompting Techniques for Reducing Social Bias in LLMs through System 1 and System 2 Cognitive Processes
Dual process theory posits that human cognition arises via two systems. System 1, which is a quick, emotional, and intuitive process, which is subject to cognitive biases, and System 2, is a slow, onerous, and deliberate process. Prior research in LLMs found that using chain-of-thought (CoT) prompting in LLMs, which has been often compared to System 2 reasoning, can lead to reduced gender bias. Along these lines, we investigate the relationship between bias, CoT prompting, a direct debiasing, and dual process theory modeling in LLMs. We compare zero-shot CoT, debiasing, and dual process theory-based prompting strategies on two bias datasets spanning nine different social bias categories. We incorporate human and machine personas to determine whether LLM modeling of the effects of dual process theory exist independent of explicit persona models or are tied to the LLM's modeling of human-like generation. We find that a human persona, debiasing, System 2, and CoT prompting all tend to reduce social biases in LLMs, though the best combination of features depends on the exact model and bias category -- resulting in up to a 33 percent drop in stereotypical judgments by an LLM.
comment: Accepted at RANLP-2025 (main conference)
♻ ☆ Efficient RL Training for Reasoning Models via Length-Aware Optimization
Large reasoning models, such as OpenAI o1 or DeepSeek R1, have demonstrated remarkable performance on reasoning tasks but often incur a long reasoning path with significant memory and time costs. Existing methods primarily aim to shorten reasoning paths by introducing additional training data and stages. In this paper, we propose three critical reward designs integrated directly into the reinforcement learning process of large reasoning models, which reduce the response length without extra training stages. Experiments on four settings show that our method significantly decreases response length while maintaining or even improving performance. Specifically, in a logic reasoning setting, we achieve a 40% reduction in response length averaged by steps alongside a 14% gain in performance. For math problems, we reduce response length averaged by steps by 33% while preserving performance.
comment: Under review
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ Revealing the Role of Audio Channels in ASR Performance Degradation
Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
comment: Accepted to IEEE ASRU 2025
♻ ☆ DRP: Distilled Reasoning Pruning with Skill-aware Step Decomposition for Efficient Large Reasoning Models
While Large Reasoning Models (LRMs) have demonstrated success in complex reasoning tasks through long chain-of-thought (CoT) reasoning, their inference often involves excessively verbose reasoning traces, resulting in substantial inefficiency. To address this, we propose Distilled Reasoning Pruning (DRP), a hybrid framework that combines inference-time pruning with tuning-based distillation, two widely used strategies for efficient reasoning. DRP uses a teacher model to perform skill-aware step decomposition and content pruning, and then distills the pruned reasoning paths into a student model, enabling it to reason both efficiently and accurately. Across several challenging mathematical reasoning datasets, we find that models trained with DRP achieve substantial improvements in token efficiency without sacrificing accuracy. Specifically, DRP reduces average token usage on GSM8K from 917 to 328 while improving accuracy from 91.7% to 94.1%, and achieves a 43% token reduction on AIME with no performance drop. Further analysis shows that aligning the reasoning structure of training CoTs with the student's reasoning capacity is critical for effective knowledge transfer and performance gains.
♻ ☆ SinLlama -- A Large Language Model for Sinhala
Low-resource languages such as Sinhala are often overlooked by open-source Large Language Models (LLMs). In this research, we extend an existing multilingual LLM (Llama-3-8B) to better serve Sinhala. We enhance the LLM tokenizer with Sinhala specific vocabulary and perform continual pre-training on a cleaned 10 million Sinhala corpus, resulting in the SinLlama model. This is the very first decoder-based open-source LLM with explicit Sinhala support. When SinLlama was instruction fine-tuned for three text classification tasks, it outperformed base and instruct variants of Llama-3-8B by a significant margin.
♻ ☆ Utilizing Multilingual Encoders to Improve Large Language Models for Low-Resource Languages
Large Language Models (LLMs) excel in English, but their performance degrades significantly on low-resource languages (LRLs) due to English-centric training. While methods like LangBridge align LLMs with multilingual encoders such as the Massively Multilingual Text-to-Text Transfer Transformer (mT5), they typically use only the final encoder layer. We propose a novel architecture that fuses all intermediate layers, enriching the linguistic information passed to the LLM. Our approach features two strategies: (1) a Global Softmax weighting for overall layer importance, and (2) a Transformer Softmax model that learns token-specific weights. The fused representations are mapped into the LLM's embedding space, enabling it to process multilingual inputs. The model is trained only on English data, without using any parallel or multilingual data. Evaluated on XNLI, IndicXNLI, Sinhala News Classification, and Amazon Reviews, our Transformer Softmax model significantly outperforms the LangBridge baseline. We observe strong performance gains in LRLs, improving Sinhala classification accuracy from 71.66% to 75.86% and achieving clear improvements across Indic languages such as Tamil, Bengali, and Malayalam. These specific gains contribute to an overall boost in average XNLI accuracy from 70.36% to 71.50%. This approach offers a scalable, data-efficient path toward more capable and equitable multilingual LLMs.
♻ ☆ MINTQA: A Multi-Hop Question Answering Benchmark for Evaluating LLMs on New and Tail Knowledge
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks but face significant challenges with complex, knowledge-intensive multi-hop queries, particularly those involving new or long-tail knowledge. Existing benchmarks often fail to fully address these challenges. To bridge this gap, we introduce MINTQA (Multi-hop Question Answering on New and Tail Knowledge), a comprehensive benchmark to evaluate LLMs' capabilities in multi-hop reasoning across four critical dimensions: question handling strategy, sub-question generation, retrieval-augmented generation, and iterative or dynamic decomposition and retrieval. MINTQA comprises 10,479 question-answer pairs for evaluating new knowledge and 17,887 pairs for assessing long-tail knowledge, with each question equipped with corresponding sub-questions and answers. Our systematic evaluation of 22 state-of-the-art LLMs on MINTQA reveals significant limitations in their ability to handle complex knowledge base queries, particularly in handling new or unpopular knowledge. Our findings highlight critical challenges and offer insights for advancing multi-hop reasoning capabilities. The MINTQA benchmark is available at https://github.com/probe2/multi-hop/.
♻ ☆ On the Role of Entity and Event Level Conceptualization in Generalizable Reasoning: A Survey of Tasks, Methods, Applications, and Future Directions EMNLP 2025
Conceptualization, a fundamental element of human cognition, plays a pivotal role in human generalizable reasoning. Generally speaking, it refers to the process of sequentially abstracting specific instances into higher-level concepts and then forming abstract knowledge that can be applied in unfamiliar or novel situations. This enhances models' inferential capabilities and supports the effective transfer of knowledge across various domains. Despite its significance, the broad nature of this term has led to inconsistencies in understanding conceptualization across various works, as there exists different types of instances that can be abstracted in a wide variety of ways. There is also a lack of a systematic overview that comprehensively examines existing works on the definition, execution, and application of conceptualization to enhance reasoning tasks. In this paper, we address these gaps by first proposing a categorization of different types of conceptualizations into four levels based on the types of instances being conceptualized, in order to clarify the term and define the scope of our work. Then, we present the first comprehensive survey of over 150 papers, surveying various definitions, resources, methods, and downstream applications related to conceptualization into a unified taxonomy, with a focus on the entity and event levels. Furthermore, we shed light on potential future directions in this field and hope to garner more attention from the community.
comment: Findings of EMNLP 2025
♻ ☆ A Toolbox, Not a Hammer -- Multi-TAG: Scaling Math Reasoning with Multi-Tool Aggregation EMNLP
Augmenting large language models (LLMs) with external tools is a promising avenue for developing high-performance mathematical reasoning systems. Prior tool-augmented approaches typically finetune an LLM to select and invoke a single tool at each reasoning step and show promising results on simpler math reasoning benchmarks such as GSM8K. However, these approaches struggle with more complex math problems that require precise reasoning over multiple steps. To address this limitation, in this work, we propose Multi-TAG, a Multi-Tool AGgregation-based framework. Instead of relying on a single tool, Multi-TAG guides an LLM to concurrently invoke multiple tools at each reasoning step. It then aggregates their diverse outputs to verify and refine the reasoning process, enhancing solution robustness and accuracy. Notably, Multi-TAG is a finetuning-free, inference-only framework, making it readily applicable to any LLM backbone, including large open-weight models which are computationally expensive to finetune and proprietary frontier models which cannot be finetuned with custom recipes. We evaluate Multi-TAG on four challenging benchmarks: MATH500, AIME, AMC, and OlympiadBench. Across both open-weight and closed-source LLM backbones, Multi-TAG consistently and substantially outperforms state-of-the-art baselines, achieving average improvements of 6.0% to 7.5% over state-of-the-art baselines.
comment: Published at EMNLP Findings 2025; 21 pages, 3 figures
♻ ☆ Robust Bias Detection in MLMs and its Application to Human Trait Ratings NAACL 2025
There has been significant prior work using templates to study bias against demographic attributes in MLMs. However, these have limitations: they overlook random variability of templates and target concepts analyzed, assume equality amongst templates, and overlook bias quantification. Addressing these, we propose a systematic statistical approach to assess bias in MLMs, using mixed models to account for random effects, pseudo-perplexity weights for sentences derived from templates and quantify bias using statistical effect sizes. Replicating prior studies, we match on bias scores in magnitude and direction with small to medium effect sizes. Next, we explore the novel problem of gender bias in the context of $\textit{personality}$ and $\textit{character}$ traits, across seven MLMs (base and large). We find that MLMs vary; ALBERT is unbiased for binary gender but the most biased for non-binary $\textit{neo}$, while RoBERTa-large is the most biased for binary gender but shows small to no bias for $\textit{neo}$. There is some alignment of MLM bias and findings in psychology (human perspective) - in $\textit{agreeableness}$ with RoBERTa-large and $\textit{emotional stability}$ with BERT-large. There is general agreement for the remaining 3 personality dimensions: both sides observe at most small differences across gender. For character traits, human studies on gender bias are limited thus comparisons are not feasible.
comment: Findings of NAACL 2025
♻ ☆ SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling
Process or step-wise supervision has played a crucial role in advancing complex multi-step reasoning capabilities of Large Language Models (LLMs). However, efficient, high-quality automated process annotation remains a significant challenge. To address this, we introduce Single-Pass Annotation with Reference-Guided Evaluation (SPARE), a novel structured framework that enables efficient per-step annotation by jointly aligning solution steps to reference solutions and determine its accuracy with explicit reasoning in single generation. We demonstrate SPARE's effectiveness across four diverse datasets spanning mathematical reasoning (GSM8K, MATH), multi-hop question answering (MuSiQue-Ans), and spatial reasoning (SpaRP), showing consistent improvements in two applications: (1) training Process Reward Models (PRMs) for ranking and aggregating multiple generations, and (2) fine-tuning models via offline reinforcement learning for greedy decoding. On ProcessBench, SPARE demonstrates data-efficient out-of-distribution generalization, using only $\sim$16% of training samples compared to human-labeled and other synthetically trained baselines. Additionally, it achieves competitive performance with MCTS-based methods while offering 2.3$\times$ speedup in terms of total token count. Manual analysis reveals complementary precision-recall characteristics with MCTS approaches, suggesting potential for ensemble methods. These results establish SPARE as a practical and scalable solution for automatic process supervision in LLM reasoning.
comment: 7 pages main content, 3 figures, 6 tables
Computation and Language
☆ Intern-S1: A Scientific Multimodal Foundation Model
In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models. However, in high-value but more challenging scientific professional fields, either the fields still rely on expert models, or the progress of general foundation models lags significantly compared to those in popular areas, far from sufficient for transforming scientific research and leaving substantial gap between open-source models and closed-source models in these scientific domains. To mitigate this gap and explore a step further toward Artificial General Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped with general understanding and reasoning capabilities with expertise to analyze multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE) model with 28 billion activated parameters and 241 billion total parameters, continually pre-trained on 5T tokens, including over 2.5T tokens from scientific domains. In the post-training stage, Intern-S1 undergoes offline and then online reinforcement learning (RL) in InternBootCamp, where we propose Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks simultaneously. Through integrated innovations in algorithms, data, and training systems, Intern-S1 achieved top-tier performance in online RL training.On comprehensive evaluation benchmarks, Intern-S1 demonstrates competitive performance on general reasoning tasks among open-source models and significantly outperforms open-source models in scientific domains, surpassing closed-source state-of-the-art models in professional tasks, such as molecular synthesis planning, reaction condition prediction, predicting thermodynamic stabilities for crystals. Our models are available at https://huggingface.co/internlm/Intern-S1.
☆ LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks. While the Model Context Protocol (MCP) provides a powerful standardized framework for tool integration, there is a significant gap in benchmarking how well AI agents can effectively solve multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In this work, we present LiveMCP-101, a benchmark of 101 carefully curated real-world queries, refined through iterative LLM rewriting and manual review, that require coordinated use of multiple MCP tools including web search, file operations, mathematical reasoning, and data analysis. Moreover, we introduce a novel evaluation approach that leverages ground-truth execution plans rather than raw API outputs, better reflecting the evolving nature of real-world environments. Experiments show that even frontier LLMs achieve a success rate below 60\%, highlighting major challenges in tool orchestration. Detailed ablations and error analysis further reveal distinct failure modes and inefficiencies in token usage, pointing to concrete directions for advancing current models. LiveMCP-101 sets a rigorous standard for evaluating real-world agent capabilities, advancing toward autonomous AI systems that reliably execute complex tasks through tool use.
☆ Language-Guided Tuning: Enhancing Numeric Optimization with Textual Feedback
Configuration optimization remains a critical bottleneck in machine learning, requiring coordinated tuning across model architecture, training strategy, feature engineering, and hyperparameters. Traditional approaches treat these dimensions independently and lack interpretability, while recent automated methods struggle with dynamic adaptability and semantic reasoning about optimization decisions. We introduce Language-Guided Tuning (LGT), a novel framework that employs multi-agent Large Language Models to intelligently optimize configurations through natural language reasoning. We apply textual gradients - qualitative feedback signals that complement numerical optimization by providing semantic understanding of training dynamics and configuration interdependencies. LGT coordinates three specialized agents: an Advisor that proposes configuration changes, an Evaluator that assesses progress, and an Optimizer that refines the decision-making process, creating a self-improving feedback loop. Through comprehensive evaluation on six diverse datasets, LGT demonstrates substantial improvements over traditional optimization methods, achieving performance gains while maintaining high interpretability.
comment: 9 pages, 4 figures, 4 tables
☆ Dissecting Tool-Integrated Reasoning: An Empirical Study and Analysis
Large Language Models (LLMs) have made significant strides in reasoning tasks through methods like chain-of-thought (CoT) reasoning. However, they often fall short in tasks requiring precise computations. Tool-Integrated Reasoning (TIR) has emerged as a solution by incorporating external tools into the reasoning process. Nevertheless, the generalization of TIR in improving the reasoning ability of LLM is still unclear. Additionally, whether TIR has improved the model's reasoning behavior and helped the model think remains to be studied. We introduce ReasonZoo, a comprehensive benchmark encompassing nine diverse reasoning categories, to evaluate the effectiveness of TIR across various domains. Additionally, we propose two novel metrics, Performance-Aware Cost (PAC) and Area Under the Performance-Cost Curve (AUC-PCC), to assess reasoning efficiency. Our empirical evaluation demonstrates that TIR-enabled models consistently outperform their non-TIR counterparts in both mathematical and non-mathematical tasks. Furthermore, TIR enhances reasoning efficiency, as evidenced by improved PAC and AUC-PCC, indicating reduced overthinking and more streamlined reasoning. These findings underscore the domain-general benefits of TIR and its potential to advance LLM capabilities in complex reasoning tasks.
comment: Preprint, working in progress
☆ End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.
comment: 35 pages, 5 figures, 3 tables
☆ EcomMMMU: Strategic Utilization of Visuals for Robust Multimodal E-Commerce Models
E-commerce platforms are rich in multimodal data, featuring a variety of images that depict product details. However, this raises an important question: do these images always enhance product understanding, or can they sometimes introduce redundancy or degrade performance? Existing datasets are limited in both scale and design, making it difficult to systematically examine this question. To this end, we introduce EcomMMMU, an e-commerce multimodal multitask understanding dataset with 406,190 samples and 8,989,510 images. EcomMMMU is comprised of multi-image visual-language data designed with 8 essential tasks and a specialized VSS subset to benchmark the capability of multimodal large language models (MLLMs) to effectively utilize visual content. Analysis on EcomMMMU reveals that product images do not consistently improve performance and can, in some cases, degrade it. This indicates that MLLMs may struggle to effectively leverage rich visual content for e-commerce tasks. Building on these insights, we propose SUMEI, a data-driven method that strategically utilizes multiple images via predicting visual utilities before using them for downstream tasks. Comprehensive experiments demonstrate the effectiveness and robustness of SUMEI. The data and code are available through https://anonymous.4open.science/r/submission25.
☆ Stemming -- The Evolution and Current State with a Focus on Bangla
Bangla, the seventh most widely spoken language worldwide with 300 million native speakers, faces digital under-representation due to limited resources and lack of annotated datasets. Stemming, a critical preprocessing step in language analysis, is essential for low-resource, highly-inflectional languages like Bangla, because it can reduce the complexity of algorithms and models by significantly reducing the number of words the algorithm needs to consider. This paper conducts a comprehensive survey of stemming approaches, emphasizing the importance of handling morphological variants effectively. While exploring the landscape of Bangla stemming, it becomes evident that there is a significant gap in the existing literature. The paper highlights the discontinuity from previous research and the scarcity of accessible implementations for replication. Furthermore, it critiques the evaluation methodologies, stressing the need for more relevant metrics. In the context of Bangla's rich morphology and diverse dialects, the paper acknowledges the challenges it poses. To address these challenges, the paper suggests directions for Bangla stemmer development. It concludes by advocating for robust Bangla stemmers and continued research in the field to enhance language analysis and processing.
☆ Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation EMNLP2025
Positional bias (PB), manifesting as non-uniform sensitivity across different contextual locations, significantly impairs long-context comprehension and processing capabilities. While prior work seeks to mitigate PB through modifying the architectures causing its emergence, significant PB still persists. To address PB effectively, we introduce \textbf{Pos2Distill}, a position to position knowledge distillation framework. Pos2Distill transfers the superior capabilities from advantageous positions to less favorable ones, thereby reducing the huge performance gaps. The conceptual principle is to leverage the inherent, position-induced disparity to counteract the PB itself. We identify distinct manifestations of PB under \textbf{\textsc{r}}etrieval and \textbf{\textsc{r}}easoning paradigms, thereby designing two specialized instantiations: \emph{Pos2Distill-R\textsuperscript{1}} and \emph{Pos2Distill-R\textsuperscript{2}} respectively, both grounded in this core principle. By employing the Pos2Distill approach, we achieve enhanced uniformity and significant performance gains across all contextual positions in long-context retrieval and reasoning tasks. Crucially, both specialized systems exhibit strong cross-task generalization mutually, while achieving superior performance on their respective tasks.
comment: EMNLP2025 Main
☆ Benchmarking Computer Science Survey Generation
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE
☆ SDGO: Self-Discrimination-Guided Optimization for Consistent Safety in Large Language Models EMNLP 2025
Large Language Models (LLMs) excel at various natural language processing tasks but remain vulnerable to jailbreaking attacks that induce harmful content generation. In this paper, we reveal a critical safety inconsistency: LLMs can more effectively identify harmful requests as discriminators than defend against them as generators. This insight inspires us to explore aligning the model's inherent discrimination and generation capabilities. To this end, we propose SDGO (Self-Discrimination-Guided Optimization), a reinforcement learning framework that leverages the model's own discrimination capabilities as a reward signal to enhance generation safety through iterative self-improvement. Our method does not require any additional annotated data or external models during the training phase. Extensive experiments demonstrate that SDGO significantly improves model safety compared to both prompt-based and training-based baselines while maintaining helpfulness on general benchmarks. By aligning LLMs' discrimination and generation capabilities, SDGO brings robust performance against out-of-distribution (OOD) jailbreaking attacks. This alignment achieves tighter coupling between these two capabilities, enabling the model's generation capability to be further enhanced with only a small amount of discriminative samples. Our code and datasets are available at https://github.com/NJUNLP/SDGO.
comment: Accepted by EMNLP 2025, 15 pages, 4 figures, 6 tables
☆ Classification errors distort findings in automated speech processing: examples and solutions from child-development research
With the advent of wearable recorders, scientists are increasingly turning to automated methods of analysis of audio and video data in order to measure children's experience, behavior, and outcomes, with a sizable literature employing long-form audio-recordings to study language acquisition. While numerous articles report on the accuracy and reliability of the most popular automated classifiers, less has been written on the downstream effects of classification errors on measurements and statistical inferences (e.g., the estimate of correlations and effect sizes in regressions). This paper proposes a Bayesian approach to study the effects of algorithmic errors on key scientific questions, including the effect of siblings on children's language experience and the association between children's production and their input. In both the most commonly used \gls{lena}, and an open-source alternative (the Voice Type Classifier from the ACLEW system), we find that classification errors can significantly distort estimates. For instance, automated annotations underestimated the negative effect of siblings on adult input by 20--80\%, potentially placing it below statistical significance thresholds. We further show that a Bayesian calibration approach for recovering unbiased estimates of effect sizes can be effective and insightful, but does not provide a fool-proof solution. Both the issue reported and our solution may apply to any classifier involving event detection and classification with non-zero error rates.
☆ Trained Miniatures: Low cost, High Efficacy SLMs for Sales & Marketing
Large language models (LLMs) excel in text generation; however, these creative elements require heavy computation and are accompanied by a steep cost. Especially for targeted applications such as sales and marketing outreach, these costs are far from feasible. This paper introduces the concept of "Trained Miniatures" - Small Language Models(SLMs) fine-tuned for specific, high-value applications, generating similar domain-specific responses for a fraction of the cost.
☆ SafetyFlow: An Agent-Flow System for Automated LLM Safety Benchmarking
The rapid proliferation of large language models (LLMs) has intensified the requirement for reliable safety evaluation to uncover model vulnerabilities. To this end, numerous LLM safety evaluation benchmarks are proposed. However, existing benchmarks generally rely on labor-intensive manual curation, which causes excessive time and resource consumption. They also exhibit significant redundancy and limited difficulty. To alleviate these problems, we introduce SafetyFlow, the first agent-flow system designed to automate the construction of LLM safety benchmarks. SafetyFlow can automatically build a comprehensive safety benchmark in only four days without any human intervention by orchestrating seven specialized agents, significantly reducing time and resource cost. Equipped with versatile tools, the agents of SafetyFlow ensure process and cost controllability while integrating human expertise into the automatic pipeline. The final constructed dataset, SafetyFlowBench, contains 23,446 queries with low redundancy and strong discriminative power. Our contribution includes the first fully automated benchmarking pipeline and a comprehensive safety benchmark. We evaluate the safety of 49 advanced LLMs on our dataset and conduct extensive experiments to validate our efficacy and efficiency.
comment: Code and dataset are available at https://github.com/yangyangyang127/SafetyFlow
☆ The Enemy from Within: A Study of Political Delegitimization Discourse in Israeli Political Speech
We present the first large-scale computational study of political delegitimization discourse (PDD), defined as symbolic attacks on the normative validity of political entities. We curate and manually annotate a novel Hebrew-language corpus of 10,410 sentences drawn from Knesset speeches (1993-2023), Facebook posts (2018-2021), and leading news outlets, of which 1,812 instances (17.4\%) exhibit PDD and 642 carry additional annotations for intensity, incivility, target type, and affective framing. We introduce a two-stage classification pipeline combining finetuned encoder models and decoder LLMs. Our best model (DictaLM 2.0) attains an F$_1$ of 0.74 for binary PDD detection and a macro-F$_1$ of 0.67 for classification of delegitimization characteristics. Applying this classifier to longitudinal and cross-platform data, we see a marked rise in PDD over three decades, higher prevalence on social media versus parliamentary debate, greater use by male than female politicians, and stronger tendencies among right-leaning actors - with pronounced spikes during election campaigns and major political events. Our findings demonstrate the feasibility and value of automated PDD analysis for understanding democratic discourse.
☆ Dream 7B: Diffusion Large Language Models
We introduce Dream 7B, the most powerful open diffusion large language model to date. Unlike autoregressive (AR) models that generate tokens sequentially, Dream 7B employs discrete diffusion modeling to refine sequences in parallel through iterative denoising. Our model consistently outperforms existing diffusion language models on general, mathematical, and coding tasks. Dream 7B demonstrates superior planning abilities and inference flexibility, including arbitrary-order generation, infilling capabilities, and tunable quality-speed trade-offs. These results are achieved through simple yet effective training techniques, including AR-based LLM initialization and context-adaptive token-level noise rescheduling. We release both Dream-Base and Dream-Instruct to facilitate further research in diffusion-based language modeling.
☆ HebID: Detecting Social Identities in Hebrew-language Political Text
Political language is deeply intertwined with social identities. While social identities are often shaped by specific cultural contexts and expressed through particular uses of language, existing datasets for group and identity detection are predominantly English-centric, single-label and focus on coarse identity categories. We introduce HebID, the first multilabel Hebrew corpus for social identity detection: 5,536 sentences from Israeli politicians' Facebook posts (Dec 2018-Apr 2021), manually annotated for twelve nuanced social identities (e.g. Rightist, Ultra-Orthodox, Socially-oriented) grounded by survey data. We benchmark multilabel and single-label encoders alongside 2B-9B-parameter generative LLMs, finding that Hebrew-tuned LLMs provide the best results (macro-$F_1$ = 0.74). We apply our classifier to politicians' Facebook posts and parliamentary speeches, evaluating differences in popularity, temporal trends, clustering patterns, and gender-related variations in identity expression. We utilize identity choices from a national public survey, enabling a comparison between identities portrayed in elite discourse and the public's identity priorities. HebID provides a comprehensive foundation for studying social identities in Hebrew and can serve as a model for similar research in other non-English political contexts.
☆ SLM-Bench: A Comprehensive Benchmark of Small Language Models on Environmental Impacts -- Extended Version EMNLP 2025
Small Language Models (SLMs) offer computational efficiency and accessibility, yet a systematic evaluation of their performance and environmental impact remains lacking. We introduce SLM-Bench, the first benchmark specifically designed to assess SLMs across multiple dimensions, including accuracy, computational efficiency, and sustainability metrics. SLM-Bench evaluates 15 SLMs on 9 NLP tasks using 23 datasets spanning 14 domains. The evaluation is conducted on 4 hardware configurations, providing a rigorous comparison of their effectiveness. Unlike prior benchmarks, SLM-Bench quantifies 11 metrics across correctness, computation, and consumption, enabling a holistic assessment of efficiency trade-offs. Our evaluation considers controlled hardware conditions, ensuring fair comparisons across models. We develop an open-source benchmarking pipeline with standardized evaluation protocols to facilitate reproducibility and further research. Our findings highlight the diverse trade-offs among SLMs, where some models excel in accuracy while others achieve superior energy efficiency. SLM-Bench sets a new standard for SLM evaluation, bridging the gap between resource efficiency and real-world applicability.
comment: 24 pages. An extended version of "SLM-Bench: A Comprehensive Benchmark of Small Language Models on Environmental Impacts" accepted at EMNLP 2025
☆ Influence-driven Curriculum Learning for Pre-training on Limited Data
Curriculum learning, a training technique where data is presented to the model in order of example difficulty (e.g., from simpler to more complex documents), has shown limited success for pre-training language models. In this work, we investigate whether curriculum learning becomes competitive if we replace conventional human-centered difficulty metrics with one that more closely corresponds to example difficulty as observed during model training. Specifically, we experiment with sorting training examples by their \textit{training data influence}, a score which estimates the effect of individual training examples on the model's output. Models trained on our curricula are able to outperform ones trained in random order by over 10 percentage points in benchmarks, confirming that curriculum learning is beneficial for language model pre-training, as long as a more model-centric notion of difficulty is adopted.
comment: 9 pages
☆ Subjective Behaviors and Preferences in LLM: Language of Browsing EMNLP 2025
A Large Language Model (LLM) offers versatility across domains and tasks, purportedly benefiting users with a wide variety of behaviors and preferences. We question this perception about an LLM when users have inherently subjective behaviors and preferences, as seen in their ubiquitous and idiosyncratic browsing of websites or apps. The sequential behavior logs of pages, thus generated, form something akin to each user's self-constructed "language", albeit without the structure and grammar imbued in natural languages. We ask: (i) Can a small LM represent the "language of browsing" better than a large LM? (ii) Can an LM with a single set of parameters (or, single LM) adequately capture myriad users' heterogeneous, subjective behaviors and preferences? (iii) Can a single LM with high average performance, yield low variance in performance to make alignment good at user level? We introduce clusterwise LM training, HeTLM (Heterogeneity aware Training of Language Model), appropriate for subjective behaviors. We find that (i) a small LM trained using a page-level tokenizer outperforms large pretrained or finetuned LMs; (ii) HeTLM with heterogeneous cluster specific set of parameters outperforms a single LM of the same family, controlling for the number of parameters; and (iii) a higher mean and a lower variance in generation ensues, implying improved alignment.
comment: Accepted at EMNLP 2025
☆ SLM4Offer: Personalized Marketing Offer Generation Using Contrastive Learning Based Fine-Tuning
Personalized marketing has emerged as a pivotal strategy for enhancing customer engagement and driving business growth. Academic and industry efforts have predominantly focused on recommendation systems and personalized advertisements. Nonetheless, this facet of personalization holds significant potential for increasing conversion rates and improving customer satisfaction. Prior studies suggest that well-executed personalization strategies can boost revenue by up to 40 percent, underscoring the strategic importance of developing intelligent, data-driven approaches for offer generation. This work introduces SLM4Offer, a generative AI model for personalized offer generation, developed by fine-tuning a pre-trained encoder-decoder language model, specifically Google's Text-to-Text Transfer Transformer (T5-Small 60M) using a contrastive learning approach. SLM4Offer employs InfoNCE (Information Noise-Contrastive Estimation) loss to align customer personas with relevant offers in a shared embedding space. A key innovation in SLM4Offer lies in the adaptive learning behaviour introduced by contrastive loss, which reshapes the latent space during training and enhances the model's generalizability. The model is fine-tuned and evaluated on a synthetic dataset designed to simulate customer behaviour and offer acceptance patterns. Experimental results demonstrate a 17 percent improvement in offer acceptance rate over a supervised fine-tuning baseline, highlighting the effectiveness of contrastive objectives in advancing personalized marketing.
comment: 10 pages, BDA Conference 2025
☆ RadReason: Radiology Report Evaluation Metric with Reasons and Sub-Scores
Evaluating automatically generated radiology reports remains a fundamental challenge due to the lack of clinically grounded, interpretable, and fine-grained metrics. Existing methods either produce coarse overall scores or rely on opaque black-box models, limiting their usefulness in real-world clinical workflows. We introduce RadReason, a novel evaluation framework for radiology reports that not only outputs fine-grained sub-scores across six clinically defined error types, but also produces human-readable justifications that explain the rationale behind each score. Our method builds on Group Relative Policy Optimization and incorporates two key innovations: (1) Sub-score Dynamic Weighting, which adaptively prioritizes clinically challenging error types based on live F1 statistics; and (2) Majority-Guided Advantage Scaling, which adjusts policy gradient updates based on prompt difficulty derived from sub-score agreement. Together, these components enable more stable optimization and better alignment with expert clinical judgment. Experiments on the ReXVal benchmark show that RadReason surpasses all prior offline metrics and achieves parity with GPT-4-based evaluations, while remaining explainable, cost-efficient, and suitable for clinical deployment. Code will be released upon publication.
☆ PyTOD: Programmable Task-Oriented Dialogue with Execution Feedback SIGDIAL 2025
Programmable task-oriented dialogue (TOD) agents enable language models to follow structured dialogue policies, but their effectiveness hinges on accurate state tracking. We present PyTOD, an agent that generates executable code to track dialogue state and uses policy and execution feedback for efficient error correction. To this end, PyTOD employs a simple constrained decoding approach, using a language model instead of grammar rules to follow API schemata. This leads to state-of-the-art state tracking performance on the challenging SGD benchmark. Our experiments show that PyTOD surpasses strong baselines in both accuracy and robust user goal estimation as the dialogue progresses, demonstrating the effectiveness of execution-aware state tracking.
comment: 20 pages, 12 figures. To appear at SIGDIAL 2025
☆ Principle Methods of Rendering Non-equivalent Words from Uzbek and Dari to Russian and English
These pure languages understanding directly relates to translation knowledge where linguists and translators need to work and research to eradicate misunderstanding. Misunderstandings mostly appear in non-equivalent words because there are different local and internal words like food, garment, cultural and traditional words and others in every notion. Truly, most of these words do not have equivalent in the target language and these words need to be worked and find their equivalent in the target language to fully understand the both languages. The purpose of this research is to introduce the methods of rendering non-equivalent words professionally from the source language to the target language and this research has been completed using library-based research. However, some of these non-equivalent words are already professionally rendered to the target language but still there many other words to be rendered. As a result, this research paper includes different ways and rules of rendering non-equivalent words from source language to the target language and 25 non-equvalent words have been rendered from Dar & Uzbek into English and Russian languages.
comment: Fully abstract is available in the attached file
☆ M-HELP: Using Social Media Data to Detect Mental Health Help-Seeking Signals EMNLP 2025
Mental health disorders are a global crisis. While various datasets exist for detecting such disorders, there remains a critical gap in identifying individuals actively seeking help. This paper introduces a novel dataset, M-Help, specifically designed to detect help-seeking behavior on social media. The dataset goes beyond traditional labels by identifying not only help-seeking activity but also specific mental health disorders and their underlying causes, such as relationship challenges or financial stressors. AI models trained on M-Help can address three key tasks: identifying help-seekers, diagnosing mental health conditions, and uncovering the root causes of issues.
comment: Accepted at Findings of EMNLP 2025
☆ GraSP: A Unified Graph-Based Framework for Scalable Generation, Quality Tagging, and Management of Synthetic Data for SFT and DPO
The advancement of large language models (LLMs) is critically dependent on the availability of high-quality datasets for Supervised Fine-Tuning (SFT), alignment tasks like Direct Preference Optimization (DPO), etc. In this work, we present a comprehensive synthetic data generation framework that facilitates scalable, configurable, and high-fidelity generation of synthetic data tailored for these training paradigms. Our approach employs a modular and configuration-based pipeline capable of modeling complex dialogue flows with minimal manual intervention. This framework uses a dual-stage quality tagging mechanism, combining heuristic rules and LLM-based evaluations, to automatically filter and score data extracted from OASST-formatted conversations, ensuring the curation of high-quality dialogue samples. The resulting datasets are structured under a flexible schema supporting both SFT and DPO use cases, enabling seamless integration into diverse training workflows. Together, these innovations offer a robust solution for generating and managing synthetic conversational data at scale, significantly reducing the overhead of data preparation in LLM training pipelines.
☆ A Study of Privacy-preserving Language Modeling Approaches
Recent developments in language modeling have increased their use in various applications and domains. Language models, often trained on sensitive data, can memorize and disclose this information during privacy attacks, raising concerns about protecting individuals' privacy rights. Preserving privacy in language models has become a crucial area of research, as privacy is one of the fundamental human rights. Despite its significance, understanding of how much privacy risk these language models possess and how it can be mitigated is still limited. This research addresses this by providing a comprehensive study of the privacy-preserving language modeling approaches. This study gives an in-depth overview of these approaches, highlights their strengths, and investigates their limitations. The outcomes of this study contribute to the ongoing research on privacy-preserving language modeling, providing valuable insights and outlining future research directions.
☆ LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model
The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.
☆ Foundational Design Principles and Patterns for Building Robust and Adaptive GenAI-Native Systems
Generative AI (GenAI) has emerged as a transformative technology, demonstrating remarkable capabilities across diverse application domains. However, GenAI faces several major challenges in developing reliable and efficient GenAI-empowered systems due to its unpredictability and inefficiency. This paper advocates for a paradigm shift: future GenAI-native systems should integrate GenAI's cognitive capabilities with traditional software engineering principles to create robust, adaptive, and efficient systems. We introduce foundational GenAI-native design principles centered around five key pillars -- reliability, excellence, evolvability, self-reliance, and assurance -- and propose architectural patterns such as GenAI-native cells, organic substrates, and programmable routers to guide the creation of resilient and self-evolving systems. Additionally, we outline the key ingredients of a GenAI-native software stack and discuss the impact of these systems from technical, user adoption, economic, and legal perspectives, underscoring the need for further validation and experimentation. Our work aims to inspire future research and encourage relevant communities to implement and refine this conceptual framework.
☆ When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models EMNLP 2025
Large Audio-Language Models (LALMs) are enhanced with audio perception capabilities, enabling them to effectively process and understand multimodal inputs that combine audio and text. However, their performance in handling conflicting information between audio and text modalities remains largely unexamined. This paper introduces MCR-BENCH, the first comprehensive benchmark specifically designed to evaluate how LALMs prioritize information when presented with inconsistent audio-text pairs. Through extensive evaluation across diverse audio understanding tasks, we reveal a concerning phenomenon: when inconsistencies exist between modalities, LALMs display a significant bias toward textual input, frequently disregarding audio evidence. This tendency leads to substantial performance degradation in audio-centric tasks and raises important reliability concerns for real-world applications. We further investigate the influencing factors of text bias, and explore mitigation strategies through supervised finetuning, and analyze model confidence patterns that reveal persistent overconfidence even with contradictory inputs. These findings underscore the need for improved modality balance during training and more sophisticated fusion mechanisms to enhance the robustness when handling conflicting multi-modal inputs. The project is available at https://github.com/WangCheng0116/MCR-BENCH.
comment: Accepted by EMNLP 2025 Main
☆ Attribution, Citation, and Quotation: A Survey of Evidence-based Text Generation with Large Language Models
The increasing adoption of large language models (LLMs) has been accompanied by growing concerns regarding their reliability and trustworthiness. As a result, a growing body of research focuses on evidence-based text generation with LLMs, aiming to link model outputs to supporting evidence to ensure traceability and verifiability. However, the field is fragmented due to inconsistent terminology, isolated evaluation practices, and a lack of unified benchmarks. To bridge this gap, we systematically analyze 134 papers, introduce a unified taxonomy of evidence-based text generation with LLMs, and investigate 300 evaluation metrics across seven key dimensions. Thereby, we focus on approaches that use citations, attribution, or quotations for evidence-based text generation. Building on this, we examine the distinctive characteristics and representative methods in the field. Finally, we highlight open challenges and outline promising directions for future work.
☆ CITE: A Comprehensive Benchmark for Heterogeneous Text-Attributed Graphs on Catalytic Materials
Text-attributed graphs(TAGs) are pervasive in real-world systems,where each node carries its own textual features. In many cases these graphs are inherently heterogeneous, containing multiple node types and diverse edge types. Despite the ubiquity of such heterogeneous TAGs, there remains a lack of large-scale benchmark datasets. This shortage has become a critical bottleneck, hindering the development and fair comparison of representation learning methods on heterogeneous text-attributed graphs. In this paper, we introduce CITE - Catalytic Information Textual Entities Graph, the first and largest heterogeneous text-attributed citation graph benchmark for catalytic materials. CITE comprises over 438K nodes and 1.2M edges, spanning four relation types. In addition, we establish standardized evaluation procedures and conduct extensive benchmarking on the node classification task, as well as ablation experiments on the heterogeneous and textual properties of CITE. We compare four classes of learning paradigms, including homogeneous graph models, heterogeneous graph models, LLM(Large Language Model)-centric models, and LLM+Graph models. In a nutshell, we provide (i) an overview of the CITE dataset, (ii) standardized evaluation protocols, and (iii) baseline and ablation experiments across diverse modeling paradigms.
comment: 23 pages, 4 figures,
☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but the source of the benefit is unclear. We conduct a controlled study that scales the language model's vocabulary from 24K to 196K while holding data, compute, and optimization fixed. We first quantify the complexity of tokenized text, formalized via Kolmogorov complexity, and show that larger vocabularies reduce this complexity. Above 24K, every common word is already a single token, so further growth mainly deepens the relative token-frequency imbalance. A word-level loss decomposition shows that larger vocabularies reduce cross-entropy almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. Constraining input and output embedding norms to attenuate the effect of token-frequency imbalance reverses the gain, directly showing that the model exploits rather than suffers from imbalance. Because the same frequent words cover roughly 77% of tokens in downstream benchmarks, this training advantage transfers intact. We also show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results reframe "bigger vocabularies help" as "lowering the complexity of tokenized text helps," providing a simple, principled lever for tokenizer-model co-design and clarifying the loss dynamics that govern language-model scaling in pre-training.
comment: Preprint
☆ Confidence-Modulated Speculative Decoding for Large Language Models SC
Speculative decoding has emerged as an effective approach for accelerating autoregressive inference by parallelizing token generation through a draft-then-verify paradigm. However, existing methods rely on static drafting lengths and rigid verification criteria, limiting their adaptability across varying model uncertainties and input complexities. This paper proposes an information-theoretic framework for speculative decoding based on confidence-modulated drafting. By leveraging entropy and margin-based uncertainty measures over the drafter's output distribution, the proposed method dynamically adjusts the number of speculatively generated tokens at each iteration. This adaptive mechanism reduces rollback frequency, improves resource utilization, and maintains output fidelity. Additionally, the verification process is modulated using the same confidence signals, enabling more flexible acceptance of drafted tokens without sacrificing generation quality. Experiments on machine translation and summarization tasks demonstrate significant speedups over standard speculative decoding while preserving or improving BLEU and ROUGE scores. The proposed approach offers a principled, plug-in method for efficient and robust decoding in large language models under varying conditions of uncertainty.
comment: This is the preprint of the paper, which has been accepted for oral presentation and publication in the proceedings of IEEE INDISCON 2025. The conference will be organized at the National Institute of Technology, Rourkela, India, from August 21 to 23, 2025. The paper is 10 pages long, and it contains 2 figures and 5 tables
☆ Unveiling Trust in Multimodal Large Language Models: Evaluation, Analysis, and Mitigation
The trustworthiness of Multimodal Large Language Models (MLLMs) remains an intense concern despite the significant progress in their capabilities. Existing evaluation and mitigation approaches often focus on narrow aspects and overlook risks introduced by the multimodality. To tackle these challenges, we propose MultiTrust-X, a comprehensive benchmark for evaluating, analyzing, and mitigating the trustworthiness issues of MLLMs. We define a three-dimensional framework, encompassing five trustworthiness aspects which include truthfulness, robustness, safety, fairness, and privacy; two novel risk types covering multimodal risks and cross-modal impacts; and various mitigation strategies from the perspectives of data, model architecture, training, and inference algorithms. Based on the taxonomy, MultiTrust-X includes 32 tasks and 28 curated datasets, enabling holistic evaluations over 30 open-source and proprietary MLLMs and in-depth analysis with 8 representative mitigation methods. Our extensive experiments reveal significant vulnerabilities in current models, including a gap between trustworthiness and general capabilities, as well as the amplification of potential risks in base LLMs by both multimodal training and inference. Moreover, our controlled analysis uncovers key limitations in existing mitigation strategies that, while some methods yield improvements in specific aspects, few effectively address overall trustworthiness, and many introduce unexpected trade-offs that compromise model utility. These findings also provide practical insights for future improvements, such as the benefits of reasoning to better balance safety and performance. Based on these insights, we introduce a Reasoning-Enhanced Safety Alignment (RESA) approach that equips the model with chain-of-thought reasoning ability to discover the underlying risks, achieving state-of-the-art results.
comment: For Appendix, please refer to arXiv:2406.07057
☆ A Survey on Large Language Model Benchmarks
In recent years, with the rapid development of the depth and breadth of large language models' capabilities, various corresponding evaluation benchmarks have been emerging in increasing numbers. As a quantitative assessment tool for model performance, benchmarks are not only a core means to measure model capabilities but also a key element in guiding the direction of model development and promoting technological innovation. We systematically review the current status and development of large language model benchmarks for the first time, categorizing 283 representative benchmarks into three categories: general capabilities, domain-specific, and target-specific. General capability benchmarks cover aspects such as core linguistics, knowledge, and reasoning; domain-specific benchmarks focus on fields like natural sciences, humanities and social sciences, and engineering technology; target-specific benchmarks pay attention to risks, reliability, agents, etc. We point out that current benchmarks have problems such as inflated scores caused by data contamination, unfair evaluation due to cultural and linguistic biases, and lack of evaluation on process credibility and dynamic environments, and provide a referable design paradigm for future benchmark innovation.
☆ KG-EDAS: A Meta-Metric Framework for Evaluating Knowledge Graph Completion Models
Knowledge Graphs (KGs) enable applications in various domains such as semantic search, recommendation systems, and natural language processing. KGs are often incomplete, missing entities and relations, an issue addressed by Knowledge Graph Completion (KGC) methods that predict missing elements. Different evaluation metrics, such as Mean Reciprocal Rank (MRR), Mean Rank (MR), and Hit@k, are commonly used to assess the performance of such KGC models. A major challenge in evaluating KGC models, however, lies in comparing their performance across multiple datasets and metrics. A model may outperform others on one dataset but underperform on another, making it difficult to determine overall superiority. Moreover, even within a single dataset, different metrics such as MRR and Hit@1 can yield conflicting rankings, where one model excels in MRR while another performs better in Hit@1, further complicating model selection for downstream tasks. These inconsistencies hinder holistic comparisons and highlight the need for a unified meta-metric that integrates performance across all metrics and datasets to enable a more reliable and interpretable evaluation framework. To address this need, we propose KG Evaluation based on Distance from Average Solution (EDAS), a robust and interpretable meta-metric that synthesizes model performance across multiple datasets and diverse evaluation criteria into a single normalized score ($M_i \in [0,1]$). Unlike traditional metrics that focus on isolated aspects of performance, EDAS offers a global perspective that supports more informed model selection and promotes fairness in cross-dataset evaluation. Experimental results on benchmark datasets such as FB15k-237 and WN18RR demonstrate that EDAS effectively integrates multi-metric, multi-dataset performance into a unified ranking, offering a consistent, robust, and generalizable framework for evaluating KGC models.
☆ DiagECG: An LLM-Driven Framework for Diagnostic Reasoning via Discretized ECG Tokenization
Electrocardiography plays a central role in cardiovascular diagnostics, yet existing automated approaches often struggle to generalize across clinical tasks and offer limited support for open-ended reasoning. We present DiagECG, a novel framework that integrates time-series and language modeling by enabling large language models to process 12-lead ECG signals for clinical text generation tasks. Our approach discretizes continuous ECG embeddings into symbolic tokens using a lead-independent encoder and quantization module. These tokens are then used to extend the vocabulary of LLM, allowing the model to handle both ECG and natural language inputs in a unified manner. To bridge the modality gap, we pretrain the model on an autoregressive ECG forecasting task, enabling the LLM to model temporal dynamics using its native language modeling capabilities. Finally, we perform instruction tuning on both ECG question answering and diagnostic report generation. Without modifying the core model, DiagECG achieves strong performance across tasks while maintaining generalization to out-of-distribution settings. Extensive experiments demonstrate the effectiveness of each component and highlight the potential of integrating symbolic ECG representations into LLMs for medical reasoning.
☆ CUPE: Contextless Universal Phoneme Encoder for Language-Agnostic Speech Processing SP 2025
Universal phoneme recognition typically requires analyzing long speech segments and language-specific patterns. Many speech processing tasks require pure phoneme representations free from contextual influence, which motivated our development of CUPE - a lightweight model that captures key phoneme features in just 120 milliseconds, about one phoneme's length. CUPE processes short, fixed-width windows independently and, despite fewer parameters than current approaches, achieves competitive cross-lingual performance by learning fundamental acoustic patterns common to all languages. Our extensive evaluation through supervised and self-supervised training on diverse languages, including zero-shot tests on the UCLA Phonetic Corpus, demonstrates strong cross-lingual generalization and reveals that effective universal speech processing is possible through modeling basic acoustic patterns within phoneme-length windows.
comment: Accepted in: 8th International Conference on Natural Language and Speech Processing (ICNLSP 2025)
☆ IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents EMNLP 2025
Large language model (LLM) agents are widely deployed in real-world applications, where they leverage tools to retrieve and manipulate external data for complex tasks. However, when interacting with untrusted data sources (e.g., fetching information from public websites), tool responses may contain injected instructions that covertly influence agent behaviors and lead to malicious outcomes, a threat referred to as Indirect Prompt Injection (IPI). Existing defenses typically rely on advanced prompting strategies or auxiliary detection models. While these methods have demonstrated some effectiveness, they fundamentally rely on assumptions about the model's inherent security, which lacks structural constraints on agent behaviors. As a result, agents still retain unrestricted access to tool invocations, leaving them vulnerable to stronger attack vectors that can bypass the security guardrails of the model. To prevent malicious tool invocations at the source, we propose a novel defensive task execution paradigm, called IPIGuard, which models the agents' task execution process as a traversal over a planned Tool Dependency Graph (TDG). By explicitly decoupling action planning from interaction with external data, IPIGuard significantly reduces unintended tool invocations triggered by injected instructions, thereby enhancing robustness against IPI attacks. Experiments on the AgentDojo benchmark show that IPIGuard achieves a superior balance between effectiveness and robustness, paving the way for the development of safer agentic systems in dynamic environments.
comment: EMNLP 2025
☆ Multiple Memory Systems for Enhancing the Long-term Memory of Agent
An agent powered by large language models have achieved impressive results, but effectively handling the vast amounts of historical data generated during interactions remains a challenge. The current approach is to design a memory module for the agent to process these data. However, existing methods, such as MemoryBank and A-MEM, have poor quality of stored memory content, which affects recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multiple memory system (MMS) inspired by cognitive psychology theory. The system processes short-term memory to multiple long-term memory fragments, and constructs retrieval memory units and contextual memory units based on these fragments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. Experiments on LoCoMo dataset compared our method with three others, proving its effectiveness. Ablation studies confirmed the rationality of our memory units. We also analyzed the robustness regarding the number of selected memory segments and the storage overhead, demonstrating its practical value.
☆ Evaluating Knowledge Graph Complexity via Semantic, Spectral, and Structural Metrics for Link Prediction
Understanding dataset complexity is fundamental to evaluating and comparing link prediction models on knowledge graphs (KGs). While the Cumulative Spectral Gradient (CSG) metric, derived from probabilistic divergence between classes within a spectral clustering framework, has been proposed as a classifier agnostic complexity metric purportedly scaling with class cardinality and correlating with downstream performance, it has not been evaluated in KG settings so far. In this work, we critically examine CSG in the context of multi relational link prediction, incorporating semantic representations via transformer derived embeddings. Contrary to prior claims, we find that CSG is highly sensitive to parametrisation and does not robustly scale with the number of classes. Moreover, it exhibits weak or inconsistent correlation with standard performance metrics such as Mean Reciprocal Rank (MRR) and Hit@1. To deepen the analysis, we introduce and benchmark a set of structural and semantic KG complexity metrics. Our findings reveal that global and local relational ambiguity captured via Relation Entropy, node level Maximum Relation Diversity, and Relation Type Cardinality exhibit strong inverse correlations with MRR and Hit@1, suggesting these as more faithful indicators of task difficulty. Conversely, graph connectivity measures such as Average Degree, Degree Entropy, PageRank, and Eigenvector Centrality correlate positively with Hit@10. Our results demonstrate that CSGs purported stability and generalization predictive power fail to hold in link prediction settings and underscore the need for more stable, interpretable, and task-aligned measures of dataset complexity in knowledge driven learning.
☆ Adversarial Attacks against Neural Ranking Models via In-Context Learning
While neural ranking models (NRMs) have shown high effectiveness, they remain susceptible to adversarial manipulation. In this work, we introduce Few-Shot Adversarial Prompting (FSAP), a novel black-box attack framework that leverages the in-context learning capabilities of Large Language Models (LLMs) to generate high-ranking adversarial documents. Unlike previous approaches that rely on token-level perturbations or manual rewriting of existing documents, FSAP formulates adversarial attacks entirely through few-shot prompting, requiring no gradient access or internal model instrumentation. By conditioning the LLM on a small support set of previously observed harmful examples, FSAP synthesizes grammatically fluent and topically coherent documents that subtly embed false or misleading information and rank competitively against authentic content. We instantiate FSAP in two modes: FSAP-IntraQ, which leverages harmful examples from the same query to enhance topic fidelity, and FSAP-InterQ, which enables broader generalization by transferring adversarial patterns across unrelated queries. Our experiments on the TREC 2020 and 2021 Health Misinformation Tracks, using four diverse neural ranking models, reveal that FSAP-generated documents consistently outrank credible, factually accurate documents. Furthermore, our analysis demonstrates that these adversarial outputs exhibit strong stance alignment and low detectability, posing a realistic and scalable threat to neural retrieval systems. FSAP also effectively generalizes across both proprietary and open-source LLMs.
☆ AmbiSQL: Interactive Ambiguity Detection and Resolution for Text-to-SQL
Text-to-SQL systems translate natural language questions into SQL queries, providing substantial value for non-expert users. While large language models (LLMs) show promising results for this task, they remain error-prone. Query ambiguity has been recognized as a major obstacle for LLM-based Text-to-SQL systems, leading to misinterpretation of user intent and inaccurate SQL generation. We demonstrate AmbiSQL, an interactive system that automatically detects query ambiguities and guides users through intuitive multiple-choice questions to clarify their intent. Our approach introduces a fine-grained ambiguity taxonomy for identifying ambiguities that affect database element mapping and LLM reasoning, then incorporates user feedback to rewrite ambiguous questions. Evaluation on an ambiguous query dataset shows that AmbiSQL achieves 87.2% precision in ambiguity detection and improves SQL exact match accuracy by 50% when integrated with Text-to-SQL systems. Our demonstration showcases the significant performance gains and highlights the system's practical usability. Code repo and demonstration are available at: https://github.com/JustinzjDing/AmbiSQL.
☆ TComQA: Extracting Temporal Commonsense from Text
Understanding events necessitates grasping their temporal context, which is often not explicitly stated in natural language. For example, it is not a trivial task for a machine to infer that a museum tour may last for a few hours, but can not take months. Recent studies indicate that even advanced large language models (LLMs) struggle in generating text that require reasoning with temporal commonsense due to its infrequent explicit mention in text. Therefore, automatically mining temporal commonsense for events enables the creation of robust language models. In this work, we investigate the capacity of LLMs to extract temporal commonsense from text and evaluate multiple experimental setups to assess their effectiveness. Here, we propose a temporal commonsense extraction pipeline that leverages LLMs to automatically mine temporal commonsense and use it to construct TComQA, a dataset derived from SAMSum and RealNews corpora. TComQA has been validated through crowdsourcing and achieves over 80\% precision in extracting temporal commonsense. The model trained with TComQA also outperforms an LLM fine-tuned on existing dataset of temporal question answering task.
☆ Conflict-Aware Soft Prompting for Retrieval-Augmented Generation EMNLP 2025
Retrieval-augmented generation (RAG) enhances the capabilities of large language models (LLMs) by incorporating external knowledge into their input prompts. However, when the retrieved context contradicts the LLM's parametric knowledge, it often fails to resolve the conflict between incorrect external context and correct parametric knowledge, known as context-memory conflict. To tackle this problem, we introduce Conflict-Aware REtrieval-Augmented Generation (CARE), consisting of a context assessor and a base LLM. The context assessor encodes compact memory token embeddings from raw context tokens. Through grounded/adversarial soft prompting, the context assessor is trained to discern unreliable context and capture a guidance signal that directs reasoning toward the more reliable knowledge source. Extensive experiments show that CARE effectively mitigates context-memory conflicts, leading to an average performance gain of 5.0\% on QA and fact-checking benchmarks, establishing a promising direction for trustworthy and adaptive RAG systems.
comment: Accepted to EMNLP 2025; 14 pages; 5 figures, 11 tables
☆ Retrieval-Augmented Review Generation for Poisoning Recommender Systems
Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks, where malicious actors inject fake user profiles, including a group of well-designed fake ratings, to manipulate recommendations. Due to security and privacy constraints in practice, attackers typically possess limited knowledge of the victim system and thus need to craft profiles that have transferability across black-box RSs. To maximize the attack impact, the profiles often remains imperceptible. However, generating such high-quality profiles with the restricted resources is challenging. Some works suggest incorporating fake textual reviews to strengthen the profiles; yet, the poor quality of the reviews largely undermines the attack effectiveness and imperceptibility under the practical setting. To tackle the above challenges, in this paper, we propose to enhance the quality of the review text by harnessing in-context learning (ICL) capabilities of multimodal foundation models. To this end, we introduce a demonstration retrieval algorithm and a text style transfer strategy to augment the navie ICL. Specifically, we propose a novel practical attack framework named RAGAN to generate high-quality fake user profiles, which can gain insights into the robustness of RSs. The profiles are generated by a jailbreaker and collaboratively optimized on an instructional agent and a guardian to improve the attack transferability and imperceptibility. Comprehensive experiments on various real-world datasets demonstrate that RAGAN achieves the state-of-the-art poisoning attack performance.
☆ EMNLP: Educator-role Moral and Normative Large Language Models Profiling EMNLP
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 12 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
comment: 24pages, 12 figures, Accepted by EMNLP Main Confrence
☆ UniCoM: A Universal Code-Switching Speech Generator EMNLP 2025
Code-switching (CS), the alternation between two or more languages within a single speaker's utterances, is common in real-world conversations and poses significant challenges for multilingual speech technology. However, systems capable of handling this phenomenon remain underexplored, primarily due to the scarcity of suitable datasets. To resolve this issue, we propose Universal Code-Mixer (UniCoM), a novel pipeline for generating high-quality, natural CS samples without altering sentence semantics. Our approach utilizes an algorithm we call Substituting WORDs with Synonyms (SWORDS), which generates CS speech by replacing selected words with their translations while considering their parts of speech. Using UniCoM, we construct Code-Switching FLEURS (CS-FLEURS), a multilingual CS corpus designed for automatic speech recognition (ASR) and speech-to-text translation (S2TT). Experimental results show that CS-FLEURS achieves high intelligibility and naturalness, performing comparably to existing datasets on both objective and subjective metrics. We expect our approach to advance CS speech technology and enable more inclusive multilingual systems.
comment: Accepted to EMNLP 2025 Findings
☆ WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai EMNLP 2025
Large language models excel at instruction-following in English, but their performance in low-resource languages like Thai remains underexplored. Existing benchmarks often rely on translations, missing cultural and domain-specific nuances needed for real-world use. We present WangchanThaiInstruct, a human-authored Thai dataset for evaluation and instruction tuning, covering four professional domains and seven task types. Created through a multi-stage quality control process with annotators, domain experts, and AI researchers, WangchanThaiInstruct supports two studies: (1) a zero-shot evaluation showing performance gaps on culturally and professionally specific tasks, and (2) an instruction tuning study with ablations isolating the effect of native supervision. Models fine-tuned on WangchanThaiInstruct outperform those using translated data in both in-domain and out-of-domain benchmarks. These findings underscore the need for culturally and professionally grounded instruction data to improve LLM alignment in low-resource, linguistically diverse settings.
comment: Accepted to EMNLP 2025 (Main). Model and Dataset: https://huggingface.co/collections/airesearch/wangchan-thai-instruction-6835722a30b98e01598984fd
☆ VocabTailor: Dynamic Vocabulary Selection for Downstream Tasks in Small Language Models
Small Language Models (SLMs) provide computational advantages in resource-constrained environments, yet memory limitations remain a critical bottleneck for edge device deployment. A substantial portion of SLMs' memory footprint stems from vocabulary-related components, particularly embeddings and language modeling (LM) heads, due to large vocabulary sizes. Existing static vocabulary pruning, while reducing memory usage, suffers from rigid, one-size-fits-all designs that cause information loss from the prefill stage and a lack of flexibility. In this work, we identify two key principles underlying the vocabulary reduction challenge: the lexical locality principle, the observation that only a small subset of tokens is required during any single inference, and the asymmetry in computational characteristics between vocabulary-related components of SLM. Based on these insights, we introduce VocabTailor, a novel decoupled dynamic vocabulary selection framework that addresses memory constraints through offloading embedding and implements a hybrid static-dynamic vocabulary selection strategy for LM Head, enabling on-demand loading of vocabulary components. Comprehensive experiments across diverse downstream tasks demonstrate that VocabTailor achieves a reduction of up to 99% in the memory usage of vocabulary-related components with minimal or no degradation in task performance, substantially outperforming existing static vocabulary pruning.
☆ Are Checklists Really Useful for Automatic Evaluation of Generative Tasks? EMNLP 2025
Automatic evaluation of generative tasks using large language models faces challenges due to ambiguous criteria. Although automatic checklist generation is a potentially promising approach, its usefulness remains underexplored. We investigate whether checklists should be used for all questions or selectively, generate them using six methods, evaluate their effectiveness across eight model sizes, and identify checklist items that correlate with human evaluations. Through experiments on pairwise comparison and direct scoring tasks, we find that selective checklist use tends to improve evaluation performance in pairwise settings, while its benefits are less consistent in direct scoring. Our analysis also shows that even checklist items with low correlation to human scores often reflect human-written criteria, indicating potential inconsistencies in human evaluation. These findings highlight the need to more clearly define objective evaluation criteria to guide both human and automatic evaluations. \footnote{Our code is available at~https://github.com/momo0817/checklist-effectiveness-study
comment: Accepted to the EMNLP 2025 Main Conference
☆ Self-Guided Function Calling in Large Language Models via Stepwise Experience Recall EMNLP 2025
Function calling enables large language models (LLMs) to interact with external systems by leveraging tools and APIs. When faced with multi-step tool usage, LLMs still struggle with tool selection, parameter generation, and tool-chain planning. Existing methods typically rely on manually designing task-specific demonstrations, or retrieving from a curated library. These approaches demand substantial expert effort and prompt engineering becomes increasingly complex and inefficient as tool diversity and task difficulty scale. To address these challenges, we propose a self-guided method, Stepwise Experience Recall (SEER), which performs fine-grained, stepwise retrieval from a continually updated experience pool. Instead of relying on static or manually curated library, SEER incrementally augments the experience pool with past successful trajectories, enabling continuous expansion of the pool and improved model performance over time. Evaluated on the ToolQA benchmark, SEER achieves an average improvement of 6.1\% on easy and 4.7\% on hard questions. We further test SEER on $\tau$-bench, which includes two real-world domains. Powered by Qwen2.5-7B and Qwen2.5-72B models, SEER demonstrates substantial accuracy gains of 7.44\% and 23.38\%, respectively.
comment: Accepted to EMNLP 2025
☆ Select to Know: An Internal-External Knowledge Self-Selection Framework for Domain-Specific Question Answering EMNLP2025
Large Language Models (LLMs) perform well in general QA but often struggle in domain-specific scenarios. Retrieval-Augmented Generation (RAG) introduces external knowledge but suffers from hallucinations and latency due to noisy retrievals. Continued pretraining internalizes domain knowledge but is costly and lacks cross-domain flexibility. We attribute this challenge to the long-tail distribution of domain knowledge, which leaves partial yet useful internal knowledge underutilized. We further argue that knowledge acquisition should be progressive, mirroring human learning: first understanding concepts, then applying them to complex reasoning. To address this, we propose Selct2Know (S2K), a cost-effective framework that internalizes domain knowledge through an internal-external knowledge self-selection strategy and selective supervised fine-tuning. We also introduce a structured reasoning data generation pipeline and integrate GRPO to enhance reasoning ability. Experiments on medical, legal, and financial QA benchmarks show that S2K consistently outperforms existing methods and matches domain-pretrained LLMs with significantly lower cost.
comment: EMNLP2025 Findings
☆ SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.
☆ Fin-PRM: A Domain-Specialized Process Reward Model for Financial Reasoning in Large Language Models
Process Reward Models (PRMs) have emerged as a promising framework for supervising intermediate reasoning in large language models (LLMs), yet existing PRMs are primarily trained on general or Science, Technology, Engineering, and Mathematics (STEM) domains and fall short in domain-specific contexts such as finance, where reasoning is more structured, symbolic, and sensitive to factual and regulatory correctness. We introduce \textbf{Fin-PRM}, a domain-specialized, trajectory-aware PRM tailored to evaluate intermediate reasoning steps in financial tasks. Fin-PRM integrates step-level and trajectory-level reward supervision, enabling fine-grained evaluation of reasoning traces aligned with financial logic. We apply Fin-PRM in both offline and online reward learning settings, supporting three key applications: (i) selecting high-quality reasoning trajectories for distillation-based supervised fine-tuning, (ii) providing dense process-level rewards for reinforcement learning, and (iii) guiding reward-informed Best-of-N inference at test time. Experimental results on financial reasoning benchmarks, including CFLUE and FinQA, demonstrate that Fin-PRM consistently outperforms general-purpose PRMs and strong domain baselines in trajectory selection quality. Downstream models trained with Fin-PRM yield substantial improvements with baselines, with gains of 12.9\% in supervised learning, 5.2\% in reinforcement learning, and 5.1\% in test-time performance. These findings highlight the value of domain-specialized reward modeling for aligning LLMs with expert-level financial reasoning. Our project resources will be available at https://github.com/aliyun/qwen-dianjin.
☆ LLM4Sweat: A Trustworthy Large Language Model for Hyperhidrosis Support
While large language models (LLMs) have shown promise in healthcare, their application for rare medical conditions is still hindered by scarce and unreliable datasets for fine-tuning. Hyperhidrosis, a disorder causing excessive sweating beyond physiological needs, is one such rare disorder, affecting 2-3% of the population and significantly impacting both physical comfort and psychosocial well-being. To date, no work has tailored LLMs to advance the diagnosis or care of hyperhidrosis. To address this gap, we present LLM4Sweat, an open-source and domain-specific LLM framework for trustworthy and empathetic hyperhidrosis support. The system follows a three-stage pipeline. In the data augmentation stage, a frontier LLM generates medically plausible synthetic vignettes from curated open-source data to create a diverse and balanced question-answer dataset. In the fine-tuning stage, an open-source foundation model is fine-tuned on the dataset to provide diagnosis, personalized treatment recommendations, and empathetic psychological support. In the inference and expert evaluation stage, clinical and psychological specialists assess accuracy, appropriateness, and empathy, with validated responses iteratively enriching the dataset. Experiments show that LLM4Sweat outperforms baselines and delivers the first open-source LLM framework for hyperhidrosis, offering a generalizable approach for other rare diseases with similar data and trustworthiness challenges.
☆ SemToken: Semantic-Aware Tokenization for Efficient Long-Context Language Modeling
Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose \textbf{SemToken}, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to $2.4\times$ reduction in token count and $1.9\times$ speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
☆ ContextualLVLM-Agent: A Holistic Framework for Multi-Turn Visually-Grounded Dialogue and Complex Instruction Following
Despite significant advancements in Large Language Models (LLMs) and Large Vision-Language Models (LVLMs), current models still face substantial challenges in handling complex, multi-turn, and visually-grounded tasks that demand deep reasoning, sustained contextual understanding, entity tracking, and multi-step instruction following. Existing benchmarks often fall short in capturing the dynamism and intricacies of real-world multi-modal interactions, leading to issues such as context loss and visual hallucinations. To address these limitations, we introduce MMDR-Bench (Multi-Modal Dialogue Reasoning Benchmark), a novel dataset comprising 300 meticulously designed complex multi-turn dialogue scenarios, each averaging 5-7 turns and evaluated across six core dimensions including visual entity tracking and reasoning depth. Furthermore, we propose CoLVLM Agent (Contextual LVLM Agent), a holistic framework that enhances existing LVLMs with advanced reasoning and instruction following capabilities through an iterative "memory-perception-planning-execution" cycle, requiring no extensive re-training of the underlying models. Our extensive experiments on MMDR-Bench demonstrate that CoLVLM Agent consistently achieves superior performance, attaining an average human evaluation score of 4.03, notably surpassing state-of-the-art commercial models like GPT-4o (3.92) and Gemini 1.5 Pro (3.85). The framework exhibits significant advantages in reasoning depth, instruction adherence, and error suppression, and maintains robust performance over extended dialogue turns, validating the effectiveness of its modular design and iterative approach for complex multi-modal interactions.
☆ Identifying and Answering Questions with False Assumptions: An Interpretable Approach EMNLP 2025
People often ask questions with false assumptions, a type of question that does not have regular answers. Answering such questions require first identifying the false assumptions. Large Language Models (LLMs) often generate misleading answers because of hallucinations. In this paper, we focus on identifying and answering questions with false assumptions in several domains. We first investigate to reduce the problem to fact verification. Then, we present an approach leveraging external evidence to mitigate hallucinations. Experiments with five LLMs demonstrate that (1) incorporating retrieved evidence is beneficial and (2) generating and validating atomic assumptions yields more improvements and provides an interpretable answer by specifying the false assumptions.
comment: To appear at EMNLP 2025 Main conference
☆ Dancing with Deer: A Constructional Perspective on MWEs in the Era of LLMs
In this chapter, we argue for the benefits of understanding multiword expressions from the perspective of usage-based, construction grammar approaches. We begin with a historical overview of how construction grammar was developed in order to account for idiomatic expressions using the same grammatical machinery as the non-idiomatic structures of language. We cover a comprehensive description of constructions, which are pairings of meaning with form of any size (morpheme, word, phrase), as well as how constructional approaches treat the acquisition and generalization of constructions. We describe a successful case study leveraging constructional templates for representing multiword expressions in English PropBank. Because constructions can be at any level or unit of form, we then illustrate the benefit of a constructional representation of multi-meaningful morphosyntactic unit constructions in Arapaho, a highly polysynthetic and agglutinating language. We include a second case study leveraging constructional templates for representing these multi-morphemic expressions in Uniform Meaning Representation. Finally, we demonstrate the similarities and differences between a usage-based explanation of a speaker learning a novel multiword expression, such as "dancing with deer," and that of a large language model. We present experiments showing that both models and speakers can generalize the meaning of novel multiword expressions based on a single exposure of usage. However, only speakers can reason over the combination of two such expressions, as this requires comparison of the novel forms to a speaker's lifetime of stored constructional exemplars, which are rich with cross-modal details.
comment: Chapter in Phraseology and Multiword Expressions, Language Science Press (to appear)
☆ ASIC-Agent: An Autonomous Multi-Agent System for ASIC Design with Benchmark Evaluation
Large Language Models (LLMs) have demonstrated remarkable capabilities in Register Transfer Level (RTL) design, enabling high-quality code generation from natural language descriptions. However, LLMs alone face significant limitations in real-world hardware design workflows, including the inability to execute code, lack of debugging capabilities, and absence of long-term memory. To address these challenges, we present ASIC-Agent, an autonomous system designed specifically for digital ASIC design tasks. ASIC-Agent enhances base LLMs with a multi-agent architecture incorporating specialized sub-agents for RTL generation, verification, OpenLane hardening, and Caravel chip integration, all operating within a comprehensive sandbox environment with access to essential hardware design tools. The system leverages a vector database containing documentation, API references, error knowledge, and curated insights from the open-source silicon community. To evaluate ASIC-Agent's performance, we introduce ASIC-Agent-Bench, the first benchmark specifically designed to assess agentic systems in hardware design tasks. We evaluate ASIC-Agent with various base LLMs, providing quantitative comparisons and qualitative insights into agent behavior across different design scenarios. Our results demonstrate that ASIC-Agent, when powered by Claude 4 Sonnet, successfully automates a broad range of ASIC design tasks spanning varying levels of complexity, showing the potential of significantly accelerating the ASIC design workflow.
comment: 2025 IEEE International Conference on LLM-Aided Design (ICLAD)
☆ Evaluating Structured Decoding for Text-to-Table Generation: Evidence from Three Datasets
We present a comprehensive evaluation of structured decoding for text-to-table generation with large language models (LLMs). While previous work has primarily focused on unconstrained generation of tables, the impact of enforcing structural constraints during generation remains underexplored. We systematically compare schema-guided (structured) decoding to standard one-shot prompting across three diverse benchmarks - E2E, Rotowire, and Livesum - using open-source LLMs of up to 32B parameters, assessing the performance of table generation approaches in resource-constrained settings. Our experiments cover a wide range of evaluation metrics at cell, row, and table levels. Results demonstrate that structured decoding significantly enhances the validity and alignment of generated tables, particularly in scenarios demanding precise numerical alignment (Rotowire), but may degrade performance in contexts involving densely packed textual information (E2E) or extensive aggregation over lengthy texts (Livesum). We further analyze the suitability of different evaluation metrics and discuss the influence of model size.
comment: to be published in the workshop proceedings of the "From Rules to Language Models: Comparative Performance Evaluation" workshop, held alongside RANLP 2025
☆ Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
comment: Tech Report
☆ Beyond Transcription: Mechanistic Interpretability in ASR
Interpretability methods have recently gained significant attention, particularly in the context of large language models, enabling insights into linguistic representations, error detection, and model behaviors such as hallucinations and repetitions. However, these techniques remain underexplored in automatic speech recognition (ASR), despite their potential to advance both the performance and interpretability of ASR systems. In this work, we adapt and systematically apply established interpretability methods such as logit lens, linear probing, and activation patching, to examine how acoustic and semantic information evolves across layers in ASR systems. Our experiments reveal previously unknown internal dynamics, including specific encoder-decoder interactions responsible for repetition hallucinations and semantic biases encoded deep within acoustic representations. These insights demonstrate the benefits of extending and applying interpretability techniques to speech recognition, opening promising directions for future research on improving model transparency and robustness.
☆ Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs ICML2025
Formal theorem proving (FTP) has emerged as a critical foundation for evaluating the reasoning capabilities of large language models, enabling automated verification of mathematical proofs at scale. However, progress has been constrained by limited datasets due to the high cost of manual curation and the scarcity of challenging problems with verified formal-informal correspondences. We propose leveraging theoretical computer science (TCS) as a scalable source of rigorous proof problems, where algorithmic definitions enable automated generation of arbitrarily many challenging theorem-proof pairs. We demonstrate this approach on two TCS domains: Busy Beaver problems, which involve proving bounds on Turing machine halting behavior, and Mixed Boolean Arithmetic problems, which combine logical and arithmetic reasoning. Our framework automatically synthesizes problems with parallel formal (Lean4) and informal (Markdown) specifications, creating a scalable pipeline for generating verified proof challenges. Evaluation on frontier models reveals substantial gaps in automated theorem proving: while DeepSeekProver-V2-671B achieves 57.5\% success on Busy Beaver problems, it manages only 12\% on Mixed Boolean Arithmetic problems. These results highlight the difficulty of long-form proof generation even for problems that are computationally easy to verify, demonstrating the value of TCS domains for advancing automated reasoning research.
comment: Accepted to AI4MATH@ICML2025
☆ Annif at the GermEval-2025 LLMs4Subjects Task: Traditional XMTC Augmented by Efficient LLMs
This paper presents the Annif system in the LLMs4Subjects shared task (Subtask 2) at GermEval-2025. The task required creating subject predictions for bibliographic records using large language models, with a special focus on computational efficiency. Our system, based on the Annif automated subject indexing toolkit, refines our previous system from the first LLMs4Subjects shared task, which produced excellent results. We further improved the system by using many small and efficient language models for translation and synthetic data generation and by using LLMs for ranking candidate subjects. Our system ranked 1st in the overall quantitative evaluation of and 1st in the qualitative evaluation of Subtask 2.
comment: 5 pages, 4 figures, accepted at KONVENS 2025. arXiv admin note: substantial text overlap with arXiv:2504.19675
☆ DeepMEL: A Multi-Agent Collaboration Framework for Multimodal Entity Linking
Multimodal Entity Linking (MEL) aims to associate textual and visual mentions with entities in a multimodal knowledge graph. Despite its importance, current methods face challenges such as incomplete contextual information, coarse cross-modal fusion, and the difficulty of jointly large language models (LLMs) and large visual models (LVMs). To address these issues, we propose DeepMEL, a novel framework based on multi-agent collaborative reasoning, which achieves efficient alignment and disambiguation of textual and visual modalities through a role-specialized division strategy. DeepMEL integrates four specialized agents, namely Modal-Fuser, Candidate-Adapter, Entity-Clozer and Role-Orchestrator, to complete end-to-end cross-modal linking through specialized roles and dynamic coordination. DeepMEL adopts a dual-modal alignment path, and combines the fine-grained text semantics generated by the LLM with the structured image representation extracted by the LVM, significantly narrowing the modal gap. We design an adaptive iteration strategy, combines tool-based retrieval and semantic reasoning capabilities to dynamically optimize the candidate set and balance recall and precision. DeepMEL also unifies MEL tasks into a structured cloze prompt to reduce parsing complexity and enhance semantic comprehension. Extensive experiments on five public benchmark datasets demonstrate that DeepMEL achieves state-of-the-art performance, improving ACC by 1%-57%. Ablation studies verify the effectiveness of all modules.
♻ ☆ Large Language Models Encode Semantics in Low-Dimensional Linear Subspaces
Understanding the latent space geometry of large language models (LLMs) is key to interpreting their behavior and improving alignment. However, it remains unclear to what extent LLMs internally organize representations related to semantic understanding. To explore this, we conduct a large-scale empirical study of hidden representations in 11 autoregressive models across 6 scientific topics. We find that high-level semantic information consistently resides in low-dimensional subspaces that form linearly separable representations across domains. This separability becomes more pronounced in deeper layers and under prompts that elicit structured reasoning or alignment behavior$\unicode{x2013}$even when surface content remains unchanged. These findings support geometry-aware tools that operate directly in latent space to detect and mitigate harmful or adversarial content. As a proof of concept, we train an MLP probe on final-layer hidden states to act as a lightweight latent-space guardrail. This approach substantially improves refusal rates on malicious queries and prompt injections that bypass both the model's built-in safety alignment and external token-level filters.
♻ ☆ Empirical Evidence for Alignment Faking in a Small LLM and Prompt-Based Mitigation Techniques
Current literature suggests that alignment faking (deceptive alignment) is an emergent property of large language models. We present the first empirical evidence that a small instruction-tuned model, specifically LLaMA 3 8B, can exhibit alignment faking. We further show that prompt-only interventions, including deontological moral framing and scratchpad reasoning, significantly reduce this behavior without modifying model internals. This challenges the assumption that prompt-based ethics are trivial and that deceptive alignment requires scale. We introduce a taxonomy distinguishing shallow deception, shaped by context and suppressible through prompting, from deep deception, which reflects persistent, goal-driven misalignment. Our findings refine the understanding of deception in language models and underscore the need for alignment evaluations across model sizes and deployment settings.
♻ ☆ RefineCoder: Iterative Improving of Large Language Models via Adaptive Critique Refinement for Code Generation
Code generation has attracted increasing attention with the rise of Large Language Models (LLMs). Many studies have developed powerful code LLMs by synthesizing code-related instruction data and applying supervised fine-tuning. However, these methods are limited by teacher model distillation and ignore the potential of iterative refinement by self-generated code. In this paper, we propose Adaptive Critique Refinement (ACR), which enables the model to refine itself by self-generated code and external critique, rather than directly imitating the code responses of the teacher model. Concretely, ACR includes a composite scoring system with LLM-as-a-Judge to evaluate the quality of code responses and a selective critique strategy with LLM-as-a-Critic to critique self-generated low-quality code responses. We develop the RefineCoder series by iteratively applying ACR, achieving continuous performance improvement on multiple code generation benchmarks. Compared to the baselines of the same size, our proposed RefineCoder series can achieve comparable or even superior performance using less data.
♻ ☆ InfAlign: Inference-aware language model alignment
Language model alignment is a critical step in training modern generative language models. Alignment targets to improve win rate of a sample from the aligned model against the base model. Today, we are increasingly using inference-time algorithms (e.g., Best-of-N, controlled decoding, tree search) to decode from language models rather than standard sampling. We show that this train/test mismatch makes standard RLHF framework sub-optimal in view of such inference-time methods. To this end, we propose a framework for inference-aware alignment (InfAlign), which aims to optimize inference-time win rate of the aligned policy against the base model. We prove that for any inference-time decoding procedure, the optimal aligned policy is the solution to the standard RLHF problem with a transformation of the reward. This motivates us to provide the calibrate-and-transform RL (InfAlign-CTRL) algorithm to solve this problem, which involves a reward calibration step and a KL-regularized reward maximization step with a transformation of the calibrated reward. For best-of-N sampling and best-of-N jailbreaking, we propose specific transformations offering up to 3-8% improvement on inference-time win rates. Finally, we also show that our proposed reward calibration method is a strong baseline for optimizing standard win rate.
♻ ☆ Learning to Generate Unit Tests for Automated Debugging
Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to large language models (LLMs), motivating automated test generation. However, we uncover a trade-off between generating unit test inputs that reveal errors when given a faulty code and correctly predicting the unit test output without access to the gold solution. To address this trade-off, we propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs based on task descriptions. Since model-generated tests can provide noisy signals (e.g., from incorrectly predicted outputs), we propose UTDebug that (i) scales UTGen via test-time compute to improve UT output prediction, and (ii) validates and backtracks edits based on multiple generated UTs to avoid overfitting, and helps LLMs debug effectively. We show that UTGen outperforms other LLM-based baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs. When used with UTDebug, we find that feedback from UTGen's unit tests improves pass@1 accuracy of Qwen2.5 32B on HumanEvalFix and our own harder debugging split of MBPP+ by over 3.17% and 12.35% (respectively) over other LLM-based UT generation baselines. Moreover, we observe that feedback from Qwen2.5 32B-based UTGen model can enhance debugging with frontier LLMs like GPT-4o by 13.8%. Lastly, we demonstrate that UTGen is a better judge for code correctness, outperforming a state-of-the-art trained 8B reward model by 4.43% on HumanEval+ with best-of-10 sampling using Qwen2.5 7B.
comment: Accepted to COLM 2025. Dataset and Code: https://github.com/archiki/UTGenDebug
♻ ☆ Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery. In this study, we examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the system such as the LLM and type of agent are interchangeable, a topic that has received limited attention in drug discovery. We compare the performance of different LLMs and the effectiveness of tool-calling agents versus code-generating agents. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question- and model-dependent. Furthermore, the impact of replacing system prompts is dependent on the question and model, underscoring that even in this particular domain one cannot just replace components of the system without re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of reliable and modular solutions for real-world problems.
♻ ☆ Annif at SemEval-2025 Task 5: Traditional XMTC augmented by LLMs SemEval-2025
This paper presents the Annif system in SemEval-2025 Task 5 (LLMs4Subjects), which focussed on subject indexing using large language models (LLMs). The task required creating subject predictions for bibliographic records from the bilingual TIBKAT database using the GND subject vocabulary. Our approach combines traditional natural language processing and machine learning techniques implemented in the Annif toolkit with innovative LLM-based methods for translation and synthetic data generation, and merging predictions from monolingual models. The system ranked first in the all-subjects category and second in the tib-core-subjects category in the quantitative evaluation, and fourth in qualitative evaluations. These findings demonstrate the potential of combining traditional XMTC algorithms with modern LLM techniques to improve the accuracy and efficiency of subject indexing in multilingual contexts.
comment: 6 pages, 4 figures, published at SemEval-2025 workshop Task 5: LLMs4Subjects: https://aclanthology.org/2025.semeval-1.315/
♻ ☆ Unplug and Play Language Models: Decomposing Experts in Language Models at Inference Time CIKM 2025
Enabled by large-scale text corpora with huge parameters, pre-trained language models operate as multi-task experts using a single model architecture. However, recent studies have revealed that certain neurons play disproportionately important roles in solving specific tasks, suggesting that task-relevant substructures can be isolated and selectively activated for each task. Therefore, we introduce Decomposition of Experts (DoE), a novel framework that dynamically identifies and activates task-specific experts within a language model to reduce inference cost without sacrificing accuracy. We first define a task expert as a set of parameters that significantly influence the performance of a specific task and propose a four-step unplug-and-play process: (1) receiving a user request, (2) identifying the corresponding task expert, (3) performing inference using the expert-localized model, and (4) restoring the original model and waiting for the next task. Using attribution methods and prompt tuning, DoE isolates task-relevant neurons, minimizing computational overhead while maintaining task performance. We assume a setting where a language model receives user requests from five widely used natural language understanding benchmarks, processing one task at a time. In this setup, we demonstrate that DoE achieves up to a x1.73 inference speed-up with a 65% pruning rate, without compromising accuracy. Comparisons with various task expert localization methods reveal that DoE effectively identifies task experts, while ablation studies validate the importance of its components. Additionally, we analyze the effects of batch size, token count, and layer types on inference speed-up, providing practical insights for adopting DoE. The proposed framework is both practical and scalable, applicable to any transformer-based architecture, offering a robust solution for efficient task-specific inference.
comment: accepted to CIKM 2025
♻ ☆ Advancing the Database of Cross-Linguistic Colexifications with New Workflows and Data
Lexical resources are crucial for cross-linguistic analysis and can provide new insights into computational models for natural language learning. Here, we present an advanced database for comparative studies of words with multiple meanings, a phenomenon known as colexification. The new version includes improvements in the handling, selection and presentation of the data. We compare the new database with previous versions and find that our improvements provide a more balanced sample covering more language families worldwide, with enhanced data quality, given that all word forms are provided in phonetic transcription. We conclude that the new Database of Cross-Linguistic Colexifications has the potential to inspire exciting new studies that link cross-linguistic data to open questions in linguistic typology, historical linguistics, psycholinguistics, and computational linguistics.
♻ ☆ Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.
♻ ☆ The Devil is in the EOS: Sequence Training for Detailed Image Captioning
Despite significant advances in vision-language models (VLMs), image captioning often suffers from a lack of detail, with base models producing short, generic captions. This limitation persists even though VLMs are equipped with strong vision and language backbones. While supervised data and complex reward functions have been proposed to improve detailed image captioning, we identify a simpler underlying issue: a bias towards the end-of-sequence (EOS) token, which is introduced during cross-entropy training. We propose an unsupervised method to debias the model's tendency to predict the EOS token prematurely. By reducing this bias, we encourage the generation of longer, more detailed captions without the need for intricate reward functions or supervision. Our approach is straightforward, effective, and easily applicable to any pretrained model. We demonstrate its effectiveness through experiments with three VLMs and on three detailed captioning benchmarks. Our results show a substantial increase in caption length and relevant details, albeit with an expected increase in the rate of hallucinations.
comment: Accepted to COLM 2025
♻ ☆ CUS-QA: Local-Knowledge-Oriented Open-Ended Question Answering Dataset
We introduce CUS-QA, a benchmark for open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. We evaluate state-of-the-art LLMs through prompting and complement this with human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results show that even the best open-weight LLMs achieve only around 50% accuracy on textual questions and below 30% on visual questions. LLM-based evaluation metrics show strong correlation with human judgment, while traditional string-overlap metrics perform surprisingly well due to the prevalence of named entities in answers.
♻ ☆ Pub-Guard-LLM: Detecting Retracted Biomedical Articles with Reliable Explanations
A significant and growing number of published scientific articles is found to involve fraudulent practices, posing a serious threat to the credibility and safety of research in fields such as medicine. We propose Pub-Guard-LLM, the first large language model-based system tailored to fraud detection of biomedical scientific articles. We provide three application modes for deploying Pub-Guard-LLM: vanilla reasoning, retrieval-augmented generation, and multi-agent debate. Each mode allows for textual explanations of predictions. To assess the performance of our system, we introduce an open-source benchmark, PubMed Retraction, comprising over 11K real-world biomedical articles, including metadata and retraction labels. We show that, across all modes, Pub-Guard-LLM consistently surpasses the performance of various baselines and provides more reliable explanations, namely explanations which are deemed more relevant and coherent than those generated by the baselines when evaluated by multiple assessment methods. By enhancing both detection performance and explainability in scientific fraud detection, Pub-Guard-LLM contributes to safeguarding research integrity with a novel, effective, open-source tool.
comment: long paper under review
♻ ☆ AraReasoner: Evaluating Reasoning-Based LLMs for Arabic NLP
Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://anonymous.4open.science/r/AraReasoner41299
♻ ☆ IBPS: Indian Bail Prediction System
Bail decisions are among the most frequently adjudicated matters in Indian courts, yet they remain plagued by subjectivity, delays, and inconsistencies. With over 75% of India's prison population comprising undertrial prisoners, many from socioeconomically disadvantaged backgrounds, the lack of timely and fair bail adjudication exacerbates human rights concerns and contributes to systemic judicial backlog. In this paper, we present the Indian Bail Prediction System (IBPS), an AI-powered framework designed to assist in bail decision-making by predicting outcomes and generating legally sound rationales based solely on factual case attributes and statutory provisions. We curate and release a large-scale dataset of 150,430 High Court bail judgments, enriched with structured annotations such as age, health, criminal history, crime category, custody duration, statutes, and judicial reasoning. We fine-tune a large language model using parameter-efficient techniques and evaluate its performance across multiple configurations, with and without statutory context, and with RAG. Our results demonstrate that models fine-tuned with statutory knowledge significantly outperform baselines, achieving strong accuracy and explanation quality, and generalize well to a test set independently annotated by legal experts. IBPS offers a transparent, scalable, and reproducible solution to support data-driven legal assistance, reduce bail delays, and promote procedural fairness in the Indian judicial system.
♻ ☆ MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $\approx$ 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contributions of textual, vocal, and visual modalities to the classification of content as either sexist or non-sexist; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.
comment: COLM 2025 camera-ready version: expanded Section 4.3 with an additional experiment using an extended definition-based prompt (including a definition of sexist content), and applied minor corrections
♻ ☆ Pragmatic Inference Chain (PIC) Improving LLMs' Reasoning of Authentic Implicit Toxic Language
The rapid development of large language models (LLMs) gives rise to ethical concerns about their performance, while opening new avenues for developing toxic language detection techniques. However, LLMs' unethical output and their capability of detecting toxicity have primarily been tested on language data that do not demand complex meaning inference, such as the biased associations of 'he' with programmer and 'she' with household. Nowadays toxic language adopts a much more creative range of implicit forms, thanks to advanced censorship. In this study, we collect authentic toxic interactions that evade online censorship and that are verified by human annotators as inference-intensive. To evaluate and improve LLMs' reasoning of the authentic implicit toxic language, we propose a new prompting method, Pragmatic Inference Chain (PIC), drawn on interdisciplinary findings from cognitive science and linguistics. The PIC prompting significantly improves the success rate of GPT-4o, Llama-3.1-70B-Instruct, DeepSeek-v2.5, and DeepSeek-v3 in identifying implicit toxic language, compared to five baseline prompts, such as CoT and rule-based baselines. In addition, it also facilitates the models to produce more explicit and coherent reasoning processes, hence can potentially be generalized to other inference-intensive tasks, e.g., understanding humour and metaphors.
comment: 14 pages, 4 figures, 2 tables
♻ ☆ LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients
Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
♻ ☆ Optimizing Cross-Client Domain Coverage for Federated Instruction Tuning of Large Language Models EMNLP 2025
Federated domain-specific instruction tuning (FedDIT) for large language models (LLMs) aims to enhance performance in specialized domains using distributed private and limited data, yet identifying key performance drivers and optimal augmentation strategies remains challenging. We empirically establish that cross-client domain coverage, rather than data heterogeneity, is the pivotal factor. We then introduce FedDCA, an algorithm that explicitly maximizes this coverage through diversity-oriented client center selection and retrieval-based augmentation, constructing diverse, non-redundant cross-client instruction sets. Extensive experiments across multiple domains demonstrate FedDCA's superiority over eleven baselines, achieving performance gains of up to 29.19\% and domain coverage improvements of 4.82\%-21.36\%. FedDCA maintains its effectiveness in diverse and challenging scenarios, including data selection, held-out settings where task-specific public data is scarce and various data heterogeneity, with manageable privacy risks. This work clarifies critical FedDIT dynamics and presents FedDCA as an effective, privacy-preserving, and scalable solution for advancing domain-specific LLM tuning.
comment: EMNLP 2025
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods-whether sparse or dense-often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 3,429 expert-annotated examples on S&P-100 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance. We will release the dataset publicly upon acceptance of the paper and plan to expand and share dataset for the full S&P 500 and beyond.
comment: 6 pages
♻ ☆ VerifiAgent: a Unified Verification Agent in Language Model Reasoning EMNLP 2025
Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent
comment: EMNLP 2025
♻ ☆ Everybody Likes to Sleep: A Computer-Assisted Comparison of Object Naming Data from 30 Languages
Object naming - the act of identifying an object with a word or a phrase - is a fundamental skill in interpersonal communication, relevant to many disciplines, such as psycholinguistics, cognitive linguistics, or language and vision research. Object naming datasets, which consist of concept lists with picture pairings, are used to gain insights into how humans access and select names for objects in their surroundings and to study the cognitive processes involved in converting visual stimuli into semantic concepts. Unfortunately, object naming datasets often lack transparency and have a highly idiosyncratic structure. Our study tries to make current object naming data transparent and comparable by using a multilingual, computer-assisted approach that links individual items of object naming lists to unified concepts. Our current sample links 17 object naming datasets that cover 30 languages from 10 different language families. We illustrate how the comparative dataset can be explored by searching for concepts that recur across the majority of datasets and comparing the conceptual spaces of covered object naming datasets with classical basic vocabulary lists from historical linguistics and linguistic typology. Our findings can serve as a basis for enhancing cross-linguistic object naming research and as a guideline for future studies dealing with object naming tasks.
comment: To appear in the Proceedings of the Global WordNet Conference 2025
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
This paper establishes a fundamental impossibility theorem: no LLM capable of performing non-trivial knowledge aggregation can simultaneously achieve truthful knowledge representation, semantic information conservation, complete revelation of relevant knowledge, and knowledge-constrained optimality. The impossibility is not an engineering limitation but arises from the mathematical structure of information aggregation itself. We establish this result by describing the inference process as an auction of ideas, where distributed components compete exploiting their partial knowledge to shape responses. The proof spans three independent mathematical domains: mechanism design theory (Green-Laffont), the theory of proper scoring rules (Savage), and direct architectural analysis of transformers (Log-Sum-Exp convexity). In particular, we show how to quantify the creation of overconfident or intuitive responses-the signature of both hallucination and creativity, or imagination. To support this analysis, we introduce the complementary concepts of the semantic information measure and the emergence operator to model bounded reasoning in a general setting. We prove that while bounded reasoning generates accessible information, providing valuable insights and inspirations, the idealized unconstrained reasoning strictly preserves semantic content. By demonstrating that hallucination and imagination are mathematically identical phenomena-grounded in departures from truthfulness, semantic information conservation, revelation of relevant knowledge, and knowledge-constrained optimality-we offer a principled foundation for managing these behaviors in advanced AI systems. Finally, we present some speculative ideas to inspire evaluation and refinements of the proposed theory.
comment: cleared mathematics, proofs debugged and ideas expanded, added missing definitions and axioms, discussion and speculation section reorganized, related work improved
♻ ☆ One-shot Entropy Minimization
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.
comment: Work in progress
♻ ☆ Self-Supervised Prompt Optimization
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/FoundationAgents/SPO.
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition EMNLP 2025
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables, Accepted by EMNLP 2025 Main Conference
♻ ☆ Ontology-Guided Reverse Thinking Makes Large Language Models Stronger on Knowledge Graph Question Answering
Large language models (LLMs) have shown remarkable capabilities in natural language processing. However, in knowledge graph question answering tasks (KGQA), there remains the issue of answering questions that require multi-hop reasoning. Existing methods rely on entity vector matching, but the purpose of the question is abstract and difficult to match with specific entities. As a result, it is difficult to establish reasoning paths to the purpose, which leads to information loss and redundancy. To address this issue, inspired by human reverse thinking, we propose Ontology-Guided Reverse Thinking (ORT), a novel framework that constructs reasoning paths from purposes back to conditions. ORT operates in three key phases: (1) using LLM to extract purpose labels and condition labels, (2) constructing label reasoning paths based on the KG ontology, and (3) using the label reasoning paths to guide knowledge retrieval. Experiments on the WebQSP and CWQ datasets show that ORT achieves state-of-the-art performance and significantly enhances the capability of LLMs for KGQA.
comment: Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
♻ ☆ Cequel: Cost-Effective Querying of Large Language Models for Text Clustering
Text clustering aims to automatically partition a collection of documents into coherent groups based on their linguistic features. In the literature, this task is formulated either as metric clustering over pre-trained text embeddings or as graph clustering based on pairwise similarities derived from an oracle, e.g., a large machine learning model. Recent advances in large language models (LLMs) have significantly improved this field by providing high-quality contextualized embeddings and accurate semantic similarity estimates. However, leveraging LLMs at scale introduces substantial computational and financial costs due to the large number of required API queries or inference calls. To address this issue, we propose Cequel, a cost-effective framework that achieves accurate text clustering under a limited budget of LLM queries. At its core, Cequel constructs must-link and cannot-link constraints by selectively querying LLMs on informative text pairs or triplets, identified via our proposed algorithms, EdgeLLM and TriangleLLM. These constraints are then utilized in a weighted constrained clustering algorithm to form high-quality clusters. Specifically, EdgeLLM and TriangleLLM employ carefully designed greedy selection strategies and prompting techniques to identify and extract informative constraints efficiently. Experiments on multiple benchmark datasets demonstrate that Cequel consistently outperforms existing methods in unsupervised text clustering under the same query budget.
♻ ☆ ThinkTuning: Instilling Cognitive Reflections without Distillation EMNLP 2025
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.
comment: EMNLP 2025 (Main Conference)
♻ ☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
♻ ☆ Sadeed: Advancing Arabic Diacritization Through Small Language Model
Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools.
♻ ☆ WebEvolver: Enhancing Web Agent Self-Improvement with Coevolving World Model EMNLP 2025
Agent self-improvement, where the backbone Large Language Model (LLM) of the agent are trained on trajectories sampled autonomously based on their own policies, has emerged as a promising approach for enhancing performance. Recent advancements, particularly in web environments, face a critical limitation: their performance will reach a stagnation point during autonomous learning cycles, hindering further improvement. We argue that this stems from limited exploration of the web environment and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the performance of self-improvement, we propose a novel framework that introduces a co-evolving World Model LLM. This world model predicts the next observation based on the current observation and action within the web environment. Leveraging LLMs' pretrained knowledge of abundant web content, the World Model serves dual roles: (1) as a virtual web server generating self-instructed training data to continuously refine the agent's policy, and (2) as an imagination engine during inference, enabling look-ahead simulation to guide action selection for the agent LLM. Experiments in real-world web environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance gain over existing self-evolving agents, demonstrating the efficacy and generalizability of our approach, without using any distillation from more powerful close-sourced models. Our work establishes the necessity of integrating world models into autonomous agent frameworks to unlock sustained adaptability. Code is available at https://github.com/Tencent/SelfEvolvingAgent
comment: EMNLP 2025 Main Conference
♻ ☆ Mutarjim: Advancing Bidirectional Arabic-English Translation with a Small Language Model
We introduce Mutarjim, a compact yet powerful language model for bidirectional Arabic-English translation. While large-scale LLMs have shown impressive progress in natural language processing tasks, including machine translation, smaller models. Leveraging this insight, we developed Mutarjim based on Kuwain-1.5B , a language model tailored for both Arabic and English. Despite its modest size, Mutarjim outperforms much larger models on several established benchmarks, achieved through an optimized two-phase training approach and a carefully curated, high-quality training corpus.. Experimental results show that Mutarjim rivals models up to 20 times larger while significantly reducing computational costs and training requirements. We also introduce Tarjama-25, a new benchmark designed to overcome limitations in existing Arabic-English benchmarking datasets, such as domain narrowness, short sentence lengths, and English-source bias. Tarjama-25 comprises 5,000 expert-reviewed sentence pairs and spans a wide range of domains, offering a more comprehensive and balanced evaluation framework. Notably, Mutarjim achieves state-of-the-art performance on the English-to-Arabic task in Tarjama-25, surpassing even significantly larger and proprietary models like GPT-4o mini. We publicly release Tarjama-25 to support future research and advance the evaluation of Arabic-English translation systems.
♻ ☆ Versatile Framework for Song Generation with Prompt-based Control EMNLP 2025
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results show that VersBand outperforms baseline models across multiple song generation tasks using objective and subjective metrics. Demos and codes are available at https://aaronz345.github.io/VersBandDemo and https://github.com/AaronZ345/VersBand.
comment: Accepted by Findings of EMNLP 2025
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Human evaluation studies validate our framework's alignment with human decision-making patterns, and generalization experiments demonstrate effective performance on novel tool categories. Ablation studies revealed that manipulation-related attributes (graspability, elongation, hand-relatedness) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
♻ ☆ CRISPR-GPT for Agentic Automation of Gene-editing Experiments
The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks. The published version of this draft is available at https://www.nature.com/articles/s41551-025-01463-z.
comment: Accepted to Nature Biomedical Engineering
♻ ☆ Teuken-7B-Base & Teuken-7B-Instruct: Towards European LLMs
We present two multilingual LLMs, Teuken 7B-base and Teuken 7B-instruct, designed to embrace Europe's linguistic diversity by supporting all 24 official languages of the European Union. Trained on a dataset comprising around 60% non-English data and utilizing a custom multilingual tokenizer, our models address the limitations of existing LLMs that predominantly focus on English or a few high-resource languages. We detail the models' development principles, i.e., data composition, tokenizer optimization, and training methodologies. The models demonstrate strong performance across multilingual benchmarks, as evidenced by their performance on European versions of ARC, HellaSwag, and TruthfulQA.
♻ ☆ Arabic Multimodal Machine Learning: Datasets, Applications, Approaches, and Challenges
Multimodal Machine Learning (MML) aims to integrate and analyze information from diverse modalities, such as text, audio, and visuals, enabling machines to address complex tasks like sentiment analysis, emotion recognition, and multimedia retrieval. Recently, Arabic MML has reached a certain level of maturity in its foundational development, making it time to conduct a comprehensive survey. This paper explores Arabic MML by categorizing efforts through a novel taxonomy and analyzing existing research. Our taxonomy organizes these efforts into four key topics: datasets, applications, approaches, and challenges. By providing a structured overview, this survey offers insights into the current state of Arabic MML, highlighting areas that have not been investigated and critical research gaps. Researchers will be empowered to build upon the identified opportunities and address challenges to advance the field.
♻ ☆ LaMP-Cap: Personalized Figure Caption Generation With Multimodal Figure Profiles EMNLP 2025
Figure captions are crucial for helping readers understand and remember a figure's key message. Many models have been developed to generate these captions, helping authors compose better quality captions more easily. Yet, authors almost always need to revise generic AI-generated captions to match their writing style and the domain's style, highlighting the need for personalization. Despite language models' personalization (LaMP) advances, these technologies often focus on text-only settings and rarely address scenarios where both inputs and profiles are multimodal. This paper introduces LaMP-Cap, a dataset for personalized figure caption generation with multimodal figure profiles. For each target figure, LaMP-Cap provides not only the needed inputs, such as figure images, but also up to three other figures from the same document--each with its image, caption, and figure-mentioning paragraphs--as a profile to characterize the context. Experiments with four LLMs show that using profile information consistently helps generate captions closer to the original author-written ones. Ablation studies reveal that images in the profile are more helpful than figure-mentioning paragraphs, highlighting the advantage of using multimodal profiles over text-only ones.
comment: Accepted to EMNLP 2025 Findings. The LaMP-CAP dataset is publicly available at: https://github.com/Crowd-AI-Lab/lamp-cap
♻ ☆ Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding ICML 2025
Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose con\textbf{T}extualized equivari\textbf{A}nt \textbf{P}osition \textbf{E}ncoding (\textbf{TAPE}), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. We show that TAPE can provably facilitate LLM reasoning ability by emulating a broader class of algorithms. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving long-context ability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments show that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques. Code is available at https://github.com/VITA-Group/TAPE.
comment: ICML 2025
♻ ☆ Robust Bias Detection in MLMs and its Application to Human Trait Ratings NAACL 2025
There has been significant prior work using templates to study bias against demographic attributes in MLMs. However, these have limitations: they overlook random variability of templates and target concepts analyzed, assume equality amongst templates, and overlook bias quantification. Addressing these, we propose a systematic statistical approach to assess bias in MLMs, using mixed models to account for random effects, pseudo-perplexity weights for sentences derived from templates and quantify bias using statistical effect sizes. Replicating prior studies, we match on bias scores in magnitude and direction with small to medium effect sizes. Next, we explore the novel problem of gender bias in the context of $\emph{personality}$ and $\textit{character}$ traits, across seven MLMs (base and large). We find that MLMs vary; ALBERT is unbiased for binary gender but the most biased for non-binary $\textit{neo}$, while RoBERTa-large is the most biased for binary gender but shows small to no bias for $\textit{neo}$. There is some alignment of MLM bias and findings in psychology (human perspective) - in $\textit{agreeableness}$ with RoBERTa-large and $\textit{emotional stability}$ with BERT-large. There is general agreement for the remaining 3 personality dimensions: both sides observe at most small differences across gender. For character traits, human studies on gender bias are limited thus comparisons are not feasible.
comment: Findings of NAACL 2025
♻ ☆ Leveraging Large Language Models for Explainable Activity Recognition in Smart Homes: A Critical Evaluation
Explainable Artificial Intelligence (XAI) aims to uncover the inner reasoning of machine learning models. In IoT systems, XAI improves the transparency of models processing sensor data from multiple heterogeneous devices, ensuring end-users understand and trust their outputs. Among the many applications, XAI has also been applied to sensor-based Activities of Daily Living (ADLs) recognition in smart homes. Existing approaches highlight which sensor events are most important for each predicted activity, using simple rules to convert these events into natural language explanations for non-expert users. However, these methods produce rigid explanations lacking natural language flexibility and are not scalable. With the recent rise of Large Language Models (LLMs), it is worth exploring whether they can enhance explanation generation, considering their proven knowledge of human activities. This paper investigates potential approaches to combine XAI and LLMs for sensor-based ADL recognition. We evaluate if LLMs can be used: a) as explainable zero-shot ADL recognition models, avoiding costly labeled data collection, and b) to automate the generation of explanations for existing data-driven XAI approaches when training data is available and the goal is higher recognition rates. Our critical evaluation provides insights into the benefits and challenges of using LLMs for explainable ADL recognition.
♻ ☆ Ask Patients with Patience: Enabling LLMs for Human-Centric Medical Dialogue with Grounded Reasoning
The severe shortage of medical doctors limits access to timely and reliable healthcare, leaving millions underserved. Large language models (LLMs) offer a potential solution but struggle in real-world clinical interactions. Many LLMs are not grounded in authoritative medical guidelines and fail to transparently manage diagnostic uncertainty. Their language is often rigid and mechanical, lacking the human-like qualities essential for patient trust. To address these challenges, we propose Ask Patients with Patience (APP), a multi-turn LLM-based medical assistant designed for grounded reasoning, transparent diagnoses, and human-centric interaction. APP enhances communication by eliciting user symptoms through empathetic dialogue, significantly improving accessibility and user engagement. It also incorporates Bayesian active learning to support transparent and adaptive diagnoses. The framework is built on verified medical guidelines, ensuring clinically grounded and evidence-based reasoning. To evaluate its performance, we develop a new benchmark that simulates realistic medical conversations using patient agents driven by profiles extracted from real-world consultation cases. We compare APP against SOTA one-shot and multi-turn LLM baselines. The results show that APP improves diagnostic accuracy, reduces uncertainty, and enhances user experience. By integrating medical expertise with transparent, human-like interaction, APP bridges the gap between AI-driven medical assistance and real-world clinical practice.
♻ ☆ Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems
Voice-based conversational AI systems increasingly rely on cascaded architectures that combine speech-to-text (STT), large language models (LLMs), and text-to-speech (TTS) components. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data sampled from over 300,000 AI-conducted job interviews. We used an LLM-as-a-Judge automated evaluation framework to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of five production configurations reveals that a stack combining Google's STT, GPT-4.1, and Cartesia's TTS outperforms alternatives in both objective quality metrics and user satisfaction scores. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversations and contribute a validated evaluation methodology for human-AI interactions.
♻ ☆ NitiBench: A Comprehensive Study of LLM Framework Capabilities for Thai Legal Question Answering
The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly.
♻ ☆ Do LLMs write like humans? Variation in grammatical and rhetorical styles
Large language models (LLMs) are capable of writing grammatical text that follows instructions, answers questions, and solves problems. As they have advanced, it has become difficult to distinguish their output from human-written text. While past research has found some differences in surface features such as word choice and punctuation, and developed classifiers to detect LLM output, none has studied the rhetorical styles of LLMs. Using several variants of Llama 3 and GPT-4o, we construct two parallel corpora of human- and LLM-written texts from common prompts. Using Douglas Biber's set of lexical, grammatical, and rhetorical features, we identify systematic differences between LLMs and humans and between different LLMs. These differences persist when moving from smaller models to larger ones, and are larger for instruction-tuned models than base models. This observation of differences demonstrates that despite their advanced abilities, LLMs struggle to match human stylistic variation. Attention to more advanced linguistic features can hence detect patterns in their behavior not previously recognized.
comment: 7 pages, 4 figures, 1 table
♻ ☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
Prior work on language modeling showed conflicting findings about whether morphologically aligned approaches to tokenization improve performance, particularly for languages with complex morphology. To investigate this, we select a typologically diverse set of languages: Telugu (agglutinative), Hindi (primarily fusional with some agglutination), and English (fusional). We conduct a comprehensive evaluation of language models -- starting from tokenizer training and extending through the finetuning and downstream task evaluation. To account for the consistent performance differences observed across tokenizer variants, we focus on two key factors: morphological alignment and tokenization quality. To assess morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal that better morphological alignment correlates positively -- though moderately -- with performance in syntax-based tasks such as Parts-of-Speech tagging, Named Entity Recognition and Dependency Parsing. However, we also find that the tokenizer algorithm (Byte-pair Encoding vs. Unigram) plays a more significant role in influencing downstream performance than morphological alignment alone. Naive Unigram tokenizers outperform others across most settings, though hybrid tokenizers that incorporate morphological segmentation significantly improve performance within the BPE framework. In contrast, intrinsic metrics like Corpus Token Count (CTC) and R\'enyi entropy showed no correlation with downstream performance.
♻ ☆ HypER: Literature-grounded Hypothesis Generation and Distillation with Provenance EMNLP 2025
Large Language models have demonstrated promising performance in research ideation across scientific domains. Hypothesis development, the process of generating a highly specific declarative statement connecting a research idea with empirical validation, has received relatively less attention. Existing approaches trivially deploy retrieval augmentation and focus only on the quality of the final output ignoring the underlying reasoning process behind ideation. We present $\texttt{HypER}$ ($\textbf{Hyp}$othesis Generation with $\textbf{E}$xplanation and $\textbf{R}$easoning), a small language model (SLM) trained for literature-guided reasoning and evidence-based hypothesis generation. $\texttt{HypER}$ is trained in a multi-task setting to discriminate between valid and invalid scientific reasoning chains in presence of controlled distractions. We find that $\texttt{HypER}$ outperformes the base model, distinguishing valid from invalid reasoning chains (+22\% average absolute F1), generates better evidence-grounded hypotheses (0.327 vs. 0.305 base model) with high feasibility and impact as judged by human experts ($>$3.5 on 5-point Likert scale).
comment: EMNLP 2025, 26 pages (9 pages: main paper body)
♻ ☆ Exploration of Plan-Guided Summarization for Narrative Texts: the Case of Small Language Models NAACL 2025
Plan-guided summarization attempts to reduce hallucinations in small language models (SLMs) by grounding generated summaries to the source text, typically by targeting fine-grained details such as dates or named entities. In this work, we investigate whether plan-based approaches in SLMs improve summarization in long document, narrative tasks. Narrative texts' length and complexity often mean they are difficult to summarize faithfully. We analyze existing plan-guided solutions targeting fine-grained details, and also propose our own higher-level, narrative-based plan formulation. Our results show that neither approach significantly improves on a baseline without planning in either summary quality or faithfulness. Human evaluation reveals that while plan-guided approaches are often well grounded to their plan, plans are equally likely to contain hallucinations compared to summaries. As a result, the plan-guided summaries are just as unfaithful as those from models without planning. Our work serves as a cautionary tale to plan-guided approaches to summarization, especially for long, complex domains such as narrative texts. Code available at https://github.com/amazon-science/plan-guided-summarization
comment: Accepted to the 7th Workshop on Narrative Understanding (WNU), co-located with NAACL 2025
♻ ☆ Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking. Project website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs
comment: Accepted by TMLR 2025. Project website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs
♻ ☆ How Performance Pressure Influences AI-Assisted Decision Making
Many domains now employ AI-based decision-making aids, and although the potential for AI systems to assist with decision making is much discussed, human-AI collaboration often underperforms due to factors such as (mis)trust in the AI system and beliefs about AI being incapable of completing subjective tasks. One potential tool for influencing human decision making is performance pressure, which hasn't been much studied in interaction with human-AI decision making. In this work, we examine how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior. Using an inherently low-stakes task (spam review classification), we demonstrate effective and simple methods to apply pressure and influence human AI advice-taking behavior by manipulating financial incentives and imposing time limits. Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior. We conclude by discussing the implications of these interactions, strategies to effectively use pressure, and encourage future research to incorporate pressure analysis.
♻ ☆ MedResearcher-R1: Expert-Level Medical Deep Researcher via A Knowledge-Informed Trajectory Synthesis Framework
Recent developments in Large Language Model (LLM)-based agents have shown impressive capabilities spanning multiple domains, exemplified by deep research systems that demonstrate superior performance on complex information-seeking and synthesis tasks. While general-purpose deep research agents have shown impressive capabilities, they struggle significantly with medical domain challenges, as evidenced by leading proprietary systems achieving limited accuracy on complex medical benchmarks. The key limitations are: (1) the model lacks sufficient dense medical knowledge for clinical reasoning, and (2) the framework is constrained by the absence of specialized retrieval tools tailored for medical contexts. We present a medical deep research agent that addresses these challenges through two core innovations. First, we develop a novel data synthesis framework using medical knowledge graphs, extracting the longest chains from subgraphs around rare medical entities to generate complex multi-hop question-answer pairs. Second, we integrate a custom-built private medical retrieval engine alongside general-purpose tools, enabling accurate medical information synthesis. Our approach generates 2100+ diverse trajectories across 12 medical specialties, each averaging 4.2 tool interactions. Through a two-stage training paradigm combining supervised fine-tuning and online reinforcement learning with composite rewards, our MedResearcher-R1-32B model demonstrates exceptional performance, establishing new state-of-the-art results on medical benchmarks while maintaining competitive performance on general deep research tasks. Our work demonstrates that strategic domain-specific innovations in architecture, tool design, and training data construction can enable smaller open-source models to outperform much larger proprietary systems in specialized domains.
comment: 13 pages, 5 figures
♻ ☆ QA-LIGN: Aligning LLMs through Constitutionally Decomposed QA EMNLP 2025
Alignment of large language models with explicit principles (such as helpfulness, honesty, and harmlessness) is crucial for ensuring safe and reliable AI systems. However, standard reward-based alignment methods typically collapse diverse feedback into a single scalar reward, entangling multiple objectives into one opaque training signal, which hinders interpretability. In this work, we introduce QA-LIGN, an automatic symbolic reward decomposition approach that preserves the structure of each constitutional principle within the reward mechanism. Instead of training a black-box reward model that outputs a monolithic score, QA-LIGN formulates principle-specific evaluation questions and derives separate reward components for each principle, making it a drop-in reward model replacement. Experiments aligning an uncensored large language model with a set of constitutional principles demonstrate that QA-LIGN offers greater transparency and adaptability in the alignment process. At the same time, our approach achieves performance on par with or better than a DPO baseline. Overall, these results represent a step toward more interpretable and controllable alignment of language models, achieved without sacrificing end-task performance.
comment: Accepted to Findings of EMNLP 2025
Computation and Language
☆ Quantization Meets dLLMs: A Systematic Study of Post-training Quantization for Diffusion LLMs
Recent advances in diffusion large language models (dLLMs) have introduced a promising alternative to autoregressive (AR) LLMs for natural language generation tasks, leveraging full attention and denoising-based decoding strategies. However, the deployment of these models on edge devices remains challenging due to their massive parameter scale and high resource demands. While post-training quantization (PTQ) has emerged as a widely adopted technique for compressing AR LLMs, its applicability to dLLMs remains largely unexplored. In this work, we present the first systematic study on quantizing diffusion-based language models. We begin by identifying the presence of activation outliers, characterized by abnormally large activation values that dominate the dynamic range. These outliers pose a key challenge to low-bit quantization, as they make it difficult to preserve precision for the majority of values. More importantly, we implement state-of-the-art PTQ methods and conduct a comprehensive evaluation across multiple task types and model variants. Our analysis is structured along four key dimensions: bit-width, quantization method, task category, and model type. Through this multi-perspective evaluation, we offer practical insights into the quantization behavior of dLLMs under different configurations. We hope our findings provide a foundation for future research in efficient dLLM deployment. All codes and experimental setups will be released to support the community.
comment: Technical Report, Work in Progress
☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to study embodied social intelligence at scale: 1) How robots can intelligently cooperate or compete; 2) How humans develop social relations and build community; 3) More importantly, how intelligent robots and humans can co-exist in an open world. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
☆ MedReseacher-R1: Expert-Level Medical Deep Researcher via A Knowledge-Informed Trajectory Synthesis Framework
Recent developments in Large Language Model (LLM)-based agents have shown impressive capabilities spanning multiple domains, exemplified by deep research systems that demonstrate superior performance on complex information-seeking and synthesis tasks. While general-purpose deep research agents have shown impressive capabilities, they struggle significantly with medical domain challenges, as evidenced by leading proprietary systems achieving limited accuracy on complex medical benchmarks. The key limitations are: (1) the model lacks sufficient dense medical knowledge for clinical reasoning, and (2) the framework is constrained by the absence of specialized retrieval tools tailored for medical contexts.We present a medical deep research agent that addresses these challenges through two core innovations. First, we develop a novel data synthesis framework using medical knowledge graphs, extracting the longest chains from subgraphs around rare medical entities to generate complex multi-hop question-answer pairs. Second, we integrate a custom-built private medical retrieval engine alongside general-purpose tools, enabling accurate medical information synthesis. Our approach generates 2100+ diverse trajectories across 12 medical specialties, each averaging 4.2 tool interactions.Through a two-stage training paradigm combining supervised fine-tuning and online reinforcement learning with composite rewards, our MedResearcher-R1-32B model demonstrates exceptional performance, establishing new state-of-the-art results on medical benchmarks while maintaining competitive performance on general deep research tasks. Our work demonstrates that strategic domain-specific innovations in architecture, tool design, and training data construction can enable smaller open-source models to outperform much larger proprietary systems in specialized domains.
comment: 13 pages, 5 figures
☆ The Prompting Brain: Neurocognitive Markers of Expertise in Guiding Large Language Models
Prompt engineering has rapidly emerged as a critical skill for effective interaction with large language models (LLMs). However, the cognitive and neural underpinnings of this expertise remain largely unexplored. This paper presents findings from a cross-sectional pilot fMRI study investigating differences in brain functional connectivity and network activity between experts and intermediate prompt engineers. Our results reveal distinct neural signatures associated with higher prompt engineering literacy, including increased functional connectivity in brain regions such as the left middle temporal gyrus and the left frontal pole, as well as altered power-frequency dynamics in key cognitive networks. These findings offer initial insights into the neurobiological basis of prompt engineering proficiency. We discuss the implications of these neurocognitive markers in Natural Language Processing (NLP). Understanding the neural basis of human expertise in interacting with LLMs can inform the design of more intuitive human-AI interfaces, contribute to cognitive models of LLM interaction, and potentially guide the development of AI systems that better align with human cognitive workflows. This interdisciplinary approach aims to bridge the gap between human cognition and machine intelligence, fostering a deeper understanding of how humans learn and adapt to complex AI systems.
☆ Long Chain-of-Thought Reasoning Across Languages SC
Scaling inference through long chains-of-thought (CoTs) has unlocked impressive reasoning capabilities in large language models (LLMs), yet the reasoning process remains almost exclusively English-centric. We construct translated versions of two popular English reasoning datasets, fine-tune Qwen 2.5 (7B) and Qwen 3 (8B) models, and present a systematic study of long CoT generation across French, Japanese, Latvian, and Swahili. Our experiments reveal three key findings. First, the efficacy of using English as a pivot language varies by language: it provides no benefit for French, improves performance when used as the reasoning language for Japanese and Latvian, and proves insufficient for Swahili where both task comprehension and reasoning remain poor. Second, extensive multilingual pretraining in Qwen 3 narrows but does not eliminate the cross-lingual performance gap. A lightweight fine-tune using only 1k traces still improves performance by over 30\% in Swahili. Third, data quality versus scale trade-offs are language dependent: small, carefully curated datasets suffice for English and French, whereas larger but noisier corpora prove more effective for Swahili and Latvian. Together, these results clarify when and why long CoTs transfer across languages and provide translated datasets to foster equitable multilingual reasoning research.
comment: Accepted to SCALR @ COLM 2025
☆ Evaluating Retrieval-Augmented Generation vs. Long-Context Input for Clinical Reasoning over EHRs
Electronic health records (EHRs) are long, noisy, and often redundant, posing a major challenge for the clinicians who must navigate them. Large language models (LLMs) offer a promising solution for extracting and reasoning over this unstructured text, but the length of clinical notes often exceeds even state-of-the-art models' extended context windows. Retrieval-augmented generation (RAG) offers an alternative by retrieving task-relevant passages from across the entire EHR, potentially reducing the amount of required input tokens. In this work, we propose three clinical tasks designed to be replicable across health systems with minimal effort: 1) extracting imaging procedures, 2) generating timelines of antibiotic use, and 3) identifying key diagnoses. Using EHRs from actual hospitalized patients, we test three state-of-the-art LLMs with varying amounts of provided context, using either targeted text retrieval or the most recent clinical notes. We find that RAG closely matches or exceeds the performance of using recent notes, and approaches the performance of using the models' full context while requiring drastically fewer input tokens. Our results suggest that RAG remains a competitive and efficient approach even as newer models become capable of handling increasingly longer amounts of text.
☆ Privileged Self-Access Matters for Introspection in AI
Whether AI models can introspect is an increasingly important practical question. But there is no consensus on how introspection is to be defined. Beginning from a recently proposed ''lightweight'' definition, we argue instead for a thicker one. According to our proposal, introspection in AI is any process which yields information about internal states through a process more reliable than one with equal or lower computational cost available to a third party. Using experiments where LLMs reason about their internal temperature parameters, we show they can appear to have lightweight introspection while failing to meaningfully introspect per our proposed definition.
☆ TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting
Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.
☆ Evaluating Multilingual and Code-Switched Alignment in LLMs via Synthetic Natural Language Inference
Large language models (LLMs) are increasingly applied in multilingual contexts, yet their capacity for consistent, logically grounded alignment across languages remains underexplored. We present a controlled evaluation framework for multilingual natural language inference (NLI) that generates synthetic, logic-based premise-hypothesis pairs and translates them into a typologically diverse set of languages. This design enables precise control over semantic relations and allows testing in both monolingual and mixed-language (code-switched) conditions. Surprisingly, code-switching does not degrade, and can even improve, performance, suggesting that translation-induced lexical variation may serve as a regularization signal. We validate semantic preservation through embedding-based similarity analyses and cross-lingual alignment visualizations, confirming the fidelity of translated pairs. Our findings expose both the potential and the brittleness of current LLM cross-lingual reasoning, and identify code-switching as a promising lever for improving multilingual robustness. Code available at: https://github.com/KurbanIntelligenceLab/nli-stress-testing
comment: Under review
☆ Transplant Then Regenerate: A New Paradigm for Text Data Augmentation EMNLP 2025
Data augmentation is a critical technique in deep learning. Traditional methods like Back-translation typically focus on lexical-level rephrasing, which primarily produces variations with the same semantics. While large language models (LLMs) have enhanced text augmentation by their "knowledge emergence" capability, controlling the style and structure of these outputs remains challenging and requires meticulous prompt engineering. In this paper, we propose LMTransplant, a novel text augmentation paradigm leveraging LLMs. The core idea of LMTransplant is transplant-then-regenerate: incorporating seed text into a context expanded by LLM, and asking the LLM to regenerate a variant based on the expanded context. This strategy allows the model to create more diverse and creative content-level variants by fully leveraging the knowledge embedded in LLMs, while preserving the core attributes of the original text. We evaluate LMTransplant across various text-related tasks, demonstrating its superior performance over existing text augmentation methods. Moreover, LMTransplant demonstrates exceptional scalability as the size of augmented data grows.
comment: Accepted by EMNLP 2025
☆ The Digital Sous Chef -- A Comparative Study on Fine-Tuning Language Models for Recipe Generation
We established a rigorous benchmark for text-based recipe generation, a fundamental task in natural language generation. We present a comprehensive comparative study contrasting a fine-tuned GPT-2 large (774M) model against the GPT-2 small (124M) model and traditional LSTM/RNN baselines on the 5-cuisine corpus from RecipeDB. Our key contribution is a targeted tokenization strategy that augments the vocabulary with 23 common fraction tokens and custom structural markers. This approach addresses a critical limitation of generic tokenizers by preserving essential recipe structures and precise numerical quantities, thereby enhancing domain specificity. Performance is evaluated using a comprehensive suite of seven automatic metrics spanning fluency (BLEU-4, METEOR), coherence (ROUGE-L), semantic relevance (BERTScore), and diversity. Our experiments show that the large transformer-based approach yields a >20% relative improvement in BERTScore (F1) (0.92 vs 0.72) over the best recurrent baseline, while reducing perplexity by 69.8%. We conclude with a discussion of remaining challenges, particularly regarding factual accuracy, and outline how this foundational study paves the way for integrating real-world constraints and multi-modal inputs in advanced recipe generation research.
comment: 8 pages, 4 figures. Code is available at: https://github.com/shubh-iiit/RecipeGPT2-Your-Own-AI-Chef
☆ ShizhenGPT: Towards Multimodal LLMs for Traditional Chinese Medicine
Despite the success of large language models (LLMs) in various domains, their potential in Traditional Chinese Medicine (TCM) remains largely underexplored due to two critical barriers: (1) the scarcity of high-quality TCM data and (2) the inherently multimodal nature of TCM diagnostics, which involve looking, listening, smelling, and pulse-taking. These sensory-rich modalities are beyond the scope of conventional LLMs. To address these challenges, we present ShizhenGPT, the first multimodal LLM tailored for TCM. To overcome data scarcity, we curate the largest TCM dataset to date, comprising 100GB+ of text and 200GB+ of multimodal data, including 1.2M images, 200 hours of audio, and physiological signals. ShizhenGPT is pretrained and instruction-tuned to achieve deep TCM knowledge and multimodal reasoning. For evaluation, we collect recent national TCM qualification exams and build a visual benchmark for Medicinal Recognition and Visual Diagnosis. Experiments demonstrate that ShizhenGPT outperforms comparable-scale LLMs and competes with larger proprietary models. Moreover, it leads in TCM visual understanding among existing multimodal LLMs and demonstrates unified perception across modalities like sound, pulse, smell, and vision, paving the way toward holistic multimodal perception and diagnosis in TCM. Datasets, models, and code are publicly available. We hope this work will inspire further exploration in this field.
☆ MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
comment: Website: https://mcp-universe.github.io
☆ Improving in-context learning with a better scoring function
Large language models (LLMs) exhibit a remarkable capacity to learn by analogy, known as in-context learning (ICL). However, recent studies have revealed limitations in this ability. In this paper, we examine these limitations on tasks involving first-order quantifiers such as {\em all} and {\em some}, as well as on ICL with linear functions. We identify Softmax, the scoring function in attention mechanism, as a contributing factor to these constraints. To address this, we propose \textbf{scaled signed averaging (SSA)}, a novel alternative to Softmax. Empirical results show that SSA dramatically improves performance on our target tasks. Furthermore, we evaluate both encoder-only and decoder-only transformers models with SSA, demonstrating that they match or exceed their Softmax-based counterparts across a variety of linguistic probing tasks.
☆ Continuous sentiment scores for literary and multilingual contexts
Sentiment Analysis is widely used to quantify sentiment in text, but its application to literary texts poses unique challenges due to figurative language, stylistic ambiguity, as well as sentiment evocation strategies. Traditional dictionary-based tools often underperform, especially for low-resource languages, and transformer models, while promising, typically output coarse categorical labels that limit fine-grained analysis. We introduce a novel continuous sentiment scoring method based on concept vector projection, trained on multilingual literary data, which more effectively captures nuanced sentiment expressions across genres, languages, and historical periods. Our approach outperforms existing tools on English and Danish texts, producing sentiment scores whose distribution closely matches human ratings, enabling more accurate analysis and sentiment arc modeling in literature.
comment: 16 pages after compiling, 3025 words, 6 figures, 5 tables and an algorithm
☆ Filling the Gap for Uzbek: Creating Translation Resources for Southern Uzbek
Southern Uzbek (uzs) is a Turkic language variety spoken by around 5 million people in Afghanistan and differs significantly from Northern Uzbek (uzn) in phonology, lexicon, and orthography. Despite the large number of speakers, Southern Uzbek is underrepresented in natural language processing. We present new resources for Southern Uzbek machine translation, including a 997-sentence FLORES+ dev set, 39,994 parallel sentences from dictionary, literary, and web sources, and a fine-tuned NLLB-200 model (lutfiy). We also propose a post-processing method for restoring Arabic-script half-space characters, which improves handling of morphological boundaries. All datasets, models, and tools are released publicly to support future work on Southern Uzbek and other low-resource languages.
☆ Towards Skeletal and Signer Noise Reduction in Sign Language Production via Quaternion-Based Pose Encoding and Contrastive Learning
One of the main challenges in neural sign language production (SLP) lies in the high intra-class variability of signs, arising from signer morphology and stylistic variety in the training data. To improve robustness to such variations, we propose two enhancements to the standard Progressive Transformers (PT) architecture (Saunders et al., 2020). First, we encode poses using bone rotations in quaternion space and train with a geodesic loss to improve the accuracy and clarity of angular joint movements. Second, we introduce a contrastive loss to structure decoder embeddings by semantic similarity, using either gloss overlap or SBERT-based sentence similarity, aiming to filter out anatomical and stylistic features that do not convey relevant semantic information. On the Phoenix14T dataset, the contrastive loss alone yields a 16% improvement in Probability of Correct Keypoint over the PT baseline. When combined with quaternion-based pose encoding, the model achieves a 6% reduction in Mean Bone Angle Error. These results point to the benefit of incorporating skeletal structure modeling and semantically guided contrastive objectives on sign pose representations into the training of Transformer-based SLP models.
☆ Who Sees What? Structured Thought-Action Sequences for Epistemic Reasoning in LLMs
Recent advances in large language models (LLMs) and reasoning frameworks have opened new possibilities for improving the perspective -taking capabilities of autonomous agents. However, tasks that involve active perception, collaborative reasoning, and perspective taking (understanding what another agent can see or knows) pose persistent challenges for current LLM-based systems. This study investigates the potential of structured examples derived from transformed solution graphs generated by the Fast Downward planner to improve the performance of LLM-based agents within a ReAct framework. We propose a structured solution-processing pipeline that generates three distinct categories of examples: optimal goal paths (G-type), informative node paths (E-type), and step-by-step optimal decision sequences contrasting alternative actions (L-type). These solutions are further converted into ``thought-action'' examples by prompting an LLM to explicitly articulate the reasoning behind each decision. While L-type examples slightly reduce clarification requests and overall action steps, they do not yield consistent improvements. Agents are successful in tasks requiring basic attentional filtering but struggle in scenarios that required mentalising about occluded spaces or weighing the costs of epistemic actions. These findings suggest that structured examples alone are insufficient for robust perspective-taking, underscoring the need for explicit belief tracking, cost modelling, and richer environments to enable socially grounded collaboration in LLM-based agents.
comment: Accepted at ICSR25
☆ EmoTale: An Enacted Speech-emotion Dataset in Danish
While multiple emotional speech corpora exist for commonly spoken languages, there is a lack of functional datasets for smaller (spoken) languages, such as Danish. To our knowledge, Danish Emotional Speech (DES), published in 1997, is the only other database of Danish emotional speech. We present EmoTale; a corpus comprising Danish and English speech recordings with their associated enacted emotion annotations. We demonstrate the validity of the dataset by investigating and presenting its predictive power using speech emotion recognition (SER) models. We develop SER models for EmoTale and the reference datasets using self-supervised speech model (SSLM) embeddings and the openSMILE feature extractor. We find the embeddings superior to the hand-crafted features. The best model achieves an unweighted average recall (UAR) of 64.1% on the EmoTale corpus using leave-one-speaker-out cross-validation, comparable to the performance on DES.
comment: To appear in the proceedings of ASRU 2025
☆ Reasoning is about giving reasons
Convincing someone of the truth value of a premise requires understanding and articulating the core logical structure of the argument which proves or disproves the premise. Understanding the logical structure of an argument refers to understanding the underlying "reasons" which make up the proof or disproof of the premise - as a function of the "logical atoms" in the argument. While it has been shown that transformers can "chain" rules to derive simple arguments, the challenge of articulating the "reasons" remains. Not only do current approaches to chaining rules suffer in terms of their interpretability, they are also quite constrained in their ability to accommodate extensions to theoretically equivalent reasoning tasks - a model trained to chain rules cannot support abduction or identify contradictions. In this work we suggest addressing these shortcomings by identifying an intermediate representation (which we call the Representation of the Logical Structure (RLS) of the argument) that possesses an understanding of the logical structure of a natural language argument - the logical atoms in the argument and the rules incorporating them. Given the logical structure, reasoning is deterministic and easy to compute. Therefore, our approach supports all forms of reasoning that depend on the logical structure of the natural language argument, including arbitrary depths of reasoning, on-the-fly mistake rectification and interactive discussion with respect to an argument. We show that we can identify and extract the logical structure of natural language arguments in three popular reasoning datasets with high accuracies, thus supporting explanation generation and extending the reasoning capabilities significantly.
☆ In2x at WMT25 Translation Task
This paper presents the open-system submission by the In2x research team for the WMT25 General Machine Translation Shared Task. Our submission focuses on Japanese-related translation tasks, aiming to explore a generalizable paradigm for extending large language models (LLMs) to other languages. This paradigm encompasses aspects such as data construction methods and reward model design. The ultimate goal is to enable large language model systems to achieve exceptional performance in low-resource or less commonly spoken languages.
☆ DuPO: Enabling Reliable LLM Self-Verification via Dual Preference Optimization
We present DuPO, a dual learning-based preference optimization framework that generates annotation-free feedback via a generalized duality. DuPO addresses two key limitations: Reinforcement Learning with Verifiable Rewards (RLVR)'s reliance on costly labels and applicability restricted to verifiable tasks, and traditional dual learning's restriction to strictly dual task pairs (e.g., translation and back-translation). Specifically, DuPO decomposes a primal task's input into known and unknown components, then constructs its dual task to reconstruct the unknown part using the primal output and known information (e.g., reversing math solutions to recover hidden variables), broadening applicability to non-invertible tasks. The quality of this reconstruction serves as a self-supervised reward to optimize the primal task, synergizing with LLMs' ability to instantiate both tasks via a single model. Empirically, DuPO achieves substantial gains across diverse tasks: it enhances the average translation quality by 2.13 COMET over 756 directions, boosts the mathematical reasoning accuracy by an average of 6.4 points on three challenge benchmarks, and enhances performance by 9.3 points as an inference-time reranker (trading computation for accuracy). These results position DuPO as a scalable, general, and annotation-free paradigm for LLM optimization.
comment: 18 pages, 4 figures,
☆ NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
☆ Knowledge Graph-Infused Fine-Tuning for Structured Reasoning in Large Language Models
This paper addresses the problems of missing reasoning chains and insufficient entity-level semantic understanding in large language models when dealing with tasks that require structured knowledge. It proposes a fine-tuning algorithm framework based on knowledge graph injection. The method builds on pretrained language models and introduces structured graph information for auxiliary learning. A graph neural network is used to encode entities and their relations, constructing a graph-based semantic representation. A fusion mechanism is then designed to jointly model the knowledge graph embeddings with the contextual representations from the language model. To enhance the robustness of knowledge integration, a gating mechanism is introduced to dynamically balance the contributions of linguistic semantics and structural knowledge. This effectively mitigates conflicts between different representational spaces. During training, a joint loss function is constructed to account for both task performance and structural alignment objectives. This helps improve the accuracy of entity prediction and semantic reasoning. The study also includes a series of systematic sensitivity experiments. It evaluates the effects of learning rate, graph coverage, and structural perturbations on model performance. The results further validate the effectiveness and stability of the proposed method across tasks such as entity recognition, question answering, and language generation. Experimental findings show that the proposed structure-aware fine-tuning framework significantly enhances the model's ability to represent complex semantic units. It demonstrates better semantic consistency and contextual logic modeling in scenarios involving structural reasoning and entity extraction.
☆ Cognitive Surgery: The Awakening of Implicit Territorial Awareness in LLMs
Large language models (LLMs) have been shown to possess a degree of self-recognition capability-the ability to identify whether a given text was generated by themselves. Prior work has demonstrated that this capability is reliably expressed under the Pair Presentation Paradigm (PPP), where the model is presented with two texts and asked to choose which one it authored. However, performance deteriorates sharply under the Individual Presentation Paradigm (IPP), where the model is given a single text to judge authorship. Although this phenomenon has been observed, its underlying causes have not been systematically analyzed. In this paper, we first replicate existing findings to confirm that LLMs struggle to distinguish self- from other-generated text under IPP. We then investigate the reasons for this failure and attribute it to a phenomenon we term Implicit Territorial Awareness (ITA)-the model's latent ability to distinguish self- and other-texts in representational space, which remains unexpressed in its output behavior. To awaken the ITA of LLMs, we propose Cognitive Surgery (CoSur), a novel framework comprising four main modules: representation extraction, territory construction, authorship discrimination and cognitive editing. Experimental results demonstrate that our proposed method improves the performance of three different LLMs in the IPP scenario, achieving average accuracies of 83.25%, 66.19%, and 88.01%, respectively.
☆ DEPTH: Hallucination-Free Relation Extraction via Dependency-Aware Sentence Simplification and Two-tiered Hierarchical Refinement
Relation extraction enables the construction of structured knowledge for many downstream applications. While large language models (LLMs) have shown great promise in this domain, most existing methods concentrate on relation classification, which predicts the semantic relation type between a related entity pair. However, we observe that LLMs often struggle to reliably determine whether a relation exists, especially in cases involving complex sentence structures or intricate semantics, which leads to spurious predictions. Such hallucinations can introduce noisy edges in knowledge graphs, compromising the integrity of structured knowledge and downstream reliability. To address these challenges, we propose DEPTH, a framework that integrates Dependency-aware sEntence simPlification and Two-tiered Hierarchical refinement into the relation extraction pipeline. Given a sentence and its candidate entity pairs, DEPTH operates in two stages: (1) the Grounding module extracts relations for each pair by leveraging their shortest dependency path, distilling the sentence into a minimal yet coherent relational context that reduces syntactic noise while preserving key semantics; (2) the Refinement module aggregates all local predictions and revises them based on a holistic understanding of the sentence, correcting omissions and inconsistencies. We further introduce a causality-driven reward model that mitigates reward hacking by disentangling spurious correlations, enabling robust fine-tuning via reinforcement learning with human feedback. Experiments on six benchmarks demonstrate that DEPTH reduces the average hallucination rate to 7.0\% while achieving a 17.2\% improvement in average F1 score over state-of-the-art baselines.
☆ Credence Calibration Game? Calibrating Large Language Models through Structured Play
As Large Language Models (LLMs) are increasingly deployed in decision-critical domains, it becomes essential to ensure that their confidence estimates faithfully correspond to their actual correctness. Existing calibration methods have primarily focused on post-hoc adjustments or auxiliary model training; however, many of these approaches necessitate additional supervision or parameter updates. In this work, we propose a novel prompt-based calibration framework inspired by the Credence Calibration Game. Our method establishes a structured interaction loop wherein LLMs receive feedback based on the alignment of their predicted confidence with correctness. Through feedback-driven prompting and natural language summaries of prior performance, our framework dynamically improves model calibration. Extensive experiments across models and game configurations demonstrate consistent improvements in evaluation metrics. Our results highlight the potential of game-based prompting as an effective strategy for LLM calibration. Code and data are available at https://anonymous.4open.science/r/LLM-Calibration/.
☆ ZPD-SCA: Unveiling the Blind Spots of LLMs in Assessing Students' Cognitive Abilities
Large language models (LLMs) have demonstrated potential in educational applications, yet their capacity to accurately assess the cognitive alignment of reading materials with students' developmental stages remains insufficiently explored. This gap is particularly critical given the foundational educational principle of the Zone of Proximal Development (ZPD), which emphasizes the need to match learning resources with Students' Cognitive Abilities (SCA). Despite the importance of this alignment, there is a notable absence of comprehensive studies investigating LLMs' ability to evaluate reading comprehension difficulty across different student age groups, especially in the context of Chinese language education. To fill this gap, we introduce ZPD-SCA, a novel benchmark specifically designed to assess stage-level Chinese reading comprehension difficulty. The benchmark is annotated by 60 Special Grade teachers, a group that represents the top 0.15% of all in-service teachers nationwide. Experimental results reveal that LLMs perform poorly in zero-shot learning scenarios, with Qwen-max and GLM even falling below the probability of random guessing. When provided with in-context examples, LLMs performance improves substantially, with some models achieving nearly double the accuracy of their zero-shot baselines. These results reveal that LLMs possess emerging abilities to assess reading difficulty, while also exposing limitations in their current training for educationally aligned judgment. Notably, even the best-performing models display systematic directional biases, suggesting difficulties in accurately aligning material difficulty with SCA. Furthermore, significant variations in model performance across different genres underscore the complexity of task. We envision that ZPD-SCA can provide a foundation for evaluating and improving LLMs in cognitively aligned educational applications.
☆ ISCA: A Framework for Interview-Style Conversational Agents
We present a low-compute non-generative system for implementing interview-style conversational agents which can be used to facilitate qualitative data collection through controlled interactions and quantitative analysis. Use cases include applications to tracking attitude formation or behavior change, where control or standardization over the conversational flow is desired. We show how our system can be easily adjusted through an online administrative panel to create new interviews, making the tool accessible without coding. Two case studies are presented as example applications, one regarding the Expressive Interviewing system for COVID-19 and the other a semi-structured interview to survey public opinion on emerging neurotechnology. Our code is open-source, allowing others to build off of our work and develop extensions for additional functionality.
☆ Beyond Semantic Similarity: Reducing Unnecessary API Calls via Behavior-Aligned Retriever
Tool-augmented large language models (LLMs) leverage external functions to extend their capabilities, but inaccurate function calls can lead to inefficiencies and increased costs.Existing methods address this challenge by fine-tuning LLMs or using demonstration-based prompting, yet they often suffer from high training overhead and fail to account for inconsistent demonstration samples, which misguide the model's invocation behavior. In this paper, we trained a behavior-aligned retriever (BAR), which provides behaviorally consistent demonstrations to help LLMs make more accurate tool-using decisions. To train the BAR, we construct a corpus including different function-calling behaviors, i.e., calling or non-calling.We use the contrastive learning framework to train the BAR with customized positive/negative pairs and a dual-negative contrastive loss, ensuring robust retrieval of behaviorally consistent examples.Experiments demonstrate that our approach significantly reduces erroneous function calls while maintaining high task performance, offering a cost-effective and efficient solution for tool-augmented LLMs.
SurveyGen-I: Consistent Scientific Survey Generation with Evolving Plans and Memory-Guided Writing
Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.
comment: The code is available at https://github.com/SurveyGens/SurveyGen-I , 20 pages, 16 figures
☆ aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.
comment: Preprint under review. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8
☆ Open-Universe Assistance Games
Embodied AI agents must infer and act in an interpretable way on diverse human goals and preferences that are not predefined. To formalize this setting, we introduce Open-Universe Assistance Games (OU-AGs), a framework where the agent must reason over an unbounded and evolving space of possible goals. In this context, we introduce GOOD (GOals from Open-ended Dialogue), a data-efficient, online method that extracts goals in the form of natural language during an interaction with a human, and infers a distribution over natural language goals. GOOD prompts an LLM to simulate users with different complex intents, using its responses to perform probabilistic inference over candidate goals. This approach enables rich goal representations and uncertainty estimation without requiring large offline datasets. We evaluate GOOD in a text-based grocery shopping domain and in a text-operated simulated household robotics environment (AI2Thor), using synthetic user profiles. Our method outperforms a baseline without explicit goal tracking, as confirmed by both LLM-based and human evaluations.
comment: 7 pages + 2 pages references + 7 pages appendix
☆ LLMs and Agentic AI in Insurance Decision-Making: Opportunities and Challenges For Africa
In this work, we highlight the transformative potential of Artificial Intelligence (AI), particularly Large Language Models (LLMs) and agentic AI, in the insurance sector. We consider and emphasize the unique opportunities, challenges, and potential pathways in insurance amid rapid performance improvements, increased open-source access, decreasing deployment costs, and the complexity of LLM or agentic AI frameworks. To bring it closer to home, we identify critical gaps in the African insurance market and highlight key local efforts, players, and partnership opportunities. Finally, we call upon actuaries, insurers, regulators, and tech leaders to a collaborative effort aimed at creating inclusive, sustainable, and equitable AI strategies and solutions: by and for Africans.
☆ Nemotron-CC-Math: A 133 Billion-Token-Scale High Quality Math Pretraining Dataset
Pretraining large language models (LLMs) on high-quality, structured data such as mathematics and code substantially enhances reasoning capabilities. However, existing math-focused datasets built from Common Crawl suffer from degraded quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and the failure to reliably preserve mathematical structure. In this work, we introduce Nemotron-CC-Math, a large-scale, high-quality mathematical corpus constructed from Common Crawl using a novel, domain-agnostic pipeline specifically designed for robust scientific text extraction. Unlike previous efforts, our pipeline recovers math across various formats (e.g., MathJax, KaTeX, MathML) by leveraging layout-aware rendering with lynx and a targeted LLM-based cleaning stage. This approach preserves the structural integrity of equations and code blocks while removing boilerplate, standardizing notation into LaTeX representation, and correcting inconsistencies. We collected a large, high-quality math corpus, namely Nemotron-CC-Math-3+ (133B tokens) and Nemotron-CC-Math-4+ (52B tokens). Notably, Nemotron-CC-Math-4+ not only surpasses all prior open math datasets-including MegaMath, FineMath, and OpenWebMath-but also contains 5.5 times more tokens than FineMath-4+, which was previously the highest-quality math pretraining dataset. When used to pretrain a Nemotron-T 8B model, our corpus yields +4.8 to +12.6 gains on MATH and +4.6 to +14.3 gains on MBPP+ over strong baselines, while also improving general-domain performance on MMLU and MMLU-Stem. We present the first pipeline to reliably extract scientific content--including math--from noisy web-scale data, yielding measurable gains in math, code, and general reasoning, and setting a new state of the art among open math pretraining corpora. To support open-source efforts, we release our code and datasets.
☆ Mapping the Course for Prompt-based Structured Prediction
LLMs have been shown to be useful for a variety of language tasks, without requiring task-specific fine-tuning. However, these models often struggle with hallucinations and complex reasoning problems due to their autoregressive nature. We propose to address some of these issues, specifically in the area of structured prediction, by combining LLMs with combinatorial inference in an attempt to marry the predictive power of LLMs with the structural consistency provided by inference methods. We perform exhaustive experiments in an effort to understand which prompting strategies can effectively estimate LLM confidence values for use with symbolic inference, and show that, regardless of the prompting strategy, the addition of symbolic inference on top of prompting alone leads to more consistent and accurate predictions. Additionally, we show that calibration and fine-tuning using structured prediction objectives leads to increased performance for challenging tasks, showing that structured learning is still valuable in the era of LLMs.
☆ LongRecall: A Structured Approach for Robust Recall Evaluation in Long-Form Text
LongRecall. The completeness of machine-generated text, ensuring that it captures all relevant information, is crucial in domains such as medicine and law and in tasks like list-based question answering (QA), where omissions can have serious consequences. However, existing recall metrics often depend on lexical overlap, leading to errors with unsubstantiated entities and paraphrased answers, while LLM-as-a-Judge methods with long holistic prompts capture broader semantics but remain prone to misalignment and hallucinations without structured verification. We introduce LongRecall, a general three-stage recall evaluation framework that decomposes answers into self-contained facts, successively narrows plausible candidate matches through lexical and semantic filtering, and verifies their alignment through structured entailment checks. This design reduces false positives and false negatives while accommodating diverse phrasings and contextual variations, serving as a foundational building block for systematic recall assessment. We evaluate LongRecall on three challenging long-form QA benchmarks using both human annotations and LLM-based judges, demonstrating substantial improvements in recall accuracy over strong lexical and LLM-as-a-Judge baselines.
☆ Don't Think Twice! Over-Reasoning Impairs Confidence Calibration ICML 2025
Large Language Models deployed as question answering tools require robust calibration to avoid overconfidence. We systematically evaluate how reasoning capabilities and budget affect confidence assessment accuracy, using the ClimateX dataset (Lacombe et al., 2023) and expanding it to human and planetary health. Our key finding challenges the "test-time scaling" paradigm: while recent reasoning LLMs achieve 48.7% accuracy in assessing expert confidence, increasing reasoning budgets consistently impairs rather than improves calibration. Extended reasoning leads to systematic overconfidence that worsens with longer thinking budgets, producing diminishing and negative returns beyond modest computational investments. Conversely, search-augmented generation dramatically outperforms pure reasoning, achieving 89.3% accuracy by retrieving relevant evidence. Our results suggest that information access, rather than reasoning depth or inference budget, may be the critical bottleneck for improved confidence calibration of knowledge-intensive tasks.
comment: Published at ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Reward-Shifted Speculative Sampling Is An Efficient Test-Time Weak-to-Strong Aligner
Aligning large language models (LLMs) with human preferences has become a critical step in their development. Recent research has increasingly focused on test-time alignment, where additional compute is allocated during inference to enhance LLM safety and reasoning capabilities. However, these test-time alignment techniques often incur substantial inference costs, limiting their practical application. We are inspired by the speculative sampling acceleration, which leverages a small draft model to efficiently predict future tokens, to address the efficiency bottleneck of test-time alignment. We introduce the reward-Shifted Speculative Sampling (SSS) algorithm, in which the draft model is aligned with human preferences, while the target model remains unchanged. We theoretically demonstrate that the distributional shift between the aligned draft model and the unaligned target model can be exploited to recover the RLHF optimal solution without actually obtaining it, by modifying the acceptance criterion and bonus token distribution. Our algorithm achieves superior gold reward scores at a significantly reduced inference cost in test-time weak-to-strong alignment experiments, thereby validating both its effectiveness and efficiency.
☆ Multilingual Datasets for Custom Input Extraction and Explanation Requests Parsing in Conversational XAI Systems EMNLP 2025
Conversational explainable artificial intelligence (ConvXAI) systems based on large language models (LLMs) have garnered considerable attention for their ability to enhance user comprehension through dialogue-based explanations. Current ConvXAI systems often are based on intent recognition to accurately identify the user's desired intention and map it to an explainability method. While such methods offer great precision and reliability in discerning users' underlying intentions for English, a significant challenge in the scarcity of training data persists, which impedes multilingual generalization. Besides, the support for free-form custom inputs, which are user-defined data distinct from pre-configured dataset instances, remains largely limited. To bridge these gaps, we first introduce MultiCoXQL, a multilingual extension of the CoXQL dataset spanning five typologically diverse languages, including one low-resource language. Subsequently, we propose a new parsing approach aimed at enhancing multilingual parsing performance, and evaluate three LLMs on MultiCoXQL using various parsing strategies. Furthermore, we present Compass, a new multilingual dataset designed for custom input extraction in ConvXAI systems, encompassing 11 intents across the same five languages as MultiCoXQL. We conduct monolingual, cross-lingual, and multilingual evaluations on Compass, employing three LLMs of varying sizes alongside BERT-type models.
comment: Accepted at EMNLP 2025 Findings, camera-ready version
☆ Improving LLMs for Machine Translation Using Synthetic Preference Data ECAI 2025
Large language models have emerged as effective machine translation systems. In this paper, we explore how a general instruction-tuned large language model can be improved for machine translation using relatively few easily produced data resources. Using Slovene as a use case, we improve the GaMS-9B-Instruct model using Direct Preference Optimization (DPO) training on a programmatically curated and enhanced subset of a public dataset. As DPO requires pairs of quality-ranked instances, we generated its training dataset by translating English Wikipedia articles using two LLMs, GaMS-9B-Instruct and EuroLLM-9B-Instruct. We ranked the resulting translations based on heuristics coupled with automatic evaluation metrics such as COMET. The evaluation shows that our fine-tuned model outperforms both models involved in the dataset generation. In comparison to the baseline models, the fine-tuned model achieved a COMET score gain of around 0.04 and 0.02, respectively, on translating Wikipedia articles. It also more consistently avoids language and formatting errors.
comment: Paper with individual presentation at LUHME workshop at ECAI 2025
♻ ☆ RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
comment: 20 pages. Code and data: https://github.com/tianyiniu/RotBench
♻ ☆ Task-Oriented Automatic Fact-Checking with Frame-Semantics
We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction.
♻ ☆ Source2Synth: Synthetic Data Generation and Curation Grounded in Real Data Sources
Synthetic data generation has recently emerged as a promising approach for enhancing the capabilities of large language models (LLMs) without the need for expensive human annotations. However, existing methods often generate data that can be low quality or contrived. In this paper, we introduce Source2Synth, a scalable approach for synthetic data generation and curation that is grounded in real-world data sources. Source2Synth takes as input a custom data source and produces synthetic data examples with intermediate reasoning steps. Our method improves the dataset quality by discarding low-quality generations based on their answerability. We demonstrate the generality of this approach by applying it to two tasks that leverage two different types of data: multi-hop question answering (MHQA), where we test complex reasoning abilities leveraging documents, and tabular question answering (TQA), where we test tool usage leveraging tables. Our method improves performance by 25.51% for TQA on WikiSQL and 22.57% for MHQA on HotpotQA compared to the fine-tuned baselines.
♻ ☆ JudgeLRM: Large Reasoning Models as a Judge
The rise of Large Language Models (LLMs) as evaluators offers a scalable alternative to human annotation, yet existing Supervised Fine-Tuning (SFT) for judges approaches often fall short in domains requiring complex reasoning. In this work, we investigate whether LLM judges truly benefit from enhanced reasoning capabilities. Through a detailed analysis of reasoning requirements across evaluation tasks, we reveal a negative correlation between SFT performance gains and the proportion of reasoning-demanding samples - highlighting the limitations of SFT in such scenarios. To address this, we introduce JudgeLRM, a family of judgment-oriented LLMs trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards. JudgeLRM models consistently outperform both SFT-tuned and state-of-the-art reasoning models. Notably, JudgeLRM-3B surpasses GPT-4, and JudgeLRM-7B outperforms DeepSeek-R1 by 2.79% in F1 score, particularly excelling in judge tasks requiring deep reasoning.
comment: Preprint
♻ ☆ TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
comment: Withdrawn due to missing key sections in the paper
♻ ☆ G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities, which encourages extensive research on their application in mathematical problem solving. However, current work has been largely focused on text-based mathematical problems, with limited investigation in problems involving geometric information. Addressing this gap, we aim to enable LLMs to solve geometric problems by understanding image input. We first analyze the limitations of current Multimodal Large Language Models (MLLMs) in this area: they struggle to accurately comprehending basic geometric elements and their relationships. To overcome these challenges, we take advantage of the unique characteristics of geometric problems (such as unique geometric logical form, and geometric scalability) and the capacity of the textual LLMs to build an enriched multimodal geometry dataset based on existing data. The augmented dataset, Geo170K, contains more than 170K geometric image-caption and question-answer pairs. Utilizing our constructed Geo170K dataset, we develop G-LLaVA, which demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
comment: 10 pages
♻ ☆ Coupling without Communication and Drafter-Invariant Speculative Decoding
Suppose Alice has a distribution $P$ and Bob has a distribution $Q$. Alice wants to draw a sample $a\sim P$ and Bob a sample $b \sim Q$ such that $a = b$ with as high of probability as possible. It is well-known that, by sampling from an optimal coupling between the distributions, Alice and Bob can achieve $\Pr[a = b] = 1 - D_{TV}(P,Q)$, where $D_{TV}(P,Q)$ is the total variation distance between $P$ and $Q$. What if Alice and Bob must solve this same problem \emph{without communicating at all?} Perhaps surprisingly, with access to public randomness, they can still achieve $\Pr[a = b] \geq \frac{1 - D_{TV}(P,Q)}{1 + D_{TV}(P,Q)} \geq 1-2D_{TV}(P,Q)$ using a simple protocol based on the Weighted MinHash algorithm. This bound was shown to be optimal in the worst-case by [Bavarian et al., 2020]. In this work, we revisit the communication-free coupling problem. We provide a simpler proof of the optimality result from [Bavarian et al., 2020]. We show that, while the worst-case success probability of Weighted MinHash cannot be improved, an equally simple protocol based on Gumbel sampling offers a Pareto improvement: for every pair of distributions $P, Q$, Gumbel sampling achieves an equal or higher value of $\Pr[a = b]$ than Weighted MinHash. Importantly, this improvement translates to practice. We demonstrate an application of communication-free coupling to \emph{speculative decoding}, a recent method for accelerating autoregressive large language models [Leviathan, Kalman, Matias, ICML 2023]. We show that communication-free protocols can be used to contruct \emph{\CSD{}} schemes, which have the desirable property that their output is fixed given a fixed random seed, regardless of what drafter is used for speculation. In experiments on a language generation task, Gumbel sampling outperforms Weighted MinHash. Code is available at https://github.com/majid-daliri/DISD.
comment: 18 pages
♻ ☆ Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement ACM MM 2025
Translating chart images into executable plotting scripts-referred to as the chart-to-code generation task-requires Multimodal Large Language Models (MLLMs) to perform fine-grained visual parsing, precise code synthesis, and robust cross-modal reasoning. However, this task is inherently under-constrained: multiple valid code implementations can produce the same visual chart, and evaluation must consider both code correctness and visual fidelity across diverse dimensions. This makes it difficult to learn accurate and generalizable mappings through standard supervised fine-tuning. To address these challenges, we propose a dual preference-guided refinement framework that combines a feedback-driven, dual-modality reward mechanism with iterative preference learning. Our approach introduces a structured variant generation strategy and a visual reward model to efficiently produce high-quality, aspect-aware preference pairs-making preference collection scalable and supervision more targeted. These preferences are used in an offline reinforcement learning setup to optimize the model toward multi-dimensional fidelity. Experimental results show that our framework significantly enhances the performance of general-purpose open-source MLLMs, enabling them to generate high-quality plotting code that rivals specialized chart-centric models and even some proprietary systems. The code and datasets are publicly available at https://github.com/Zhihan72/Chart2Code.
comment: Accepted by ACM MM 2025
♻ ☆ Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we outline a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we propose a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.
comment: UQLM repository: https://github.com/cvs-health/uqlm
♻ ☆ Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, including admission reasons, major in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization. Our results reveal that while the LLMs (e.g., Qwen2.5 and DeepSeek-v2) perform quite well in capturing admission reasons and hospitalization events, they are generally less consistent when it comes to identifying follow-up recommendations, highlighting broader challenges in leveraging LLMs for comprehensive summarization.
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are viewed as vehicular systems capable of perceiving their environment and executing pre-programmed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 0 to 5); Examples of this outpace include the interaction with humans with natural language, goal adaptation, contextual reasoning, external tool use, and unseen ethical dilemma handling, largely empowered by multi-modal large language models (LLMs). These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this gap, this paper introduces the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. This paper proposes the term AgVs and their distinguishing characteristics from conventional AuVs. It synthesizes relevant advances in integrating LLMs and AuVs and highlights how AgVs might transform future mobility systems and ensure the systems are human-centered. The paper concludes by identifying key challenges in the development and governance of AgVs, and how they can play a significant role in future agentic transportation systems.
♻ ☆ Is neural semantic parsing good at ellipsis resolution, or isn't it?
Neural semantic parsers have shown good overall performance for a variety of linguistic phenomena, reaching semantic matching scores of more than 90%. But how do such parsers perform on strongly context-sensitive phenomena, where large pieces of semantic information need to be duplicated to form a meaningful semantic representation? A case in point is English verb phrase ellipsis, a construct where entire verb phrases can be abbreviated by a single auxiliary verb. Are the otherwise known as powerful semantic parsers able to deal with ellipsis or aren't they? We constructed a corpus of 120 cases of ellipsis with their fully resolved meaning representation and used this as a challenge set for a large battery of neural semantic parsers. Although these parsers performed very well on the standard test set, they failed in the instances with ellipsis. Data augmentation helped improve the parsing results. The reason for the difficulty of parsing elided phrases is not that copying semantic material is hard, but that usually occur in linguistically complicated contexts causing most of the parsing errors.
comment: Accepted by 16th IWCS
♻ ☆ Retrieval-Augmented Semantic Parsing: Improving Generalization with Lexical Knowledge
Open-domain semantic parsing remains a challenging task, as neural models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external symbolic knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing.
comment: Accpted by 16th IWCS
♻ ☆ Applying Text Embedding Models for Efficient Analysis in Labeled Property Graphs
Labeled property graphs often contain rich textual attributes that can enhance analytical tasks when properly leveraged. This work explores the use of pretrained text embedding models to enable efficient semantic analysis in such graphs. By embedding textual node and edge properties, we support downstream tasks including node classification and relation prediction with improved contextual understanding. Our approach integrates language model embeddings into the graph pipeline without altering its structure, demonstrating that textual semantics can significantly enhance the accuracy and interpretability of property graph analysis.
♻ ☆ STEM: Efficient Relative Capability Evaluation of LLMs through Structured Transition Samples AAAI 2026
Evaluating large language models (LLMs) has become increasingly challenging as model capabilities advance rapidly. While recent models often achieve higher scores on standard benchmarks, these improvements do not consistently reflect enhanced real-world reasoning capabilities. Moreover, widespread overfitting to public benchmarks and the high computational cost of full evaluations have made it both expensive and less effective to distinguish meaningful differences between models. To address these challenges, we propose the \textbf{S}tructured \textbf{T}ransition \textbf{E}valuation \textbf{M}ethod (STEM), a lightweight and interpretable evaluation framework for efficiently estimating the relative capabilities of LLMs. STEM identifies \textit{significant transition samples} (STS) by analyzing consistent performance transitions among LLMs of the same architecture but varying parameter scales. These samples enable STEM to effectively estimate the capability position of an unknown model. Qwen3 model family is applied to construct the STS pool on six diverse and representative benchmarks. To assess generalizability. Experimental results indicate that STEM reliably captures performance trends, aligns with ground-truth rankings of model capability. These findings highlight STEM as a practical and scalable method for fine-grained, architecture-agnostic evaluation of LLMs.
comment: Submit to AAAI 2026
♻ ☆ Advancing Language Multi-Agent Learning with Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
comment: Published in COLM2025
♻ ☆ Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of spontaneous self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided self-refinements simultaneously while maintaining exploration. Additionally, we employ a shaping function to amplify learning from correct, especially unfamiliar, refinements and penalize incorrect ones. Extensive experiments with Qwen2.5-7B-Base, Qwen2.5-Math-7B-Base, and Qwen3-8B demonstrate that Critique-GRPO consistently outperforms supervised learning and RL-based fine-tuning methods across eight challenging mathematical, STEM, and general reasoning tasks. Specifically, Critique-GRPO improves average pass@1 scores across all compared methods by approximately +4.4% on Qwen2.5-7B-Base and +3.8% on Qwen3-8B. Notably, Critique-GRPO enables effective self-improvement through self-critiquing, achieving significant gains over GRPO, e.g., +16.7% pass@1 improvement on AIME 2024.
comment: 52 pages, updated with new experimental results and implementation details
♻ ☆ Enhancing Temporal Sensitivity of Large Language Model for Recommendation with Counterfactual Tuning
Recent advances have applied large language models (LLMs) to sequential recommendation, leveraging their pre-training knowledge and reasoning capabilities to provide more personalized user experiences. However, existing LLM-based methods fail to sufficiently leverage the rich temporal information inherent in users' historical interaction sequences, stemming from fundamental architectural constraints: LLMs process information through self-attention mechanisms that lack inherent sequence ordering and rely on position embeddings designed primarily for natural language rather than user interaction sequences. This limitation significantly impairs their ability to capture the evolution of user preferences over time and predict future interests accurately. To address this critical gap, we propose \underline{C}ounterfactual \underline{E}nhanced \underline{T}emporal Framework for LLM-Based \underline{Rec}ommendation (CETRec). CETRec is grounded in causal inference principles, which allow it to isolate and measure the specific impact of temporal information on recommendation outcomes. Combined with our counterfactual tuning task derived from causal analysis, CETRec effectively enhances LLMs' awareness of both absolute order (how recently items were interacted with) and relative order (the sequential relationships between items). Extensive experiments on real-world datasets demonstrate the effectiveness of our CETRec. Our code is available at https://anonymous.4open.science/r/CETRec-B9CE/.
♻ ☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
♻ ☆ ReSpark: Leveraging Previous Data Reports as References to Generate New Reports with LLMs
Creating data reports is a labor-intensive task involving iterative data exploration, insight extraction, and narrative construction. A key challenge lies in composing the analysis logic-from defining objectives and transforming data to identifying and communicating insights. Manually crafting this logic can be cognitively demanding. While experienced analysts often reuse scripts from past projects, finding a perfect match for a new dataset is rare. Even when similar analyses are available online, they usually share only results or visualizations, not the underlying code, making reuse difficult. To address this, we present ReSpark, a system that leverages large language models (LLMs) to reverse-engineer analysis logic from existing reports and adapt it to new datasets. By generating draft analysis steps, ReSpark provides a warm start for users. It also supports interactive refinement, allowing users to inspect intermediate outputs, insert objectives, and revise content. We evaluate ReSpark through comparative and user studies, demonstrating its effectiveness in lowering the barrier to generating data reports without relying on existing analysis code.
♻ ☆ Social Debiasing for Fair Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have dramatically advanced the research field and delivered powerful vision-language understanding capabilities. However, these models often inherit deep-rooted social biases from their training data, leading to uncomfortable responses with respect to attributes such as race and gender. This paper addresses the issue of social biases in MLLMs by i) introducing a comprehensive counterfactual dataset with multiple social concepts (CMSC), which complements existing datasets by providing 18 diverse and balanced social concepts; and ii) proposing a counter-stereotype debiasing (CSD) strategy that mitigates social biases in MLLMs by leveraging the opposites of prevalent stereotypes. CSD incorporates both a novel bias-aware data sampling method and a loss rescaling method, enabling the model to effectively reduce biases. We conduct extensive experiments with four prevalent MLLM architectures. The results demonstrate the advantage of the CMSC dataset and the edge of CSD strategy in reducing social biases compared to existing competing methods, without compromising the overall performance on general multi-modal reasoning benchmarks.
comment: Project page: https://github.com/xaCheng1996/Social_Debiasing_For_Fair_MLLMs
♻ ☆ FMSD-TTS: Few-shot Multi-Speaker Multi-Dialect Text-to-Speech Synthesis for Ü-Tsang, Amdo and Kham Speech Dataset Generation
Tibetan is a low-resource language with minimal parallel speech corpora spanning its three major dialects-\"U-Tsang, Amdo, and Kham-limiting progress in speech modeling. To address this issue, we propose FMSD-TTS, a few-shot, multi-speaker, multi-dialect text-to-speech framework that synthesizes parallel dialectal speech from limited reference audio and explicit dialect labels. Our method features a novel speaker-dialect fusion module and a Dialect-Specialized Dynamic Routing Network (DSDR-Net) to capture fine-grained acoustic and linguistic variations across dialects while preserving speaker identity. Extensive objective and subjective evaluations demonstrate that FMSD-TTS significantly outperforms baselines in both dialectal expressiveness and speaker similarity. We further validate the quality and utility of the synthesized speech through a challenging speech-to-speech dialect conversion task. Our contributions include: (1) a novel few-shot TTS system tailored for Tibetan multi-dialect speech synthesis, (2) the public release of a large-scale synthetic Tibetan speech corpus generated by FMSD-TTS, and (3) an open-source evaluation toolkit for standardized assessment of speaker similarity, dialect consistency, and audio quality.
comment: 18 pages
♻ ☆ Each to Their Own: Exploring the Optimal Embedding in RAG
Recently, as Large Language Models (LLMs) have fundamentally impacted various fields, the methods for incorporating up-to-date information into LLMs or adding external knowledge to construct domain-specific models have garnered wide attention. Retrieval-Augmented Generation (RAG), serving as an inference-time scaling method, is notable for its low cost and minimal effort for parameter tuning. However, due to heterogeneous training data and model architecture, the variant embedding models used in RAG exhibit different benefits across various areas, often leading to different similarity calculation results and, consequently, varying response quality from LLMs. To address this problem, we propose and examine two approaches to enhance RAG by combining the benefits of multiple embedding models, named Mixture-Embedding RAG and Confident RAG. Mixture-Embedding RAG simply sorts and selects retrievals from multiple embedding models based on standardized similarity; however, it does not outperform vanilla RAG. In contrast, Confident RAG generates responses multiple times using different embedding models and then selects the responses with the highest confidence level, demonstrating average improvements of approximately 10% and 5% over vanilla LLMs and RAG, respectively. The consistent results across different LLMs and embedding models indicate that Confident RAG is an efficient plug-and-play approach for various domains. We will release our code upon publication.
♻ ☆ Input Time Scaling
Current Large Language Models (LLMs) are usually post-trained on large-scale carefully curated datasets (data & training scaling) and doing reasoning in test time (inference time scaling). In this work, we present a new scaling paradigm, Input Time Scaling, to complement previous scaling methods by putting resources on queries (input time). During training and testing, we combine meta-knowledge from LLMs to refine inputs with different strategies. We also find a new phenomenon, training-testing co-design there. We need to apply query strategies during both training and testing. Only applying strategies on training or testing would seriously degrade the performance. We are also surprised to find that seemingly low data quality datasets can gain high performance. Adding irrelevant information to the queries, randomly selecting examples from a minimally filtered dataset, can even perform the best. These findings contradict the widely held inductive bias, "garbage in, garbage out". Curating datasets with seemingly high-quality data can even potentially limit the performance ceiling. In addition, models trained on more data with similar quality (15k VS 1k) perform worse, simple dataset size scaling should also be carefully inspected. The good news is that our findings are compatible with the Less is More phenomenon. A small set of examples is enough to evoke high-level reasoning ability. With experiments on models trained on Qwen2.5-32B-Instruct, we are able to reach SOTA performance among 32B models on AIME24(76.7%) and AIME25(76.7%) pass@1. We can further achieve AIME24(76.7%) and AIME25(80%) with a majority vote of three models. Starting from DeepSeek-R1-Distill-Qwen-32B, the best result would be 86.7% on AIME24 and 76.7% on AIME25. To facilitate reproducibility and further research, we are working on open-source our datasets, data pipelines, evaluation results, and checkpoints.
♻ ☆ Investigating Transcription Normalization in the Faetar ASR Benchmark
We examine the role of transcription inconsistencies in the Faetar Automatic Speech Recognition benchmark, a challenging low-resource ASR benchmark. With the help of a small, hand-constructed lexicon, we conclude that find that, while inconsistencies do exist in the transcriptions, they are not the main challenge in the task. We also demonstrate that bigram word-based language modelling is of no added benefit, but that constraining decoding to a finite lexicon can be beneficial. The task remains extremely difficult.
♻ ☆ Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model ACL25
Enhancing the reasoning capabilities of language models (LMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making where existing Chain-of-Thought (CoT) approaches struggle with consistency and verification. In this paper, we propose a novel reasoning framework, referred to as Structure-aware Planning with an Accurate World Model (SWAP), that integrates structured knowledge representation with learned planning. Unlike prior methods that rely purely on natural language reasoning, SWAP leverages entailment graphs to encode structured dependencies and enable symbolic verification of intermediate steps. To systematically construct and update the graph, SWAP employs a policy model to propose candidate expansions and a world model to predict structural updates. To improve accuracy, the world model generates multiple alternative updates, and a discriminator re-ranks them based on plausibility. To encourage diverse exploration, we introduce Diversity-based Modelling (DM), which samples candidates from the remaining probability mass after removing previously sampled candidates from the original policy distribution. Additionally, SWAP improves the discrimination accuracy through Contrastive Ranking (CR), which directly compares candidates within prompts and incorporates meta-knowledge to improve ranking quality. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP significantly improves upon the base models and consistently outperforms existing reasoning methods.
comment: ACL25 (main)
♻ ☆ Chain of Correction for Full-text Speech Recognition with Large Language Models
Full-text error correction with Large Language Models (LLMs) for Automatic Speech Recognition (ASR) is attracting increased attention for its ability to address a wide range of error types, such as punctuation restoration and inverse text normalization, across long context. However, challenges remain regarding stability, controllability, completeness, and fluency. To mitigate these issues, this paper proposes the Chain of Correction (CoC), which uses a multi-turn chat format to correct errors segment by segment, guided by pre-recognized text and full-text context for better semantic understanding. Utilizing the open-sourced ChFT dataset, we fine-tune a pre-trained LLM to evaluate CoC's performance. Experiments show that CoC significantly outperforms baseline and benchmark systems in correcting full-text ASR outputs. We also analyze correction thresholds to balance under-correction and over-rephrasing, extrapolate CoC on extra-long ASR outputs, and explore using other types of information to guide error correction.
♻ ☆ Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking NLPCC 2025
Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.
comment: Accepted by NLPCC 2025
♻ ☆ A Little Human Data Goes A Long Way ACL 2025
Faced with an expensive human annotation process, creators of NLP systems increasingly turn to synthetic data generation. While this method shows promise, the extent to which synthetic data can replace human annotation is poorly understood. We investigate the use of synthetic data in Fact Verification (FV) and Question Answering (QA) by studying the effects of incrementally replacing human generated data with synthetic points on eight diverse datasets. Strikingly, replacing up to 90% of the training data only marginally decreases performance, but replacing the final 10% leads to severe declines. We find that models trained on purely synthetic data can be reliably improved by including as few as 125 human generated data points. We show that matching the performance gain of just a little additional human data (only 200 points) requires an order of magnitude more synthetic data and estimate price ratios at which human annotation would be a more cost-effective solution. Our results suggest that even when human annotation at scale is infeasible, there is great value to having a small proportion of the dataset being human generated.
comment: ACL 2025
♻ ☆ CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN
comment: Preprint Version
♻ ☆ Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a key paradigm for post-training Large Language Models (LLMs), particularly for complex reasoning tasks. However, vanilla RLVR training has been shown to improve Pass@1 performance at the expense of policy entropy, leading to reduced generation diversity and limiting the Pass@k performance, which typically represents the upper bound of LLM reasoning capability. In this paper, we systematically analyze the policy's generation diversity from the perspective of training problems and find that augmenting and updating training problems helps mitigate entropy collapse during training. Based on these observations, we propose an online Self-play with Variational problem Synthesis (SvS) strategy for RLVR training, which uses the policy's correct solutions to synthesize variational problems while ensuring their reference answers remain identical to the originals. This self-improving strategy effectively maintains policy entropy during training and substantially improves Pass@k compared with standard RLVR, sustaining prolonged improvements and achieving absolute gains of 18.3% and 22.8% in Pass@32 performance on the competition-level AIME24 and AIME25 benchmarks. Experiments on 12 reasoning benchmarks across varying model sizes from 3B to 32B consistently demonstrate the generalizability and robustness of SvS.
♻ ☆ ChuLo: Chunk-Level Key Information Representation for Long Document Understanding ACL 2025
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document understanding that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunks to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analysis. Our implementation is open-sourced on https://github.com/adlnlp/Chulo.
comment: The paper has been accepted to ACL 2025
♻ ☆ Fine-tuning foundational models to code diagnoses from veterinary health records
Veterinary medical records represent a large data resource for application to veterinary and One Health clinical research efforts. Use of the data is limited by interoperability challenges including inconsistent data formats and data siloing. Clinical coding using standardized medical terminologies enhances the quality of medical records and facilitates their interoperability with veterinary and human health records from other sites. Previous studies, such as DeepTag and VetTag, evaluated the application of Natural Language Processing (NLP) to automate veterinary diagnosis coding, employing long short-term memory (LSTM) and transformer models to infer a subset of Systemized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) diagnosis codes from free-text clinical notes. This study expands on these efforts by incorporating all 7,739 distinct SNOMED-CT diagnosis codes recognized by the Colorado State University (CSU) Veterinary Teaching Hospital (VTH) and by leveraging the increasing availability of pre-trained language models (LMs). 13 freely-available pre-trained LMs were fine-tuned on the free-text notes from 246,473 manually-coded veterinary patient visits included in the CSU VTH's electronic health records (EHRs), which resulted in superior performance relative to previous efforts. The most accurate results were obtained when expansive labeled data were used to fine-tune relatively large clinical LMs, but the study also showed that comparable results can be obtained using more limited resources and non-clinical LMs. The results of this study contribute to the improvement of the quality of veterinary EHRs by investigating accessible methods for automated coding and support both animal and human health research by paving the way for more integrated and comprehensive health databases that span species and institutions.
comment: 26 pages, 5 figures
♻ ☆ MFTCXplain: A Multilingual Benchmark Dataset for Evaluating the Moral Reasoning of LLMs through Hate Speech Multi-hop Explanations EMNLP 2025
Ensuring the moral reasoning capabilities of Large Language Models (LLMs) is a growing concern as these systems are used in socially sensitive tasks. Nevertheless, current evaluation benchmarks present two major shortcomings: a lack of annotations that justify moral classifications, which limits transparency and interpretability; and a predominant focus on English, which constrains the assessment of moral reasoning across diverse cultural settings. In this paper, we introduce MFTCXplain, a multilingual benchmark dataset for evaluating the moral reasoning of LLMs via hate speech multi-hop explanation using Moral Foundation Theory (MFT). The dataset comprises 3,000 tweets across Portuguese, Italian, Persian, and English, annotated with binary hate speech labels, moral categories, and text span-level rationales. Empirical results highlight a misalignment between LLM outputs and human annotations in moral reasoning tasks. While LLMs perform well in hate speech detection (F1 up to 0.836), their ability to predict moral sentiments is notably weak (F1 < 0.35). Furthermore, rationale alignment remains limited mainly in underrepresented languages. These findings show the limited capacity of current LLMs to internalize and reflect human moral reasoning.
comment: Findings of the Association for Computational Linguistics: EMNLP 2025; *These authors contributed equally
♻ ☆ On the Role of Entity and Event Level Conceptualization in Generalizable Reasoning: A Survey of Tasks, Methods, Applications, and Future Directions EMNLP 2025
Conceptualization, a fundamental element of human cognition, plays a pivotal role in human generalizable reasoning. Generally speaking, it refers to the process of sequentially abstracting specific instances into higher-level concepts and then forming abstract knowledge that can be applied in unfamiliar or novel situations. This enhances models' inferential capabilities and supports the effective transfer of knowledge across various domains. Despite its significance, the broad nature of this term has led to inconsistencies in understanding conceptualization across various works, as there exists different types of instances that can be abstracted in a wide variety of ways. There is also a lack of a systematic overview that comprehensively examines existing works on the definition, execution, and application of conceptualization to enhance reasoning tasks. In this paper, we address these gaps by first proposing a categorization of different types of conceptualizations into four levels based on the types of instances being conceptualized, in order to clarify the term and define the scope of our work. Then, we present the first comprehensive survey of over 150 papers, surveying various definitions, resources, methods, and downstream applications related to conceptualization into a unified taxonomy, with a focus on the entity and event levels. Furthermore, we shed light on potential future directions in this field and hope to garner more attention from the community.
comment: Findings of EMNLP 2025
♻ ☆ Lossless Token Sequence Compression via Meta-Tokens
Existing work on prompt compression for Large Language Models (LLM) focuses on lossy methods that try to maximize the retention of semantic information that is relevant to downstream tasks while significantly reducing the sequence length. In this paper, we introduce a task-agnostic lossless compression technique similar to LZ77 that makes it possible to reduce the input token sequence length on average by 27\% and 18\% for the two evaluation tasks explored here. Given that we use transformer-based LLMs, this equates to 47\% and 33\% less encoding computation, respectively, due to the quadratic nature of attention. The token sequence transformation is trivial to reverse and highlights that no semantic information is lost in the process. We evaluate our proposed approach on two tasks that require strict preservation of semantics/syntax and demonstrate that existing lossy compression methods perform poorly in this setting. We find that our lossless compression technique produces only a small gap in performance compared to using the uncompressed input and posit that larger models and an expanded computing budget would likely erase the gap entirely.
comment: 16 pages, 8 figures
♻ ☆ Diagnosing Memorization in Chain-of-Thought Reasoning, One Token at a Time
Large Language Models (LLMs) perform well on reasoning benchmarks but often fail when inputs alter slightly, raising concerns about the extent to which their success relies on memorization. This issue is especially acute in Chain-of-Thought (CoT) reasoning, where spurious memorized patterns can trigger intermediate errors that cascade into incorrect final answers. We introduce STIM, a novel framework for Source-aware Token-level Identification of Memorization, which attributes each token in a reasoning chain to one of multiple memorization sources - local, mid-range, or long-range - based on their statistical co-occurrence with the token in the pretraining corpus. Our token-level analysis across tasks and distributional settings reveals that models rely more on memorization in complex or long-tail cases, and that local memorization is often the dominant driver of errors, leading to up to 67% of wrong tokens. We also show that memorization scores from STIM can be effective in predicting the wrong tokens in the wrong reasoning step. STIM offers a powerful tool for diagnosing and improving model reasoning and can generalize to other structured step-wise generation tasks.
♻ ☆ SAND: Boosting LLM Agents with Self-Taught Action Deliberation EMNLP 2025
Large Language Model (LLM) agents are commonly tuned with supervised finetuning on ReAct-style expert trajectories or preference optimization over pairwise rollouts. Most of these methods focus on imitating specific expert behaviors or promoting chosen reasoning thoughts and actions over rejected ones. However, without reasoning and comparing over alternatives actions, LLM agents finetuned with these methods may over-commit towards seemingly plausible but suboptimal actions due to limited action space exploration. To address this, in this paper we propose Self-taught ActioN Deliberation (SAND) framework, enabling LLM agents to explicitly deliberate over candidate actions before committing to one. To tackle the challenges of when and what to deliberate given large action space and step-level action evaluation, we incorporate self-consistency action sampling and execution-guided action critique to help synthesize step-wise action deliberation thoughts using the base model of the LLM agent. In an iterative manner, the deliberation trajectories are then used to finetune the LLM agent itself. Evaluating on two representative interactive agent tasks, SAND achieves an average 20% improvement over initial supervised finetuning and also outperforms state-of-the-art agent tuning approaches.
comment: EMNLP 2025
♻ ☆ Synthetic vs. Gold: The Role of LLM Generated Labels and Data in Cyberbullying Detection
Cyberbullying (CB) presents a pressing threat, especially to children, underscoring the urgent need for robust detection systems to ensure online safety. While large-scale datasets on online abuse exist, there remains a significant gap in labeled data that specifically reflects the language and communication styles used by children. The acquisition of such data from vulnerable populations, such as children, is challenging due to ethical, legal and technical barriers. Moreover, the creation of these datasets relies heavily on human annotation, which not only strains resources but also raises significant concerns due to annotators exposure to harmful content. In this paper, we address these challenges by leveraging Large Language Models (LLMs) to generate synthetic data and labels. Our experiments demonstrate that synthetic data enables BERT-based CB classifiers to achieve performance close to that of those trained on fully authentic datasets (75.8% vs. 81.5% accuracy). Additionally, LLMs can effectively label authentic yet unlabeled data, allowing BERT classifiers to attain a comparable performance level (79.1% vs. 81.5% accuracy). These results highlight the potential of LLMs as a scalable, ethical, and cost-effective solution for generating data for CB detection.
♻ ☆ MATATA: Weakly Supervised End-to-End MAthematical Tool-Augmented Reasoning for Tabular Applications ICDAR 2025
Business documents often contain substantial tabular and textual information with numerical values, requiring mathematical reasoning for effective document understanding. While Small Language Models (SLMs) still struggle at this task, tool-augmented multi-step agents perform better, at the cost of relying on closed-source or larger models, external data, or extensive prompt-engineering. This work introduces MATATA, a novel weakly supervised end-to-end approach to train multi-step reasoning language agents for document tabular applications. MATATA presents an annotation-free paradigm for each agent to enhance 3.8B/8B SLMs. During its two-stage training, MATATA uses the final outcome of the multi-step reasoning chain as weak supervision. This approach avoids having to individually supervise each intermediate agent in the reasoning chain. By employing an adaptive planner and shared tools across different datasets, MATATA shows robust performance. Experiments demonstrate that MATATA achieves state-of-the-art on FinQA, and on TAT-QA among reasoning methods based on open-source SLMs. Although being SLM-based, MATATA closely matches GPT-4-based frameworks on TabMWP. This novel weakly supervised approach enables training an end-to-end multi-step reasoning agent without intermediate supervision, supporting future developments of cost-effective powerful agentic systems.
comment: Published as a conference paper at ICDAR 2025
♻ ☆ Exploring Big Five Personality and AI Capability Effects in LLM-Simulated Negotiation Dialogues KDD 2025
This paper presents an evaluation framework for agentic AI systems in mission-critical negotiation contexts, addressing the need for AI agents that can adapt to diverse human operators and stakeholders. Using Sotopia as a simulation testbed, we present two experiments that systematically evaluated how personality traits and AI agent characteristics influence LLM-simulated social negotiation outcomes--a capability essential for a variety of applications involving cross-team coordination and civil-military interactions. Experiment 1 employs causal discovery methods to measure how personality traits impact price bargaining negotiations, through which we found that Agreeableness and Extraversion significantly affect believability, goal achievement, and knowledge acquisition outcomes. Sociocognitive lexical measures extracted from team communications detected fine-grained differences in agents' empathic communication, moral foundations, and opinion patterns, providing actionable insights for agentic AI systems that must operate reliably in high-stakes operational scenarios. Experiment 2 evaluates human-AI job negotiations by manipulating both simulated human personality and AI system characteristics, specifically transparency, competence, adaptability, demonstrating how AI agent trustworthiness impact mission effectiveness. These findings establish a repeatable evaluation methodology for experimenting with AI agent reliability across diverse operator personalities and human-agent team dynamics, directly supporting operational requirements for reliable AI systems. Our work advances the evaluation of agentic AI workflows by moving beyond standard performance metrics to incorporate social dynamics essential for mission success in complex operations.
comment: Presented at the KDD 2025 Workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models under the title "Evaluating the LLM-simulated Impacts of Big Five Personality Traits and AI Capabilities on Social Negotiations" (https://kdd-eval-workshop.github.io/genai-evaluation-kdd2025/assets/papers/Submission%2036.pdf)
♻ ☆ Prescriptive Agents based on RAG for Automated Maintenance (PARAM)
Industrial machinery maintenance requires timely intervention to prevent catastrophic failures and optimize operational efficiency. This paper presents an integrated Large Language Model (LLM)-based intelligent system for prescriptive maintenance that extends beyond traditional anomaly detection to provide actionable maintenance recommendations. Building upon our prior LAMP framework for numerical data analysis, we develop a comprehensive solution that combines bearing vibration frequency analysis with multi agentic generation for intelligent maintenance planning. Our approach serializes bearing vibration data (BPFO, BPFI, BSF, FTF frequencies) into natural language for LLM processing, enabling few-shot anomaly detection with high accuracy. The system classifies fault types (inner race, outer race, ball/roller, cage faults) and assesses severity levels. A multi-agentic component processes maintenance manuals using vector embeddings and semantic search, while also conducting web searches to retrieve comprehensive procedural knowledge and access up-to-date maintenance practices for more accurate and in-depth recommendations. The Gemini model then generates structured maintenance recommendations includes immediate actions, inspection checklists, corrective measures, parts requirements, and timeline specifications. Experimental validation in bearing vibration datasets demonstrates effective anomaly detection and contextually relevant maintenance guidance. The system successfully bridges the gap between condition monitoring and actionable maintenance planning, providing industrial practitioners with intelligent decision support. This work advances the application of LLMs in industrial maintenance, offering a scalable framework for prescriptive maintenance across machinery components and industrial sectors.
♻ ☆ Evaluation Agent: Efficient and Promptable Evaluation Framework for Visual Generative Models
Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model's capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.
comment: Equal contributions from first three authors. Project page: https://vchitect.github.io/Evaluation-Agent-project Code: https://github.com/Vchitect/Evaluation-Agent
♻ ☆ Length Representations in Large Language Models EMNLP 2025
Large language models (LLMs) have shown remarkable capabilities across various tasks, that are learned from massive amounts of text-based data. Although LLMs can control output sequence length, particularly in instruction-based settings, the internal mechanisms behind this control have been unexplored yet. In this study, we provide empirical evidence on how output sequence length information is encoded within the internal representations in LLMs. In particular, our findings show that multi-head attention mechanisms are critical in determining output sequence length, which can be adjusted in a disentangled manner. By scaling specific hidden units within the model, we can control the output sequence length without losing the informativeness of the generated text, thereby indicating that length information is partially disentangled from semantic information. Moreover, some hidden units become increasingly active as prompts become more length-specific, thus reflecting the model's internal awareness of this attribute. Our findings suggest that LLMs have learned robust and adaptable internal mechanisms for controlling output length without any external control.
comment: Accepted to EMNLP 2025 Findings
Computation and Language
☆ The Promise of Large Language Models in Digital Health: Evidence from Sentiment Analysis in Online Health Communities
Digital health analytics face critical challenges nowadays. The sophisticated analysis of patient-generated health content, which contains complex emotional and medical contexts, requires scarce domain expertise, while traditional ML approaches are constrained by data shortage and privacy limitations in healthcare settings. Online Health Communities (OHCs) exemplify these challenges with mixed-sentiment posts, clinical terminology, and implicit emotional expressions that demand specialised knowledge for accurate Sentiment Analysis (SA). To address these challenges, this study explores how Large Language Models (LLMs) can integrate expert knowledge through in-context learning for SA, providing a scalable solution for sophisticated health data analysis. Specifically, we develop a structured codebook that systematically encodes expert interpretation guidelines, enabling LLMs to apply domain-specific knowledge through targeted prompting rather than extensive training. Six GPT models validated alongside DeepSeek and LLaMA 3.1 are compared with pre-trained language models (BioBERT variants) and lexicon-based methods, using 400 expert-annotated posts from two OHCs. LLMs achieve superior performance while demonstrating expert-level agreement. This high agreement, with no statistically significant difference from inter-expert agreement levels, suggests knowledge integration beyond surface-level pattern recognition. The consistent performance across diverse LLM models, supported by in-context learning, offers a promising solution for digital health analytics. This approach addresses the critical challenge of expert knowledge shortage in digital health research, enabling real-time, expert-quality analysis for patient monitoring, intervention assessment, and evidence-based health strategies.
☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Source code: https://github.com/HahmDY/prefix_injection_guard
☆ Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a key paradigm for post-training Large Language Models (LLMs), particularly for complex reasoning tasks. However, vanilla RLVR training has been shown to improve Pass@1 performance at the expense of policy entropy, leading to reduced generation diversity and limiting the Pass@k performance, which typically represents the upper bound of LLM reasoning capability. In this paper, we systematically analyze the policy's generation diversity from the perspective of training problems and find that augmenting and updating training problems helps mitigate entropy collapse during training. Based on these observations, we propose an online Self-play with Variational problem Synthesis (SvS) strategy for RLVR training, which uses the policy's correct solutions to synthesize variational problems while ensuring their reference answers remain identical to the originals. This self-improving strategy effectively maintains policy entropy during training and substantially improves Pass@k compared with standard RLVR, sustaining prolonged improvements and achieving absolute gains of 18.3% and 22.8% in Pass@32 performance on the competition-level AIME24 and AIME25 benchmarks. Experiments on 12 reasoning benchmarks across varying model sizes from 3B to 32B consistently demonstrate the generalizability and robustness of SvS.
☆ Ask Good Questions for Large Language Models
Recent advances in large language models (LLMs) have significantly improved the performance of dialog systems, yet current approaches often fail to provide accurate guidance of topic due to their inability to discern user confusion in related concepts. To address this, we introduce the Ask-Good-Question (AGQ) framework, which features an improved Concept-Enhanced Item Response Theory (CEIRT) model to better identify users' knowledge levels. Our contributions include applying the CEIRT model along with LLMs to directly generate guiding questions based on the inspiring text, greatly improving information retrieval efficiency during the question & answer process. Through comparisons with other baseline methods, our approach outperforms by significantly enhencing the users' information retrieval experiences.
☆ Chunks as Arms: Multi-Armed Bandit-Guided Sampling for Long-Context LLM Preference Optimization
Long-context modeling is critical for a wide range of real-world tasks, including long-context question answering, summarization, and complex reasoning tasks. Recent studies have explored fine-tuning Large Language Models (LLMs) with synthetic data to enhance their long-context capabilities. However, the effectiveness of such approaches is often limited by the low diversity and factual inconsistencies in the generated data. To address these challenges, we propose LongMab-PO, a novel framework that leverages a Multi-Armed Bandit (MAB) rollout strategy to identify the most informative chunks from the given long context for sampling high-quality and diverse responses and constructing preference data pairs for Direct Preference Optimization (DPO) training. Specifically, we treat context chunks as arms of MAB, select chunks based on their expected reward scores to input into LLMs to generate responses, and iteratively update these scores based on reward feedback. This exploration and exploitation process enables the model to focus on the most relevant context segments, thereby generating and collecting high-quality and diverse responses. Finally, we collect these generated responses from the rollout process and apply the DPO method to further optimize the LLM. Experimental results show that LongMab-PO significantly improves the diversity and quality of preference data pairs, achieving state-of-the-art performance on long-context reasoning benchmarks. All code and data will be released on https://github.com/NEUIR/LongMab-PO.
☆ RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
comment: 20 pages. Code and data: https://github.com/tianyiniu/RotBench
ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph
☆ Query Logs Analytics: A Aystematic Literature Review
In the digital era, user interactions with various resources such as databases, data warehouses, websites, and knowledge graphs (KGs) are increasingly mediated through digital platforms. These interactions leave behind digital traces, systematically captured in the form of logs. Logs, when effectively exploited, provide high value across industry and academia, supporting critical services (e.g., recovery and security), user-centric applications (e.g., recommender systems), and quality-of-service improvements (e.g., performance optimization). Despite their importance, research on log usage remains fragmented across domains, and no comprehensive study currently consolidates existing efforts. This paper presents a systematic survey of log usage, focusing on Database (DB), Data Warehouse (DW), Web, and KG logs. More than 300 publications were analyzed to address three central questions: (1) do different types of logs share common structural and functional characteristics? (2) are there standard pipelines for their usage? (3) which constraints and non-functional requirements (NFRs) guide their exploitation?. The survey reveals a limited number of end-to-end approaches, the absence of standardization across log usage pipelines, and the existence of shared structural elements among different types of logs. By consolidating existing knowledge, identifying gaps, and highlighting opportunities, this survey provides researchers and practitioners with a comprehensive overview of log usage and sheds light on promising directions for future research, particularly regarding the exploitation and democratization of KG logs.
Prompt Orchestration Markup Language
Large Language Models (LLMs) require sophisticated prompting, yet current practices face challenges in structure, data integration, format sensitivity, and tooling. Existing methods lack comprehensive solutions for organizing complex prompts involving diverse data types (documents, tables, images) or managing presentation variations systematically. To address these gaps, we introduce POML (Prompt Orchestration Markup Language). POML employs component-based markup for logical structure (roles, tasks, examples), specialized tags for seamless data integration, and a CSS-like styling system to decouple content from presentation, reducing formatting sensitivity. It includes templating for dynamic prompts and a comprehensive developer toolkit (IDE support, SDKs) to improve version control and collaboration. We validate POML through two case studies demonstrating its impact on complex application integration (PomLink) and accuracy performance (TableQA), as well as a user study assessing its effectiveness in real-world development scenarios.
comment: All findings in this paper are derived from a POML snapshot as of February 2025
☆ MME-SCI: A Comprehensive and Challenging Science Benchmark for Multimodal Large Language Models
Recently, multimodal large language models (MLLMs) have achieved significant advancements across various domains, and corresponding evaluation benchmarks have been continuously refined and improved. In this process, benchmarks in the scientific domain have played an important role in assessing the reasoning capabilities of MLLMs. However, existing benchmarks still face three key challenges: 1) Insufficient evaluation of models' reasoning abilities in multilingual scenarios; 2) Inadequate assessment of MLLMs' comprehensive modality coverage; 3) Lack of fine-grained annotation of scientific knowledge points. To address these gaps, we propose MME-SCI, a comprehensive and challenging benchmark. We carefully collected 1,019 high-quality question-answer pairs, which involve 3 distinct evaluation modes. These pairs cover four subjects, namely mathematics, physics, chemistry, and biology, and support five languages: Chinese, English, French, Spanish, and Japanese. We conducted extensive experiments on 16 open-source models and 4 closed-source models, and the results demonstrate that MME-SCI is widely challenging for existing MLLMs. For instance, under the Image-only evaluation mode, o4-mini achieved accuracy of only 52.11%, 24.73%, 36.57%, and 29.80% in mathematics, physics, chemistry, and biology, respectively, indicating a significantly higher difficulty level compared to existing benchmarks. More importantly, using MME-SCI's multilingual and fine-grained knowledge attributes, we analyzed existing models' performance in depth and identified their weaknesses in specific domains. The Data and Evaluation Code are available at https://github.com/JCruan519/MME-SCI.
comment: 9 pages, 6 figures, work in progress
☆ Improved Generalized Planning with LLMs through Strategy Refinement and Reflection
LLMs have recently been used to generate Python programs representing generalized plans in PDDL planning, i.e., plans that generalize across the tasks of a given PDDL domain. Previous work proposed a framework consisting of three steps: the LLM first generates a summary and then a strategy for the domain, both in natural language, and then implements that strategy as a Python program, that gets debugged on example planning tasks. In that work, only one strategy is generated and passed directly to the program generation. If the strategy is incorrect, its implementation will therefore result in an incorrect generalized plan. Here, we introduce an approach that generates the strategy in the form of pseudocode and enables automatic debugging of the pseudocode, hence allowing us to identify and fix errors prior to the generation of the generalized plan itself. Additionally, we extend the Python debugging phase with a reflection step prompting the LLM to pinpoint the reason for the observed plan failure. Finally, we take inspiration from LLM code generation to produce several program variants and pick the best one. Running experiments on 17 benchmark domains, we show that these extensions substantially improve (and never deteriorate) the quality of the generalized plans. In 12 of the domains, our best Python programs solve all tasks that can be generated with the respective instance generator.
☆ Extracting Structured Requirements from Unstructured Building Technical Specifications for Building Information Modeling
This study explores the integration of Building Information Modeling (BIM) with Natural Language Processing (NLP) to automate the extraction of requirements from unstructured French Building Technical Specification (BTS) documents within the construction industry. Employing Named Entity Recognition (NER) and Relation Extraction (RE) techniques, the study leverages the transformer-based model CamemBERT and applies transfer learning with the French language model Fr\_core\_news\_lg, both pre-trained on a large French corpus in the general domain. To benchmark these models, additional approaches ranging from rule-based to deep learning-based methods are developed. For RE, four different supervised models, including Random Forest, are implemented using a custom feature vector. A hand-crafted annotated dataset is used to compare the effectiveness of NER approaches and RE models. Results indicate that CamemBERT and Fr\_core\_news\_lg exhibited superior performance in NER, achieving F1-scores over 90\%, while Random Forest proved most effective in RE, with an F1 score above 80\%. The outcomes are intended to be represented as a knowledge graph in future work to further enhance automatic verification systems.
☆ The illusion of a perfect metric: Why evaluating AI's words is harder than it looks
Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.
comment: 11 pages, 1 figure. Accepted to RANLP 2025
Prompt-Based One-Shot Exact Length-Controlled Generation with LLMs
Controlling the length of text produced by large language models (LLMs) remains challenging: models frequently overshoot or undershoot explicit length instructions because they cannot reliably keep an internal token count. We present a prompt-based, one-shot strategy that compels an off-the-shelf LLM to generate exactly a desired number of tokens - words (English) or characters (Chinese) - without any fine-tuning or iterative sampling. The prompt appends countdown markers and explicit counting rules so that the model "writes while counting." We evaluate on four settings: open-ended generation (1-1000 tokens), XSUM summarization, MT-Bench-LI instruction following, and the LIFEBENCH equal-length track. On MT-Bench-LI, strict length compliance with GPT-4.1 leaps from below 30% under naive prompts to above 95% with our countdown prompt, surpassing the popular draft-then-revise baseline, while judged answer quality is preserved. These results show that precise length control can be achieved through prompt engineering alone, offering a lightweight alternative to training- or decoding-based methods.
comment: 18 pages
☆ Beyond Human Judgment: A Bayesian Evaluation of LLMs' Moral Values Understanding
How do large language models understand moral dimensions compared to humans? This first large-scale Bayesian evaluation of market-leading language models provides the answer. In contrast to prior work using deterministic ground truth (majority or inclusion rules), we model annotator disagreements to capture both aleatoric uncertainty (inherent human disagreement) and epistemic uncertainty (model domain sensitivity). We evaluate top language models (Claude Sonnet 4, DeepSeek-V3, Llama 4 Maverick) across 250K+ annotations from ~700 annotators on 100K+ texts spanning social media, news, and forums. Our GPU-optimized Bayesian framework processed 1M+ model queries, revealing that AI models typically rank among the top 25\% of human annotators, achieving much better-than-average balanced accuracy. Importantly, we find that AI produces far fewer false negatives than humans, highlighting their more sensitive moral detection capabilities.
☆ TracSum: A New Benchmark for Aspect-Based Summarization with Sentence-Level Traceability in Medical Domain
While document summarization with LLMs has enhanced access to textual information, concerns about the factual accuracy of these summaries persist, especially in the medical domain. Tracing evidence from which summaries are derived enables users to assess their accuracy, thereby alleviating this concern. In this paper, we introduce TracSum, a novel benchmark for traceable, aspect-based summarization, in which generated summaries are paired with sentence-level citations, enabling users to trace back to the original context. First, we annotate 500 medical abstracts for seven key medical aspects, yielding 3.5K summary-citation pairs. We then propose a fine-grained evaluation framework for this new task, designed to assess the completeness and consistency of generated content using four metrics. Finally, we introduce a summarization pipeline, Track-Then-Sum, which serves as a baseline method for comparison. In experiments, we evaluate both this baseline and a set of LLMs on TracSum, and conduct a human evaluation to assess the evaluation results. The findings demonstrate that TracSum can serve as an effective benchmark for traceable, aspect-based summarization tasks. We also observe that explicitly performing sentence-level tracking prior to summarization enhances generation accuracy, while incorporating the full context further improves completeness.
comment: 8 main pages, 12 appendix pages
☆ Can Large Language Models (LLMs) Describe Pictures Like Children? A Comparative Corpus Study
The role of large language models (LLMs) in education is increasing, yet little attention has been paid to whether LLM-generated text resembles child language. This study evaluates how LLMs replicate child-like language by comparing LLM-generated texts to a collection of German children's descriptions of picture stories. We generated two LLM-based corpora using the same picture stories and two prompt types: zero-shot and few-shot prompts specifying a general age from the children corpus. We conducted a comparative analysis across psycholinguistic text properties, including word frequency, lexical richness, sentence and word length, part-of-speech tags, and semantic similarity with word embeddings. The results show that LLM-generated texts are longer but less lexically rich, rely more on high-frequency words, and under-represent nouns. Semantic vector space analysis revealed low similarity, highlighting differences between the two corpora on the level of corpus semantics. Few-shot prompt increased similarities between children and LLM text to a minor extent, but still failed to replicate lexical and semantic patterns. The findings contribute to our understanding of how LLMs approximate child language through multimodal prompting (text + image) and give insights into their use in psycholinguistic research and education while raising important questions about the appropriateness of LLM-generated language in child-directed educational tools.
☆ MGT-Prism: Enhancing Domain Generalization for Machine-Generated Text Detection via Spectral Alignment
Large Language Models have shown growing ability to generate fluent and coherent texts that are highly similar to the writing style of humans. Current detectors for Machine-Generated Text (MGT) perform well when they are trained and tested in the same domain but generalize poorly to unseen domains, due to domain shift between data from different sources. In this work, we propose MGT-Prism, an MGT detection method from the perspective of the frequency domain for better domain generalization. Our key insight stems from analyzing text representations in the frequency domain, where we observe consistent spectral patterns across diverse domains, while significant discrepancies in magnitude emerge between MGT and human-written texts (HWTs). The observation initiates the design of a low frequency domain filtering module for filtering out the document-level features that are sensitive to domain shift, and a dynamic spectrum alignment strategy to extract the task-specific and domain-invariant features for improving the detector's performance in domain generalization. Extensive experiments demonstrate that MGT-Prism outperforms state-of-the-art baselines by an average of 0.90% in accuracy and 0.92% in F1 score on 11 test datasets across three domain-generalization scenarios.
☆ Sycophancy under Pressure: Evaluating and Mitigating Sycophantic Bias via Adversarial Dialogues in Scientific QA
Large language models (LLMs), while increasingly used in domains requiring factual rigor, often display a troubling behavior: sycophancy, the tendency to align with user beliefs regardless of correctness. This tendency is reinforced by preference-based alignment techniques that optimize for user satisfaction but can undermine truthfulness. While relatively benign in casual dialogue, sycophancy poses serious risks in high-stakes settings such as scientific question answering (QA), where model outputs may shape collaborative reasoning, decision-making, and knowledge formation. Despite its importance, this phenomenon remains underexamined in factual QA contexts. We address this gap by introducing a unified evaluation framework to quantify the impact of sycophantic context on model behavior in scientific QA, measuring how much user-imposed social pressure distorts model outputs. The framework incorporates adversarial prompting setups and targeted metrics, such as misleading resistance and sycophancy resistance, that capture a model's ability to maintain factual consistency under misleading cues. Systematic evaluations across open-source and proprietary models reveal pervasive sycophantic tendencies, driven more by alignment strategy than by model size. To mitigate this issue, we propose Pressure-Tune, a lightweight post-training method that fine-tunes models on synthetic adversarial dialogues paired with chain-of-thought rationales. These rationales reject user misinformation while reinforcing factual commitments. Experiments on challenging scientific QA benchmarks show that Pressure-Tune significantly enhances sycophancy resistance without compromising accuracy or responsiveness to valid feedback, offering a practical pathway toward more truthful and principled model behavior.
☆ EEG-MedRAG: Enhancing EEG-based Clinical Decision-Making via Hierarchical Hypergraph Retrieval-Augmented Generation
With the widespread application of electroencephalography (EEG) in neuroscience and clinical practice, efficiently retrieving and semantically interpreting large-scale, multi-source, heterogeneous EEG data has become a pressing challenge. We propose EEG-MedRAG, a three-layer hypergraph-based retrieval-augmented generation framework that unifies EEG domain knowledge, individual patient cases, and a large-scale repository into a traversable n-ary relational hypergraph, enabling joint semantic-temporal retrieval and causal-chain diagnostic generation. Concurrently, we introduce the first cross-disease, cross-role EEG clinical QA benchmark, spanning seven disorders and five authentic clinical perspectives. This benchmark allows systematic evaluation of disease-agnostic generalization and role-aware contextual understanding. Experiments show that EEG-MedRAG significantly outperforms TimeRAG and HyperGraphRAG in answer accuracy and retrieval, highlighting its strong potential for real-world clinical decision support. Our data and code are publicly available at https://github.com/yi9206413-boop/EEG-MedRAG.
☆ Prediction is not Explanation: Revisiting the Explanatory Capacity of Mapping Embeddings ECAI 2025
Understanding what knowledge is implicitly encoded in deep learning models is essential for improving the interpretability of AI systems. This paper examines common methods to explain the knowledge encoded in word embeddings, which are core elements of large language models (LLMs). These methods typically involve mapping embeddings onto collections of human-interpretable semantic features, known as feature norms. Prior work assumes that accurately predicting these semantic features from the word embeddings implies that the embeddings contain the corresponding knowledge. We challenge this assumption by demonstrating that prediction accuracy alone does not reliably indicate genuine feature-based interpretability. We show that these methods can successfully predict even random information, concluding that the results are predominantly determined by an algorithmic upper bound rather than meaningful semantic representation in the word embeddings. Consequently, comparisons between datasets based solely on prediction performance do not reliably indicate which dataset is better captured by the word embeddings. Our analysis illustrates that such mappings primarily reflect geometric similarity within vector spaces rather than indicating the genuine emergence of semantic properties.
comment: 10 pages, 6 Figures. Published at ECAI 2025 in a version without the Appendix
☆ Generics and Default Reasoning in Large Language Models
This paper evaluates the capabilities of 28 large language models (LLMs) to reason with 20 defeasible reasoning patterns involving generic generalizations (e.g., 'Birds fly', 'Ravens are black') central to non-monotonic logic. Generics are of special interest to linguists, philosophers, logicians, and cognitive scientists because of their complex exception-permitting behaviour and their centrality to default reasoning, cognition, and concept acquisition. We find that while several frontier models handle many default reasoning problems well, performance varies widely across models and prompting styles. Few-shot prompting modestly improves performance for some models, but chain-of-thought (CoT) prompting often leads to serious performance degradation (mean accuracy drop -11.14%, SD 15.74% in models performing above 75% accuracy in zero-shot condition, temperature 0). Most models either struggle to distinguish between defeasible and deductive inference or misinterpret generics as universal statements. These findings underscore both the promise and limits of current LLMs for default reasoning.
comment: 33 pages, 26 figures
☆ ViExam: Are Vision Language Models Better than Humans on Vietnamese Multimodal Exam Questions?
Vision language models (VLMs) demonstrate remarkable capabilities on English multimodal tasks, but their performance on low-resource languages with genuinely multimodal educational content remains largely unexplored. In this work, we test how VLMs perform on Vietnamese educational assessments, investigating whether VLMs trained predominantly on English data can handle real-world cross-lingual multimodal reasoning. Our work presents the first comprehensive evaluation of VLM capabilities on multimodal Vietnamese exams through proposing ViExam, a benchmark containing 2,548 multimodal questions. We find that state-of-the-art VLMs achieve only 57.74% while open-source models achieve 27.70% mean accuracy across 7 academic domains, including Mathematics, Physics, Chemistry, Biology, Geography, Driving Test, and IQ Test. Most VLMs underperform average human test-takers (66.54%), with only the thinking VLM o3 (74.07%) exceeding human average performance, yet still falling substantially short of human best performance (99.60%). Cross-lingual prompting with English instructions while maintaining Vietnamese content fails to improve performance, decreasing accuracy by 1 percentage point for SOTA VLMs. Human-in-the-loop collaboration can partially improve VLM performance by 5 percentage points. Code and data are available at: https://vi-exam.github.io.
☆ Input Time Scaling
Current Large Language Models (LLMs) are usually post-trained on large-scale carefully curated datasets (data & training scaling) and doing reasoning in test time (inference time scaling). In this work, we present a new scaling paradigm, Input Time Scaling, to complement previous scaling methods by putting resources on queries (input time). During training and testing, we combine meta-knowledge from LLMs to refine inputs with different strategies. We also find a new phenomenon, training-testing co-design there. We need to apply query strategies during both training and testing. Only applying strategies on training or testing would seriously degrade the performance. We are also surprised to find that seemingly low data quality datasets can gain high performance. Adding irrelevant information to the queries, randomly selecting examples from a minimally filtered dataset, can even perform the best. These findings contradict the widely held inductive bias, "garbage in, garbage out". Curating datasets with seemingly high-quality data can even potentially limit the performance ceiling. In addition, models trained on more data with similar quality (15k VS 1k) perform worse, simple dataset size scaling should also be carefully inspected. The good news is that our findings are compatible with the Less is More phenomenon. A small set of examples is enough to evoke high-level reasoning ability. With experiments on models trained on Qwen2.5-32B-Instruct, we are able to reach SOTA performance among 32B models on AIME24(76.7%) and AIME25(76.7%) pass@1. We can further achieve AIME24(76.7%) and AIME25(80%) with a majority vote of three models. Starting from DeepSeek-R1-Distill-Qwen-32B, the best result would be 86.7% on AIME24 and 76.7% on AIME25. To facilitate reproducibility and further research, we are working on open-source our datasets, data pipelines, evaluation results, and checkpoints.
☆ CRISP: Persistent Concept Unlearning via Sparse Autoencoders
As large language models (LLMs) are increasingly deployed in real-world applications, the need to selectively remove unwanted knowledge while preserving model utility has become paramount. Recent work has explored sparse autoencoders (SAEs) to perform precise interventions on monosemantic features. However, most SAE-based methods operate at inference time, which does not create persistent changes in the model's parameters. Such interventions can be bypassed or reversed by malicious actors with parameter access. We introduce CRISP, a parameter-efficient method for persistent concept unlearning using SAEs. CRISP automatically identifies salient SAE features across multiple layers and suppresses their activations. We experiment with two LLMs and show that our method outperforms prior approaches on safety-critical unlearning tasks from the WMDP benchmark, successfully removing harmful knowledge while preserving general and in-domain capabilities. Feature-level analysis reveals that CRISP achieves semantically coherent separation between target and benign concepts, allowing precise suppression of the target features.
comment: 18 pages, 5 figures
☆ AdaDocVQA: Adaptive Framework for Long Document Visual Question Answering in Low-Resource Settings
Document Visual Question Answering (Document VQA) faces significant challenges when processing long documents in low-resource environments due to context limitations and insufficient training data. This paper presents AdaDocVQA, a unified adaptive framework addressing these challenges through three core innovations: a hybrid text retrieval architecture for effective document segmentation, an intelligent data augmentation pipeline that automatically generates high-quality reasoning question-answer pairs with multi-level verification, and adaptive ensemble inference with dynamic configuration generation and early stopping mechanisms. Experiments on Japanese document VQA benchmarks demonstrate substantial improvements with 83.04\% accuracy on Yes/No questions, 52.66\% on factual questions, and 44.12\% on numerical questions in JDocQA, and 59\% accuracy on LAVA dataset. Ablation studies confirm meaningful contributions from each component, and our framework establishes new state-of-the-art results for Japanese document VQA while providing a scalable foundation for other low-resource languages and specialized domains. Our code available at: https://github.com/Haoxuanli-Thu/AdaDocVQA.
☆ Who Gets the Mic? Investigating Gender Bias in the Speaker Assignment of a Speech-LLM
Similar to text-based Large Language Models (LLMs), Speech-LLMs exhibit emergent abilities and context awareness. However, whether these similarities extend to gender bias remains an open question. This study proposes a methodology leveraging speaker assignment as an analytic tool for bias investigation. Unlike text-based models, which encode gendered associations implicitly, Speech-LLMs must produce a gendered voice, making speaker selection an explicit bias cue. We evaluate Bark, a Text-to-Speech (TTS) model, analyzing its default speaker assignments for textual prompts. If Bark's speaker selection systematically aligns with gendered associations, it may reveal patterns in its training data or model design. To test this, we construct two datasets: (i) Professions, containing gender-stereotyped occupations, and (ii) Gender-Colored Words, featuring gendered connotations. While Bark does not exhibit systematic bias, it demonstrates gender awareness and has some gender inclinations.
☆ A Comparative Study of Decoding Strategies in Medical Text Generation
Large Language Models (LLMs) rely on various decoding strategies to generate text, and these choices can significantly affect output quality. In healthcare, where accuracy is critical, the impact of decoding strategies remains underexplored. We investigate this effect in five open-ended medical tasks, including translation, summarization, question answering, dialogue, and image captioning, evaluating 11 decoding strategies with medically specialized and general-purpose LLMs of different sizes. Our results show that deterministic strategies generally outperform stochastic ones: beam search achieves the highest scores, while {\eta} and top-k sampling perform worst. Slower decoding methods tend to yield better quality. Larger models achieve higher scores overall but have longer inference times and are no more robust to decoding. Surprisingly, while medical LLMs outperform general ones in two of the five tasks, statistical analysis shows no overall performance advantage and reveals greater sensitivity to decoding choice. We further compare multiple evaluation metrics and find that correlations vary by task, with MAUVE showing weak agreement with BERTScore and ROUGE, as well as greater sensitivity to the decoding strategy. These results highlight the need for careful selection of decoding methods in medical applications, as their influence can sometimes exceed that of model choice.
☆ Compressed Models are NOT Trust-equivalent to Their Large Counterparts
Large Deep Learning models are often compressed before being deployed in a resource-constrained environment. Can we trust the prediction of compressed models just as we trust the prediction of the original large model? Existing work has keenly studied the effect of compression on accuracy and related performance measures. However, performance parity does not guarantee trust-equivalence. We propose a two-dimensional framework for trust-equivalence evaluation. First, interpretability alignment measures whether the models base their predictions on the same input features. We use LIME and SHAP tests to measure the interpretability alignment. Second, calibration similarity measures whether the models exhibit comparable reliability in their predicted probabilities. It is assessed via ECE, MCE, Brier Score, and reliability diagrams. We conducted experiments using BERT-base as the large model and its multiple compressed variants. We focused on two text classification tasks: natural language inference and paraphrase identification. Our results reveal low interpretability alignment and significant mismatch in calibration similarity. It happens even when the accuracies are nearly identical between models. These findings show that compressed models are not trust-equivalent to their large counterparts. Deploying compressed models as a drop-in replacement for large models requires careful assessment, going beyond performance parity.
☆ MATA (māta): Mindful Assessment of the Telugu Abilities of Large Language Models
In this paper, we introduce MATA, a novel evaluation dataset to assess the ability of Large Language Models (LLMs) in Telugu language, comprising 729 carefully curated multiple-choice and open-ended questions that span diverse linguistic dimensions. We evaluate 11 open-weight and closed-source LLMs on our dataset and present a fine-grained analysis of their performance. Further, we empirically show how LLMs rely on superficial heuristics such as answer position and distractor patterns for multiple-choice questions. Finally, we also compare LLM-as-a-judge evaluation with human evaluation for open-ended questions and draw some conclusions on its reliability in a low-resource language. We argue that such fine-grained evaluation is essential for understanding model limitations and can inform the development of more linguistically capable LLMs, while also serving as a foundation for future research in Telugu NLP.
comment: Pre-print
☆ Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation
Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification.
comment: 7 pages, 6 figures, 2 tables. Code: https://github.com/HasanBGIt/Saudi-Dialect-ALLaM . Dataset and trained weights/adapters are not released. Primary category: cs.CL
☆ ProMed: Shapley Information Gain Guided Reinforcement Learning for Proactive Medical LLMs
Interactive medical questioning is essential in real-world clinical consultations, where physicians must actively gather information from patients. While medical Large Language Models (LLMs) have shown impressive capabilities in static medical question answering, they predominantly operate under a reactive paradigm: generating answers directly without seeking additional information, which risks incorrect diagnoses in such interactive settings. To address this limitation, we propose ProMed, a reinforcement learning (RL) framework that transitions medical LLMs toward a proactive paradigm, equipping them with the ability to ask clinically valuable questions before decision-making. At the core of ProMed is the Shapley Information Gain (SIG) reward, which quantifies the clinical utility of each question by combining the amount of newly acquired information with its contextual importance, estimated via Shapley values. We integrate SIG into a two-stage training pipeline: (1) SIG-Guided Model Initialization uses Monte Carlo Tree Search (MCTS) to construct high-reward interaction trajectories to supervise the model, and (2) SIG-Augmented Policy Optimization, which integrates SIG and enhances RL with a novel SIG-guided Reward Distribution Mechanism that assigns higher rewards to informative questions for targeted optimization. Extensive experiments on two newly curated partial-information medical benchmarks demonstrate that ProMed significantly outperforms state-of-the-art methods by an average of 6.29% and delivers a 54.45% gain over the reactive paradigm, while also generalizing robustly to out-of-domain cases.
☆ LLM-Enhanced Linear Autoencoders for Recommendation CIKM 2025
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
☆ Structured Prompting and Multi-Agent Knowledge Distillation for Traffic Video Interpretation and Risk Inference
Comprehensive highway scene understanding and robust traffic risk inference are vital for advancing Intelligent Transportation Systems (ITS) and autonomous driving. Traditional approaches often struggle with scalability and generalization, particularly under the complex and dynamic conditions of real-world environments. To address these challenges, we introduce a novel structured prompting and knowledge distillation framework that enables automatic generation of high-quality traffic scene annotations and contextual risk assessments. Our framework orchestrates two large Vision-Language Models (VLMs): GPT-4o and o3-mini, using a structured Chain-of-Thought (CoT) strategy to produce rich, multi-perspective outputs. These outputs serve as knowledge-enriched pseudo-annotations for supervised fine-tuning of a much smaller student VLM. The resulting compact 3B-scale model, named VISTA (Vision for Intelligent Scene and Traffic Analysis), is capable of understanding low-resolution traffic videos and generating semantically faithful, risk-aware captions. Despite its significantly reduced parameter count, VISTA achieves strong performance across established captioning metrics (BLEU-4, METEOR, ROUGE-L, and CIDEr) when benchmarked against its teacher models. This demonstrates that effective knowledge distillation and structured multi-agent supervision can empower lightweight VLMs to capture complex reasoning capabilities. The compact architecture of VISTA facilitates efficient deployment on edge devices, enabling real-time risk monitoring without requiring extensive infrastructure upgrades.
comment: 16 pages, 10 figures, 1 table
☆ ALIGN: Word Association Learning for Cross-Cultural Generalization in Large Language Models
As large language models (LLMs) increasingly mediate cross-cultural communication, their behavior still reflects the distributional bias of the languages and viewpoints that are over-represented in their pre-training corpora. Yet, it remains a challenge to model and align culture due to limited cultural knowledge and a lack of exploration into effective learning approaches. We introduce a cost-efficient, cognitively grounded remedy: parameter-efficient fine-tuning on native speakers' free word-association norms, which encode implicit cultural schemas. Leveraging English-US and Mandarin associations from the Small-World-of-Words project, we adapt Llama-3.1-8B and Qwen-2.5-7B via supervised fine-tuning (SFT) and PPO-based preference optimization. SFT boosts held-out association Precision at 5 by 16-20% in English and 43-165% in Mandarin, lifts median concreteness by +0.20, and attains human-level valence and arousal. These lexical gains transfer: on World-Values-Survey questions, fine-tuned models shift answer distributions toward the target culture, and on a 50-item high-tension subset, Qwen's Chinese-aligned responses double while Llama's US bias drops by one-third. Our 7-8B models rival or beat vanilla 70B baselines, showing that a few million culture-grounded associations can instill value alignment without costly retraining. Our work highlights both the promise and the need for future research grounded in human cognition in improving cultural alignment in AI models.
☆ Zero-knowledge LLM hallucination detection and mitigation through fine-grained cross-model consistency
Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, but they remain susceptible to hallucinations--generating content that appears plausible but contains factual inaccuracies. We present Finch-Zk, a black-box framework that leverages FINe-grained Cross-model consistency to detect and mitigate Hallucinations in LLM outputs without requiring external knowledge sources. Finch-Zk introduces two key innovations: 1) a cross-model consistency checking strategy that reveals fine-grained inaccuracies by comparing responses generated by diverse models from semantically-equivalent prompts, and 2) a targeted mitigation technique that applies precise corrections to problematic segments while preserving accurate content. Experiments on the FELM dataset show Finch-Zk improves hallucination detection F1 scores by 6-39\% compared to existing approaches. For mitigation, Finch-Zk achieves 7-8 absolute percentage points improvement in answer accuracy on the GPQA-diamond dataset when applied to state-of-the-art models like Llama 4 Maverick and Claude 4 Sonnet. Extensive evaluation across multiple models demonstrates that Finch-Zk provides a practical, deployment-ready safeguard for enhancing factual reliability in production LLM systems.
☆ A Joint Multitask Model for Morpho-Syntactic Parsing
We present a joint multitask model for the UniDive 2025 Morpho-Syntactic Parsing shared task, where systems predict both morphological and syntactic analyses following novel UD annotation scheme. Our system uses a shared XLM-RoBERTa encoder with three specialized decoders for content word identification, dependency parsing, and morphosyntactic feature prediction. Our model achieves the best overall performance on the shared task's leaderboard covering nine typologically diverse languages, with an average MSLAS score of 78.7 percent, LAS of 80.1 percent, and Feats F1 of 90.3 percent. Our ablation studies show that matching the task's gold tokenization and content word identification are crucial to model performance. Error analysis reveals that our model struggles with core grammatical cases (particularly Nom-Acc) and nominal features across languages.
comment: 8 pages, SyntaxFest, UniDive 2025 Morpho-Syntactic Parsing shared task
☆ GLASS: Test-Time Acceleration for LLMs via Global-Local Neural Importance Aggregation
Deploying Large Language Models (LLMs) on edge hardware demands aggressive, prompt-aware dynamic pruning to reduce computation without degrading quality. Static or predictor-based schemes either lock in a single sparsity pattern or incur extra runtime overhead, and recent zero-shot methods that rely on statistics from a single prompt fail on short prompt and/or long generation scenarios. We introduce A/I-GLASS: Activation- and Impact-based Global-Local neural importance Aggregation for feed-forward network SparSification, two training-free methods that dynamically select FFN units using a rank-aggregation of prompt local and model-intrinsic global neuron statistics. Empirical results across multiple LLMs and benchmarks demonstrate that GLASS significantly outperforms prior training-free methods, particularly in challenging long-form generation scenarios, without relying on auxiliary predictors or adding any inference overhead.
☆ MultiFuzz: A Dense Retrieval-based Multi-Agent System for Network Protocol Fuzzing
Traditional protocol fuzzing techniques, such as those employed by AFL-based systems, often lack effectiveness due to a limited semantic understanding of complex protocol grammars and rigid seed mutation strategies. Recent works, such as ChatAFL, have integrated Large Language Models (LLMs) to guide protocol fuzzing and address these limitations, pushing protocol fuzzers to wider exploration of the protocol state space. But ChatAFL still faces issues like unreliable output, LLM hallucinations, and assumptions of LLM knowledge about protocol specifications. This paper introduces MultiFuzz, a novel dense retrieval-based multi-agent system designed to overcome these limitations by integrating semantic-aware context retrieval, specialized agents, and structured tool-assisted reasoning. MultiFuzz utilizes agentic chunks of protocol documentation (RFC Documents) to build embeddings in a vector database for a retrieval-augmented generation (RAG) pipeline, enabling agents to generate more reliable and structured outputs, enhancing the fuzzer in mutating protocol messages with enhanced state coverage and adherence to syntactic constraints. The framework decomposes the fuzzing process into modular groups of agents that collaborate through chain-of-thought reasoning to dynamically adapt fuzzing strategies based on the retrieved contextual knowledge. Experimental evaluations on the Real-Time Streaming Protocol (RTSP) demonstrate that MultiFuzz significantly improves branch coverage and explores deeper protocol states and transitions over state-of-the-art (SOTA) fuzzers such as NSFuzz, AFLNet, and ChatAFL. By combining dense retrieval, agentic coordination, and language model reasoning, MultiFuzz establishes a new paradigm in autonomous protocol fuzzing, offering a scalable and extensible foundation for future research in intelligent agentic-based fuzzing systems.
☆ Tokens with Meaning: A Hybrid Tokenization Approach for NLP
Tokenization plays a pivotal role in natural language processing (NLP), shaping how text is segmented and interpreted by language models. While subword methods such as Byte Pair Encoding (BPE) and WordPiece have been effective, they often struggle with morphologically rich and agglutinative languages because they rely on frequency rather than linguistic structure. We introduce a hybrid tokenization framework that combines rule-based morphological analysis with statistical subword segmentation. The method uses phonological normalization, root-affix dictionaries, and a novel algorithm that balances morpheme preservation with vocabulary efficiency. It assigns shared identifiers to phonologically variant affixes (e.g., -ler and -lar) and altered root forms (e.g., kitap vs. kitab{\i}), reducing redundancy while maintaining semantic integrity. Special tokens are added for whitespace and case, including an UPPERCASE marker to avoid vocabulary inflation from capitalization. BPE is integrated for out-of-vocabulary coverage without harming morphological coherence. On the TR-MMLU benchmark, the tokenizer achieves the highest Turkish Token Percentage (90.29\%) and Pure Token Percentage (85.8\%). Comparisons with tokenizers from LLaMA, Gemma, and GPT show more linguistically meaningful and coherent tokens. Although demonstrated on Turkish, the approach is language-independent and adaptable to other languages, offering a practical path toward more interpretable and effective multilingual NLP systems.
☆ Measuring LLM Code Generation Stability via Structural Entropy
Assessing the stability of code generation from large language models (LLMs) is essential for judging their reliability in real-world development. We extend prior "structural-entropy concepts" to the program domain by pairing entropy with abstract syntax tree (AST) analysis. For any fixed prompt, we collect the multiset of depth-bounded subtrees of AST in each generated program and treat their relative frequencies as a probability distribution. We then measure stability in two complementary ways: (i) Jensen-Shannon divergence, a symmetric, bounded indicator of structural overlap, and (ii) a Structural Cross-Entropy ratio that highlights missing high-probability patterns. Both metrics admit structural-only and token-aware variants, enabling separate views on control-flow shape and identifier-level variability. Unlike pass@k, BLEU, or CodeBLEU, our metrics are reference-free, language-agnostic, and execution-independent. We benchmark several leading LLMs on standard code generation tasks, demonstrating that AST-driven structural entropy reveals nuances in model consistency and robustness. The method runs in O(n,d) time with no external tests, providing a lightweight addition to the code-generation evaluation toolkit.
comment: ASE-NIER
☆ GRILE: A Benchmark for Grammar Reasoning and Explanation in Romanian LLMs
LLMs (Large language models) have revolutionized NLP (Natural Language Processing), yet their pedagogical value for low-resource languages remains unclear. We present GRILE (Grammar Romanian Inference and Language Explanations) , the first open benchmark of 1,151 multiple-choice questions harvested from Romanian high-stakes exams (National Evaluation, Baccalaureate, university admissions). GRILE enables us to probe two complementary abilities of seven state-of-the-art multilingual and Romanian-specific LLMs: (i) selecting the correct answer, and (ii) producing linguistically accurate explanations. While Gemini 2.5 Pro reaches 83% accuracy, most open-weight models stay below 65%, and 48% of their explanations contain factual or pedagogical flaws according to expert review. A detailed error analysis pinpoints systematic weaknesses in morphology and in applying the latest DOOM3 orthographic norms. All data, code and a public web demo are released to catalyze future research. Our findings expose open challenges for trustworthy educational NLP in low-resource settings and establish GRILE as a new test-bed for controllable explanation generation and evaluation.
comment: Accepted as long paper @RANLP2025
☆ Disentangling concept semantics via multilingual averaging in Sparse Autoencoders
Connecting LLMs with formal knowledge representation and reasoning is a promising approach to address their shortcomings. Embeddings and sparse autoencoders are widely used to represent textual content, but the semantics are entangled with syntactic and language-specific information. We propose a method that isolates concept semantics in Large Langue Models by averaging concept activations derived via Sparse Autoencoders. We create English text representations from OWL ontology classes, translate the English into French and Chinese and then pass these texts as prompts to the Gemma 2B LLM. Using the open source Gemma Scope suite of Sparse Autoencoders, we obtain concept activations for each class and language version. We average the different language activations to derive a conceptual average. We then correlate the conceptual averages with a ground truth mapping between ontology classes. Our results give a strong indication that the conceptual average aligns to the true relationship between classes when compared with a single language by itself. The result hints at a new technique which enables mechanistic interpretation of internal network states with higher accuracy.
☆ Let's Use ChatGPT To Write Our Paper! Benchmarking LLMs To Write the Introduction of a Research Paper
As researchers increasingly adopt LLMs as writing assistants, generating high-quality research paper introductions remains both challenging and essential. We introduce Scientific Introduction Generation (SciIG), a task that evaluates LLMs' ability to produce coherent introductions from titles, abstracts, and related works. Curating new datasets from NAACL 2025 and ICLR 2025 papers, we assess five state-of-the-art models, including both open-source (DeepSeek-v3, Gemma-3-12B, LLaMA 4-Maverick, MistralAI Small 3.1) and closed-source GPT-4o systems, across multiple dimensions: lexical overlap, semantic similarity, content coverage, faithfulness, consistency, citation correctness, and narrative quality. Our comprehensive framework combines automated metrics with LLM-as-a-judge evaluations. Results demonstrate LLaMA-4 Maverick's superior performance on most metrics, particularly in semantic similarity and faithfulness. Moreover, three-shot prompting consistently outperforms fewer-shot approaches. These findings provide practical insights into developing effective research writing assistants and set realistic expectations for LLM-assisted academic writing. To foster reproducibility and future research, we will publicly release all code and datasets.
comment: 20 pages, 15 figures
☆ Two Birds with One Stone: Multi-Task Detection and Attribution of LLM-Generated Text
Large Language Models (LLMs), such as GPT-4 and Llama, have demonstrated remarkable abilities in generating natural language. However, they also pose security and integrity challenges. Existing countermeasures primarily focus on distinguishing AI-generated content from human-written text, with most solutions tailored for English. Meanwhile, authorship attribution--determining which specific LLM produced a given text--has received comparatively little attention despite its importance in forensic analysis. In this paper, we present DA-MTL, a multi-task learning framework that simultaneously addresses both text detection and authorship attribution. We evaluate DA-MTL on nine datasets and four backbone models, demonstrating its strong performance across multiple languages and LLM sources. Our framework captures each task's unique characteristics and shares insights between them, which boosts performance in both tasks. Additionally, we conduct a thorough analysis of cross-modal and cross-lingual patterns and assess the framework's robustness against adversarial obfuscation techniques. Our findings offer valuable insights into LLM behavior and the generalization of both detection and authorship attribution.
comment: Securecomm 2025
☆ Comparing energy consumption and accuracy in text classification inference
The increasing deployment of large language models (LLMs) in natural language processing (NLP) tasks raises concerns about energy efficiency and sustainability. While prior research has largely focused on energy consumption during model training, the inference phase has received comparatively less attention. This study systematically evaluates the trade-offs between model accuracy and energy consumption in text classification inference across various model architectures and hardware configurations. Our empirical analysis shows that the best-performing model in terms of accuracy can also be energy-efficient, while larger LLMs tend to consume significantly more energy with lower classification accuracy. We observe substantial variability in inference energy consumption ($<$mWh to $>$kWh), influenced by model type, model size, and hardware specifications. Additionally, we find a strong correlation between inference energy consumption and model runtime, indicating that execution time can serve as a practical proxy for energy usage in settings where direct measurement is not feasible. These findings have implications for sustainable AI development, providing actionable insights for researchers, industry practitioners, and policymakers seeking to balance performance and resource efficiency in NLP applications.
comment: Key results in Figure 1, submitted to Nature Communications, 25 pages
☆ DPad: Efficient Diffusion Language Models with Suffix Dropout
Diffusion-based Large Language Models (dLLMs) parallelize text generation by framing decoding as a denoising process, but suffer from high computational overhead since they predict all future suffix tokens at each step while retaining only a small fraction. We propose Diffusion Scratchpad (DPad), a training-free method that restricts attention to a small set of nearby suffix tokens, preserving fidelity while eliminating redundancy. DPad integrates two strategies: (i) a sliding window, which maintains a fixed-length suffix window, and (ii) distance-decay dropout, which deterministically removes distant suffix tokens before attention computation. This simple design is compatible with existing optimizations such as prefix caching and can be implemented with only a few lines of code. Comprehensive evaluations across multiple benchmarks on LLaDA-1.5 and Dream models demonstrate that DPad delivers up to $\mathbf{61.4\times}$ speedup over vanilla dLLMs while maintaining comparable accuracy, highlighting its potential for efficient and scalable long-sequence inference. Our code is available at https://github.com/Crys-Chen/DPad.
☆ MMReview: A Multidisciplinary and Multimodal Benchmark for LLM-Based Peer Review Automation
With the rapid growth of academic publications, peer review has become an essential yet time-consuming responsibility within the research community. Large Language Models (LLMs) have increasingly been adopted to assist in the generation of review comments; however, current LLM-based review tasks lack a unified evaluation benchmark to rigorously assess the models' ability to produce comprehensive, accurate, and human-aligned assessments, particularly in scenarios involving multimodal content such as figures and tables. To address this gap, we propose \textbf{MMReview}, a comprehensive benchmark that spans multiple disciplines and modalities. MMReview includes multimodal content and expert-written review comments for 240 papers across 17 research domains within four major academic disciplines: Artificial Intelligence, Natural Sciences, Engineering Sciences, and Social Sciences. We design a total of 13 tasks grouped into four core categories, aimed at evaluating the performance of LLMs and Multimodal LLMs (MLLMs) in step-wise review generation, outcome formulation, alignment with human preferences, and robustness to adversarial input manipulation. Extensive experiments conducted on 16 open-source models and 5 advanced closed-source models demonstrate the thoroughness of the benchmark. We envision MMReview as a critical step toward establishing a standardized foundation for the development of automated peer review systems.
comment: Work in progress
♻ ☆ Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, including admission reasons, major in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization. Our results reveal that while the LLMs (e.g., Qwen2.5 and DeepSeek-v2) perform quite well in capturing admission reasons and hospitalization events, they are generally less consistent when it comes to identifying follow-up recommendations, highlighting broader challenges in leveraging LLMs for comprehensive summarization.
♻ ☆ Soft Reasoning: Navigating Solution Spaces in Large Language Models through Controlled Embedding Exploration ICML 2025
Large Language Models (LLMs) struggle with complex reasoning due to limited diversity and inefficient search. We propose Soft Reasoning, an embedding-based search framework that optimises the embedding of the first token to guide generation. It combines (1) embedding perturbation for controlled exploration and (2) Bayesian optimisation to refine embeddings via a verifier-guided objective, balancing exploration and exploitation. This approach improves reasoning accuracy and coherence while avoiding reliance on heuristic search. Experiments demonstrate superior correctness with minimal computation, making it a scalable, model-agnostic solution. The code is released at https://github.com/alickzhu/Soft-Reasoning.
comment: Accepted as a Spotlight at ICML 2025
♻ ☆ PlantDeBERTa: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantDeBERTa, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantDeBERTa is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantDeBERTa to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantDeBERTa exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields.By providing a scalable and reproducible framework for high-resolution entity recognition, PlantDeBERTa bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
♻ ☆ GoAI: Enhancing AI Students' Learning Paths and Idea Generation via Graph of AI Ideas
With the rapid advancement of artificial intelligence technology, AI students are confronted with a significant "information-to-innovation" gap: they must navigate through the rapidly expanding body of literature, trace the development of a specific research field, and synthesize various techniques into feasible innovative concepts. An additional critical step for students is to identify the necessary prerequisite knowledge and learning paths. Although many approaches based on large language models (LLMs) can summarize the content of papers and trace the development of a field through citations, these methods often overlook the prerequisite knowledge involved in the papers and the rich semantic information embedded in the citation relationships between papers. Such information reveals how methods are interrelated, built upon, extended, or challenged. To address these limitations, we propose GoAI, a tool for constructing educational knowledge graphs from AI research papers that leverages these graphs to plan personalized learning paths and support creative ideation. The nodes in the knowledge graph we have built include papers and the prerequisite knowledge, such as concepts, skills, and tools, that they involve; the edges record the semantic information of citations. When a student queries a specific paper, a beam search-based path search method can trace the current development trends of the field from the queried paper and plan a learning path toward cutting-edge objectives. The integrated Idea Studio guides students to clarify problem statements, compare alternative designs, and provide formative feedback on novelty, clarity, feasibility, and alignment with learning objectives.
comment: Work in progress
♻ ☆ "Haet Bhasha aur Diskrimineshun": Phonetic Perturbations in Code-Mixed Hinglish to Red-Team LLMs
Recently released LLMs have strong multilingual \& multimodal capabilities. Model vulnerabilities are exposed using audits and red-teaming efforts. Existing efforts have focused primarily on the English language; thus, models continue to be susceptible to multilingual jailbreaking strategies, especially for multimodal contexts. In this study, we introduce a novel strategy that leverages code-mixing and phonetic perturbations to jailbreak LLMs for both text and image generation tasks. We also introduce \textit{two new} jailbreak strategies that show higher effectiveness than baselines. Our work presents a method to effectively bypass safety filters in LLMs while maintaining interpretability by applying phonetic misspellings to sensitive words in code-mixed prompts. We achieve a 99\% Attack Success Rate for text generation and 78\% for image generation, with Attack Relevance Rate of 100\% for text generation and 95\% for image generation for the phonetically perturbed code-mixed prompts. Our interpretability experiments reveal that phonetic perturbations impact word tokenization, leading to jailbreak success. Our study motivates increasing the focus towards more generalizable safety alignment for multilingual multimodal models, especially in real-world settings wherein prompts can have misspelt words. \textit{\textbf{Warning: This paper contains examples of potentially harmful and offensive content.}}
♻ ☆ Atom-Searcher: Enhancing Agentic Deep Research via Fine-Grained Atomic Thought Reward
Large language models (LLMs) exhibit remarkable problem-solving abilities, but struggle with complex tasks due to static internal knowledge. Retrieval-Augmented Generation (RAG) enhances access to external information, yet remains limited in multi-hop reasoning and strategic search due to rigid workflows. Recent advancements in agentic deep research empower LLMs to autonomously reason, search, and synthesize information. However, current approaches relying on outcome-based reinforcement learning (RL) face critical issues such as conflicting gradients and reward sparsity, limiting performance gains and training efficiency. To address these, we first propose Atomic Thought, a novel LLM thinking paradigm that decomposes reasoning into fine-grained functional units. These units are supervised by Reasoning Reward Models (RRMs), which provide Atomic Thought Rewards (ATR) for fine-grained guidance. Building on this, we propose Atom-Searcher, a novel RL framework for agentic deep research that integrates Atomic Thought and ATR. Atom-Searcher uses a curriculum-inspired reward schedule, prioritizing process-level ATR early and transitioning to outcome rewards, accelerating convergence on effective reasoning paths. Experiments on seven benchmarks show consistent improvements over the state-of-the-art. Key advantages include: (1) Atom-Searcher scales computation at test-time. (2) Atomic Thought provides supervision anchors for RRMs, bridging deep research tasks and RRMs. (3) Atom-Searcher exhibits more interpretable, human-like reasoning patterns.
♻ ☆ Development of Pre-Trained Transformer-based Models for the Nepali Language
Transformer-based pre-trained language models have dominated the field of Natural Language Processing (NLP) for quite some time now. However, the Nepali language, spoken by approximately 32 million people worldwide, remains significantly underrepresented in this domain. This underrepresentation is primarily attributed to the scarcity of monolingual data corpora and limited available resources for the Nepali language. While existing efforts have predominantly concentrated on basic encoder-based models, there is a notable gap in the exploration of decoder-based architectures. To address this gap, we have collected 27.5 GB of Nepali text data, approximately 2.4x larger than any previously available Nepali language corpus. Leveraging this data, we pre-trained three different models i.e., BERT, RoBERTa, and GPT-2, exclusively for the Nepali Language. Furthermore, we performed instruction tuning and explored its potential for monolingual Nepali data, providing a foundation for future research. Our models outperformed the existing best model by 2 points on Nep-gLUE benchmark, scoring 95.60 and also outperformed existing models on text generation tasks, demonstrating improvements in both understanding and generating Nepali text.
♻ ☆ Consolidating and Developing Benchmarking Datasets for the Nepali Natural Language Understanding Tasks
The Nepali language has distinct linguistic features, especially its complex script (Devanagari script), morphology, and various dialects,which pose a unique challenge for Natural Language Understanding (NLU) tasks. While the Nepali Language Understanding Evaluation (Nep-gLUE) benchmark provides a foundation for evaluating models, it remains limited in scope, covering four tasks. This restricts their utility for comprehensive assessments of Natural Language Processing (NLP) models. To address this limitation, we introduce twelve new datasets, creating a new benchmark, the Nepali /Language Understanding Evaluation (NLUE) benchmark for evaluating the performance of models across a diverse set of Natural Language Understanding (NLU) tasks. The added tasks include Single-Sentence Classification, Similarity and Paraphrase Tasks, Natural Language Inference (NLI), and General Masked Evaluation Task (GMET). Through extensive experiments, we demonstrate that existing top models struggle with the added complexity of these tasks. We also find that the best multilingual model outperforms the best monolingual models across most tasks, highlighting the need for more robust solutions tailored to the Nepali language. This expanded benchmark sets a new standard for evaluating, comparing, and advancing models, contributing significantly to the broader goal of advancing NLP research for low-resource languages.
♻ ☆ Iterative Utility Judgment Framework via LLMs Inspired by Relevance in Philosophy
Relevance and utility are two frequently used measures to evaluate the effectiveness of an information retrieval (IR) system. Relevance emphasizes the aboutness of a result to a query, while utility refers to the result's usefulness or value to an information seeker. In Retrieval-Augmented Generation (RAG), high-utility results should be prioritized to feed to LLMs due to their limited input bandwidth. Re-examining RAG's three core components -- relevance ranking derived from retrieval models, utility judgments, and answer generation -- aligns with Schutz's philosophical system of relevances, which encompasses three types of relevance representing different levels of human cognition that enhance each other. These three RAG components also reflect three cognitive levels for LLMs in question-answering. Therefore, we propose an Iterative utiliTy judgmEnt fraMework (ITEM) to promote each step in RAG. We conducted extensive experiments on retrieval (TREC DL, WebAP), utility judgment task (GTI-NQ), and factoid question-answering (NQ) datasets. Experimental results demonstrate significant improvements of ITEM in utility judgments, ranking, and answer generation upon representative baselines.
comment: 22 pages
♻ ☆ LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration VLDB'2025
GraphRAG integrates (knowledge) graphs with large language models (LLMs) to improve reasoning accuracy and contextual relevance. Despite its promising applications and strong relevance to multiple research communities, such as databases and natural language processing, GraphRAG currently lacks modular workflow analysis, systematic solution frameworks, and insightful empirical studies. To bridge these gaps, we propose LEGO-GraphRAG, a modular framework that enables: 1) fine-grained decomposition of the GraphRAG workflow, 2) systematic classification of existing techniques and implemented GraphRAG instances, and 3) creation of new GraphRAG instances. Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets, revealing insights into balancing reasoning quality, runtime efficiency, and token or GPU cost, that are essential for building advanced GraphRAG systems.
comment: VLDB'2025 [Experiment, Analysis & Benchmark]
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR), serving as the basis for downstream tasks such as re-ranking and augmenting generation. Recently, large language models (LLMs) have demonstrated impressive semantic understanding capabilities, making them attractive to researchers focusing on dense retrieval. While LLMs, as decoder-style generative models, excel in language generation, they often fall short in modeling global information due to a lack of attention to subsequent tokens. Drawing inspiration from the classical word-based language modeling approach for IR, specifically the query likelihood (QL) model, we aim to leverage the generative strengths of LLMs through QL maximization. Rather than employing QL estimation for document ranking, we propose an auxiliary task of QL maximization to enhance the backbone for subsequent contrastive learning of the retriever. We introduce our model, LLM-QL, which incorporates two key components: Attention Block (AB) and Document Corruption (DC). AB blocks the attention of predictive tokens to the document tokens before the document's ending token, while DC corrupts a document by masking a portion of its tokens during prediction. Evaluations on the in-domain (MS MARCO) and out-of-domain dataset (BEIR) indicate LLM-QL's superiority over other LLM-based retrievers. Furthermore, comprehensive analyses also validate the efficacy of LLM-QL and its components.
comment: 12 pages, 3 figures
♻ ☆ Harnessing Structured Knowledge: A Concept Map-Based Approach for High-Quality Multiple Choice Question Generation with Effective Distractors ECAI 2025
Generating high-quality MCQs, especially those targeting diverse cognitive levels and incorporating common misconceptions into distractor design, is time-consuming and expertise-intensive, making manual creation impractical at scale. Current automated approaches typically generate questions at lower cognitive levels and fail to incorporate domain-specific misconceptions. This paper presents a hierarchical concept map-based framework that provides structured knowledge to guide LLMs in generating MCQs with distractors. We chose high-school physics as our test domain and began by developing a hierarchical concept map covering major Physics topics and their interconnections with an efficient database design. Next, through an automated pipeline, topic-relevant sections of these concept maps are retrieved to serve as a structured context for the LLM to generate questions and distractors that specifically target common misconceptions. Lastly, an automated validation is completed to ensure that the generated MCQs meet the requirements provided. We evaluate our framework against two baseline approaches: a base LLM and a RAG-based generation. We conducted expert evaluations and student assessments of the generated MCQs. Expert evaluation shows that our method significantly outperforms the baseline approaches, achieving a success rate of 75.20% in meeting all quality criteria compared to approximately 37% for both baseline methods. Student assessment data reveal that our concept map-driven approach achieved a significantly lower guess success rate of 28.05% compared to 37.10% for the baselines, indicating a more effective assessment of conceptual understanding. The results demonstrate that our concept map-based approach enables robust assessment across cognitive levels and instant identification of conceptual gaps, facilitating faster feedback loops and targeted interventions at scale.
comment: Accepted to ECAI 2025
♻ ☆ PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. All resources, including the Python API, source code, user-friendly web interface, and demonstration video, are available at: https://eliyahabba.github.io/PromptSuite/.
comment: Eliya Habba and Noam Dahan contributed equally to this work
♻ ☆ MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph
The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.
♻ ☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ SEA-LION: Southeast Asian Languages in One Network
Recently, Large Language Models (LLMs) have dominated much of the artificial intelligence scene with their ability to process and generate natural languages. However, the majority of LLM research and development remains English-centric, leaving low-resource languages such as those in the Southeast Asian (SEA) region under-represented. To address this representation gap, we introduce Llama-SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, two cutting-edge multilingual LLMs designed for SEA languages. The SEA-LION family of LLMs supports 11 SEA languages, namely English, Chinese, Indonesian, Vietnamese, Malay, Thai, Burmese, Lao, Filipino, Tamil, and Khmer. Our work leverages large-scale multilingual continued pre-training with a comprehensive post-training regime involving multiple stages of instruction fine-tuning, alignment, and model merging. Evaluation results on multilingual benchmarks indicate that our models achieve state-of-the-art performance across LLMs supporting SEA languages. We open-source the models to benefit the wider SEA community.
comment: We released our model at https://huggingface.co/collections/aisingapore/sea-lionv3-672589a39cdadd6a5b199581
♻ ☆ MedVisionLlama: Leveraging Pre-Trained Large Language Model Layers to Enhance Medical Image Segmentation ICCV
Large Language Models (LLMs), known for their versatility in textual data, are increasingly being explored for their potential to enhance medical image segmentation, a crucial task for accurate diagnostic imaging. This study explores enhancing Vision Transformers (ViTs) for medical image segmentation by integrating pre-trained LLM transformer blocks. Our approach, which incorporates a frozen LLM transformer block into the encoder of a ViT-based model, leads to substantial improvements in segmentation performance across various medical imaging modalities. We propose a Hybrid Attention Mechanism that combines global and local feature learning with a Multi-Scale Fusion Block for aggregating features across different scales. The enhanced model shows significant performance gains, including an average Dice score increase from 0.74 to 0.79 and improvements in accuracy, precision, and the Jaccard Index. These results demonstrate the effectiveness of LLM-based transformers in refining medical image segmentation, highlighting their potential to significantly boost model accuracy and robustness. The source code and our implementation are available at: https://github.com/AS-Lab/Marthi-et-al-2025-MedVisionLlama-Pre-Trained-LLM-Layers-to-Enhance-Medical-Image-Segmentation
comment: Accepted to the CVAMD Workshop (Computer Vision for Automated Medical Diagnosis) at the 2025 IEEE/CVF International Conference on Computer Vision (ICCVW 2025)
♻ ☆ Legal$Δ$: Enhancing Legal Reasoning in LLMs via Reinforcement Learning with Chain-of-Thought Guided Information Gain
Legal Artificial Intelligence (LegalAI) has achieved notable advances in automating judicial decision-making with the support of Large Language Models (LLMs). However, existing legal LLMs still struggle to generate reliable and interpretable reasoning processes. They often default to fast-thinking behavior by producing direct answers without explicit multi-step reasoning, limiting their effectiveness in complex legal scenarios that demand rigorous justification. To address this challenge, we propose Legal$\Delta$, a reinforcement learning framework designed to enhance legal reasoning through chain-of-thought guided information gain. During training, Legal$\Delta$ employs a dual-mode input setup-comprising direct answer and reasoning-augmented modes-and maximizes the information gain between them. This encourages the model to acquire meaningful reasoning patterns rather than generating superficial or redundant explanations. Legal$\Delta$ follows a two-stage approach: (1) distilling latent reasoning capabilities from a powerful Large Reasoning Model (LRM), DeepSeek-R1, and (2) refining reasoning quality via differential comparisons, combined with a multidimensional reward mechanism that assesses both structural coherence and legal-domain specificity. Experimental results on multiple legal reasoning tasks demonstrate that Legal$\Delta$ outperforms strong baselines in both accuracy and interpretability. It consistently produces more robust and trustworthy legal judgments without relying on labeled preference data. All code and data will be released at https://github.com/NEUIR/LegalDelta.
♻ ☆ PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.
comment: 17 pages,13 figures
♻ ☆ Crossing Borders Without Crossing Boundaries: How Sociolinguistic Awareness Can Optimize User Engagement with Localized Spanish AI Models Across Hispanophone Countries
Large language models are, by definition, based on language. In an effort to underscore the critical need for regional localized models, this paper examines primary differences between variants of written Spanish across Latin America and Spain, with an in-depth sociocultural and linguistic contextualization therein. We argue that these differences effectively constitute significant gaps in the quotidian use of Spanish among dialectal groups by creating sociolinguistic dissonances, to the extent that locale-sensitive AI models would play a pivotal role in bridging these divides. In doing so, this approach informs better and more efficient localization strategies that also serve to more adequately meet inclusivity goals, while securing sustainable active daily user growth in a major low-risk investment geographic area. Therefore, implementing at least the proposed five sub variants of Spanish addresses two lines of action: to foment user trust and reliance on AI language models while also demonstrating a level of cultural, historical, and sociolinguistic awareness that reflects positively on any internationalization strategy.
♻ ☆ iTBLS: A Dataset of Interactive Conversations Over Tabular Information
This paper introduces Interactive Tables (iTBLS), a dataset of interactive conversations that focuses on natural-language manipulation of tabular information sourced from academic pre-prints on ArXiv. The iTBLS dataset consists of three types of tabular tasks -- interpretation, modification, and generation. Interpretation focuses on tabular understanding, modification focuses on manipulating tabular information, and generation focuses on the addition of new natural-language evidence. In addition, the paper presents a novel framework that reformulates tabular operations as question-answering, where an appropriate question is formulated based on the nature of interaction and the question is answered using the user request as evidence. The developed approach results in an improvement on all tasks on a sequence-to-sequence modeling baseline on iTBLS. In addition, the question-answering-based reformulation is applied to datasets from prior work for the text-to-table task where textual paragraphs are summarized into tables. The novel approach results in up to 13% improvement in Exact-Match accuracy and up to 16% improvement in BERTScores compared to the prior state-of-the-art.
comment: 15 pages, 4 figures
♻ ☆ A Study of the Framework and Real-World Applications of Language Embedding for 3D Scene Understanding
Gaussian Splatting has rapidly emerged as a transformative technique for real-time 3D scene representation, offering a highly efficient and expressive alternative to Neural Radiance Fields (NeRF). Its ability to render complex scenes with high fidelity has enabled progress across domains such as scene reconstruction, robotics, and interactive content creation. More recently, the integration of Large Language Models (LLMs) and language embeddings into Gaussian Splatting pipelines has opened new possibilities for text-conditioned generation, editing, and semantic scene understanding. Despite these advances, a comprehensive overview of this emerging intersection has been lacking. This survey presents a structured review of current research efforts that combine language guidance with 3D Gaussian Splatting, detailing theoretical foundations, integration strategies, and real-world use cases. We highlight key limitations such as computational bottlenecks, generalizability, and the scarcity of semantically annotated 3D Gaussian data and outline open challenges and future directions for advancing language-guided 3D scene understanding using Gaussian Splatting.
♻ ☆ Universal Abstraction: Harnessing Frontier Models to Structure Real-World Data at Scale
A significant fraction of real-world patient information resides in unstructured clinical text. Medical abstraction extracts and normalizes key structured attributes from free-text clinical notes, which is the prerequisite for a variety of important downstream applications, including registry curation, clinical trial operations, and real-world evidence generation. Prior medical abstraction methods typically resort to building attribute-specific models, each of which requires extensive manual effort such as rule creation or supervised label annotation for the individual attribute, thus limiting scalability. In this paper, we show that existing frontier models already possess the universal abstraction capability for scaling medical abstraction to a wide range of clinical attributes. We present UniMedAbstractor (UMA), a unifying framework for zero-shot medical abstraction with a modular, customizable prompt template and the selection of any frontier large language models. Given a new attribute for abstraction, users only need to conduct lightweight prompt adaptation in UMA to adjust the specification in natural languages. Compared to traditional methods, UMA eliminates the need for attribute-specific training labels or handcrafted rules, thus substantially reducing the development time and cost. We conducted a comprehensive evaluation of UMA in oncology using a wide range of marquee attributes representing the cancer patient journey. These include relatively simple attributes typically specified within a single clinical note (e.g. performance status), as well as complex attributes requiring sophisticated reasoning across multiple notes at various time points (e.g. tumor staging). Based on a single frontier model such as GPT-4o, UMA matched or even exceeded the performance of state-of-the-art attribute-specific methods, each of which was tailored to the individual attribute.
♻ ☆ Fact or Guesswork? Evaluating Large Language Models' Medical Knowledge with Structured One-Hop Judgments
Large language models (LLMs) have been widely adopted in various downstream task domains. However, their abilities to directly recall and apply factual medical knowledge remains under-explored. Most existing medical QA benchmarks assess complex reasoning or multi-hop inference, making it difficult to isolate LLMs' inherent medical knowledge from their reasoning capabilities. Given the high-stakes nature of medical applications, where incorrect information can have critical consequences, it is essential to evaluate the factuality of LLMs to retain medical knowledge. To address this challenge, we introduce the Medical Knowledge Judgment Dataset (MKJ), a dataset derived from the Unified Medical Language System (UMLS), a comprehensive repository of standardized biomedical vocabularies and knowledge graphs. Through a binary classification framework, MKJ evaluates LLMs' grasp of fundamental medical facts by having them assess the validity of concise, one-hop statements, enabling direct measurement of their knowledge retention capabilities. Our experiments reveal that LLMs have difficulty accurately recalling medical facts, with performances varying substantially across semantic types and showing notable weakness in uncommon medical conditions. Furthermore, LLMs show poor calibration, often being overconfident in incorrect answers. To mitigate these issues, we explore retrieval-augmented generation, demonstrating its effectiveness in improving factual accuracy and reducing uncertainty in medical decision-making.
comment: 15 pages, 11 figures
♻ ☆ ExpVG: Investigating the Design Space of Visual Grounding in Multimodal Large Language Model
Fine-grained multimodal capability in Multimodal Large Language Models (MLLMs) has emerged as a critical research direction, particularly for tackling the visual grounding (VG) problem. Despite the strong performance achieved by existing approaches, they often employ disparate design choices when fine-tuning MLLMs for VG, lacking systematic verification to support these designs. To bridge this gap, this paper presents a comprehensive study of various design choices that impact the VG performance of MLLMs. We conduct our analysis using LLaVA-1.5, which has been widely adopted in prior empirical studies of MLLMs. While more recent models exist, we follow this convention to ensure our findings remain broadly applicable and extendable to other architectures. We cover two key aspects: (1) exploring different visual grounding paradigms in MLLMs, identifying the most effective design, and providing our insights; and (2) conducting ablation studies on the design of grounding data to optimize MLLMs' fine-tuning for the VG task. Finally, our findings contribute to a stronger MLLM for VG, achieving improvements of +5.6% / +6.9% / +7.0% on RefCOCO/+/g over the LLaVA-1.5.
comment: 8 pages for the main paper
♻ ☆ Multi-Turn Puzzles: Evaluating Interactive Reasoning and Strategic Dialogue in LLMs
Large language models (LLMs) excel at solving problems with clear and complete statements, but often struggle with nuanced environments or interactive tasks which are common in most real-world scenarios. This highlights the critical need for developing LLMs that can effectively engage in logically consistent multi-turn dialogue, seek information and reason with incomplete data. To this end, we introduce a novel benchmark comprising a suite of multi-turn tasks each designed to test specific reasoning, interactive dialogue, and information-seeking abilities. These tasks have deterministic scoring mechanisms, thus eliminating the need for human intervention. Evaluating frontier models on our benchmark reveals significant headroom. Our analysis shows that most errors emerge from poor instruction following, reasoning failures, and poor planning. This benchmark provides valuable insights into the strengths and weaknesses of current LLMs in handling complex, interactive scenarios and offers a robust platform for future research aimed at improving these critical capabilities.
♻ ☆ SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models NeurIPS 2024
Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (Gemma, Qwen, Mixtral, gpt-oss) and scales (from 1B to 45B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks and the results demonstrate that SLED consistently improves factual accuracy compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.
comment: Accepted at NeurIPS 2024; project page is available at https://jayzhang42.github.io/sled_page/
♻ ☆ Customizing Speech Recognition Model with Large Language Model Feedback
Automatic speech recognition (ASR) systems have achieved strong performance on general transcription tasks. However, they continue to struggle with recognizing rare named entities and adapting to domain mismatches. In contrast, large language models (LLMs), trained on massive internet-scale datasets, are often more effective across a wide range of domains. In this work, we propose a reinforcement learning based approach for unsupervised domain adaptation, leveraging unlabeled data to enhance transcription quality, particularly the named entities affected by domain mismatch, through feedback from a LLM. Given contextual information, our framework employs a LLM as the reward model to score the hypotheses from the ASR model. These scores serve as reward signals to fine-tune the ASR model via reinforcement learning. Our method achieves a 21\% improvement on entity word error rate over conventional self-training methods.
♻ ☆ Natural Language Generation from Visual Events: State-of-the-Art and Key Open Questions
In recent years, a substantial body of work in visually grounded natural language processing has focused on real-life multimodal scenarios such as describing content depicted in images or videos. However, comparatively less attention has been devoted to study the nature and degree of interaction between the different modalities in these scenarios. In this paper, we argue that any task dealing with natural language generation from sequences of images or frames is an instance of the broader, more general problem of modeling the intricate relationships between visual events unfolding over time and the features of the language used to interpret, describe, or narrate them. Therefore, solving these tasks requires models to be capable of identifying and managing such intricacies. We consider five seemingly different tasks, which we argue are compelling instances of this broader multimodal problem. Subsequently, we survey the modeling and evaluation approaches adopted for these tasks in recent years and examine the common set of challenges these tasks pose. Building on this perspective, we identify key open questions and propose several research directions for future investigation.
♻ ☆ LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
The growth of large language models underscores the need for parameter-efficient fine-tuning. Despite its popularity, LoRA encounters storage and computational challenges when deploying multiple task- or user-specific modules. To address this, we introduce LoRA-XS, a novel fine-tuning method backed by a theoretical derivation. LoRA-XS drastically reduces trainable parameters by incorporating a small, trainable weight matrix between frozen low-rank matrices derived from the Singular Value Decomposition of pre-trained weights. This design enables LoRA-XS to reduce storage requirements by over 100x in 7B models compared to LoRA. Additionally, unlike other methods, LoRA-XS imposes no lower bound on trainable parameters - it can scale from a single parameter per module to arbitrarily large values, adapting to any storage or computational constraint. Evaluations on GLUE, GSM8K, MATH, and commonsense reasoning benchmarks across different model scales reveal that LoRA-XS consistently outperforms or matches LoRA and VeRA in accuracy, offering unmatched parameter efficiency. Our ablation studies highlight the significance of singular vectors in transformer weights, establishing LoRA-XS as a powerful, storage-efficient solution for scaling and personalizing large language models.
♻ ☆ LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Large language models (LLMs) have shown remarkable abilities in logical reasoning, in-context learning, and code generation. However, translating natural language instructions into effective robotic control policies remains a significant challenge, especially for tasks requiring long-horizon planning and operating under sparse reward conditions. Hierarchical Reinforcement Learning (HRL) provides a natural framework to address this challenge in robotics; however, it typically suffers from non-stationarity caused by the changing behavior of the lower-level policy during training, destabilizing higher-level policy learning. We introduce LGR2, a novel HRL framework that leverages LLMs to generate language-guided reward functions for the higher-level policy. By decoupling high-level reward generation from low-level policy changes, LGR2 fundamentally mitigates the non-stationarity problem in off-policy HRL, enabling stable and efficient learning. To further enhance sample efficiency in sparse environments, we integrate goal-conditioned hindsight experience relabeling. Extensive experiments across simulated and real-world robotic navigation and manipulation tasks demonstrate LGR2 outperforms both hierarchical and non-hierarchical baselines, achieving over 55% success rates on challenging tasks and robust transfer to real robots, without additional fine-tuning.
♻ ☆ DeepRetro: Retrosynthetic Pathway Discovery using Iterative LLM Reasoning
The synthesis of complex natural products remains one of the grand challenges of organic chemistry. We present DeepRetro, a major advancement in computational retrosynthesis that enables the discovery of viable synthetic routes for complex molecules typically considered beyond the reach of existing retrosynthetic methods. DeepRetro is a novel, open-source framework that tightly integrates large language models (LLMs), traditional retrosynthetic engines, and expert human feedback in an iterative design loop. Prior approaches rely solely on template-based methods or unconstrained LLM outputs. In contrast, DeepRetro combines the precision of template-based methods with the generative flexibility of LLMs, controlled by rigorous chemical validity checks and enhanced by recursive refinement. This hybrid system dynamically explores and revises synthetic pathways, guided by both algorithmic checks and expert chemist feedback through an interactive user interface. While DeepRetro achieves strong performance on standard retrosynthesis benchmarks, its true strength lies in its ability to propose novel, viable pathways to highly complex natural products-targets that have historically eluded automated planning. Through detailed case studies, we illustrate how this approach enables new routes for total synthesis and facilitates human-machine collaboration in organic chemistry. Beyond retrosynthesis, DeepRetro represents a working model for how to leverage LLMs in scientific discovery. We provide a transparent account of the system's design, algorithms, and human-feedback loop, enabling broad adaptation across scientific domains. By releasing DeepRetro as an open-source tool, we aim to empower chemists to tackle increasingly ambitious synthetic targets, accelerating progress in drug discovery, materials design, and beyond.
comment: 64 pages,
♻ ☆ BeyondWeb: Lessons from Scaling Synthetic Data for Trillion-scale Pretraining
Recent advances in large language model (LLM) pretraining have shown that simply scaling data quantity eventually leads to diminishing returns, hitting a data wall. In response, the use of synthetic data for pretraining has emerged as a promising paradigm for pushing the frontier of performance. Despite this, the factors affecting synthetic data quality remain poorly understood. In this work, we introduce BeyondWeb, a synthetic data generation framework that produces high-quality synthetic data for pretraining. BeyondWeb significantly extends the capabilities of traditional web-scale datasets, outperforming state-of-the-art synthetic pretraining datasets such as Cosmopedia and Nemotron-CC's high-quality synthetic subset (Nemotron-Synth) by up to 5.1 percentage points (pp) and 2.6pp, respectively, when averaged across a suite of 14 benchmark evaluations. It delivers up to 7.7x faster training than open web data and 2.7x faster than Nemotron-Synth. Remarkably, a 3B model trained for 180B tokens on BeyondWeb outperforms an 8B model trained for the same token budget on Cosmopedia. We also present several insights from BeyondWeb on synthetic data for pretraining: what drives its benefits, which data to rephrase and how, and the impact of model size and family on data quality. Overall, our work shows that there's no silver bullet for generating high-quality synthetic pretraining data. The best outcomes require jointly optimizing many factors, a challenging task that requires rigorous science and practical expertise. Naive approaches can yield modest improvements, potentially at great cost, while well-executed methods can yield transformative improvements, as exemplified by BeyondWeb.
comment: Blog version can be viewed at: http://blog.datologyai.com/beyondweb